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ABSTRACT

The traditional CFAR processors are based on the dliding-
window concept, which have substantia performance
degradation under nonhomogeneity. Owing to temporal
processing and the exploitation of the local homogeneity
of the map cell, the clutter-map procedure acquires
enhanced robustness with little CFAR losses. In this paper,
a Gaussian biparametric clutter-map constant false alarm
rate (GBCM-CFAR) processor is proposed which merges
the clutter-map technique and noncoherent integration
together. It can approximately achieve CFAR independent
of the original clutter distribution. The performance in the
presence of fast point targets is assessed, in the examples
of Weibull and lognormal clutter, in order to dlicit the
effect of the system parameters. Its performanceis close to
that of the optimum Neyman-Pearson detector with little
CFAR losses in homogeneous environments. It is also
suitable to deal with the nonhomogeneous situation.

1. INTRODUCTION

Constant false alarm rate (CFAR) processors are widely
used in radar detection to achieve control of the false
alarm rate under varying environments. Most of the
proposed CFAR systems accomplish estimation of the
background level by processing a bunch of samples,
which represent the clutter echoes from the spatia cellsin
close proximity to the test cell. The estimation sample
coincides with afinite size window, thus these systems are
referred as dliding-window CFAR (SW-CFAR). The SW-
CFAR processor can achieve good performance in
homogeneous or near homogeneous environments.
However, its performance may severely degrade due to
non-homogeneities, which lead to abrupt variations in the
statistical properties of the echoes across the reference
cells[1].

The clutter-map CFAR (CM-CFAR) [2] detector
relies on another concept, where the radar space is divided
into several map cells, each containing one or more spatial
cells. In each scan, the background level estimation of
each map cell is updated by digital exponential smoothing
of the clutter returns, memory stored and used in next scan.
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The CM-CFAR processor will not suffer from non-
homogeneities, provided that the size of the map cdl is
small enough. But it suffers the masking effect, which
leads to the performance degradation due to targets
dwelling in the same map cell for several scans.

Previous studies on the CM-CFAR detector have been
limited to a single pulse. In this paper, we extend the
analysis of the CM-CFAR detector with R-pulse
noncoherent integration to get the explicit formulas of the
false alarm rate and the detection probability. The CFAR
property of such processor is proven by using an ancillary
statistic with some approximations. We call this processor
Gaussian biparametric clutter-map CFAR (GBCM-CFAR).
Based on the fact that the result of noncoherent integration
of the amplitudes of independent clutter samples is
approximately identicad to a Gaussian distribution,
provided that the integration number is large enough, it
can approximately achieve CFAR independent of original
clutter distribution. This property is the same as the
Gaussian biparametric CFAR (GB-CFAR) [3] that is
based on the diding-window concept. But GBCM-CFAR
is more suitable to the real situation than GB-CFAR (or
SW-CFAR) to cope with nonhomogeneities. Since
GBCM-CFAR relies on updating the background estimate
corresponding to the map cell scan-by-scan, the map cell
size turns out to be much smaller than that of the reference
window of GB-CFAR (or SW-CFAR). The performance
of the GBCM-CFAR detector with regard to Weibull and
lognormal clutter is analyzed. We shall show that its
performance under homogeneity is close to the optimal.

2. ANALYSISOF THE GBCM-CFAR DETECTOR

The GBCM-CFAR detector is shown in Fig. 1. Following
linear-law detection and R-pulse noncoherent integration,
the integrated data of M spatial cells belonging to the
map cell being scanned are fed to the mean estimator and

the variance estimator to get the sample mean X(n) and the
sample variance S*(n) of the nth scan. Then the sample

mean and the sample variance undergo digital exponential
smoothing by two single-pole loop integrators to update
the two estimates for the next scan. The loop integrator
with feedback gain a is outlined in Fig. 2. It supplies an
asymptotically unbiased estimate of the expected value of
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Figure 1: Block scheme of the GBCM-CFAR processor
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Figure 2: Loop integrator

its input. The smoothed sample mean plus the product of
the smoothed sample standard deviation and a fixed
coefficient H forms the threshold. The integrated value
of the test cell is not compared with the current threshold
value, but with the value stored in the previous scan, so as
to avoid useful targets returns causing overestimation of

the threshold. Let X 1 (n—1) denote the output of the upper
integrator, S7(n-1) denote the output of the lower
integrator at the (n-1) th scan. The value of the test cell is
presented as X, (n) . Hence the detection decision &t the
n th scan is made as following:

xd(n);?f(n—lp H./S?(n-1) (1)

In the following, we refer to the situation that the
environment is clutter dominated, namely that the thermal
noise component can be neglected. It is assumed that the
amplitudes of the returns from the spatial cells in the same
map cell are independent and identically distributed (i.i.d.)
and uncorrelated on a scan-by-scan basis, i.e. that the
radar carrier frequency varies at least scan-by-scan. Let
the amplitudes of the spatial cells belonging to the map
cell a nth scan denote by z(n) (<i<R1<j<M).
Performing noncoherent integration generates the new
statistic:

R
X, (M =27(n) )
i=1
X, (n) is approximately identical to Gaussian distribution
when the integration number is large enough [4], i.e.
X;(n) ~N(m,,c2), where m,,c; denote the mean and the
variance of the amplitudes after integration respectively.
And m, =Rm,,c2 =Rs?, where m,,c?are the mean and
the variance of the amplitudes before integration.

Then the sample mean and the sample variance of the
map cell at nth scan are respectively given by

XM =13 X, (), S2(n) =—2— S IX, ()~ XO)F (3)
M “= M —-14

It is obtained from (3) that X (n) isa Gaussian variate, i.e.
X(n) ~ N(My,62/M) , (M-1)S?(n)/c? is a chi square
variate with (M -1) degrees of freedom, i.e
S*(n)~c2(M =)'y *(M -1) and they are independent to

each other [4].
Let us dea with the statistical characteristic of the

outputs of the two loop integrators. The output X ¢ (n—1)
of the upper loop integrator can be expressed as

_ -1
Xi(n-1)=(@1-a)) a X(n-1-1) 4

1=0
Only considering the steady state of the clutter map

procedure by letting n — « , the mean and the variance of
Xt (n—1) can be evaluated through (4) as

M =Mk % =T 2 M ()

Since the PDF of X(n) is Gaussian, it can be acquired
that X (n-12)~N(mg, o2 ). The output S;(n-1) of the
lower loop integrator can be expressed as
n-1
S¢(n-1)=(1-a)) a'S*(n-1-1) (6)
1=0
It is hard to determine the statistical distribution of the
output S?(n-1) from (6). We recall N, = (1+a)/(1-a) as
the effective length of the filter memory [5]. N, can be

considered as the number of equivalent pulses integrated
by the clutter map. Thus S!(n-1) can be approximately

expressed as
1 N1
Sf(n—l):WZSz(n—l—i) (7
e i=0
Through the previous equation it can be predicted that the
output  S;(N-1) ~cZ(M -1 *N;*%*(N,(M -1) [4]. To
verify the conclusion, a chi square test has been carried

out, using a population of 1000 samples of the lower loop
integrator output. The test has been done for severa
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values of the map cell size M and the effective length N,

of the filter memory. It is shown that the hypothesis of chi
sguare distribution can be admitted at a significance level
of 5%, when 2<M <16 and N, >7.

Next consider the statistic

[X, (=X (-D]/Joi+0% X, (m)-X:(n-1)

’]’] = =
JM =N SE(n-1)/2-1/[(M -DN,] \/1+I\/IT\ISf(n_1)

()
Henceit is an ancillary statistic whose PDF is independent
of m, and o . Under the hypothesis H, of no target

Situation, n is a Student-t variate with N_(M -1) degrees
of freedom [4]. Letting T be the (1-P,) -quantile of n,
we have the false darm rate P{n >T|H,} = P, which is

independent of m, and 2 . That proves the CFAR

property of the GBCM-CFAR detector with some
approximations. Thus the threshold coefficient is
expressed as

1

MN

e

H= [1+—T 9)

3. PERFORMANCE ASSESSMENT

We now proceed to the performance of the GBCM-CFAR
processor. The false dlarm rate is given by
P.=P{n>T[Ho} = [ hn)dn (10)
where h,(-) denotes the PDF of Student-t distribution with
N.(M -1) degrees of freedom. If a nonfluctuating target

exists in the background, the detection probability can be
expressed as

P, =P{n>TIH} = [ R -2 @) 7
R e (11)

e 1/2 1 -1/2
= [, hn -2 VI

where A, denotes the signal amplitude after integration
and A, = A’/c? is the signal-to-clutter ratio (SCR) after
integration. We introduce the SCR improvement factor (1F)

employing R-pulse noncoherent integration [3]
2 2 2
e Ados Ry (1)
A, A +o)) c,
where 2, is the SCR before noncoherent integration.
From (11) and (12) we may rewrite the expression for P,
related to the original SCR as

* 1/2 1
P =[ hIn-(F-1,) L) e a9

Furthermore, with respect to the property that t-
distribution is close to standard Gaussian distribution

when the freedom degree is large [4], the performance of
the GBCM-CFAR processor approaches the optimum
Neyman-Pearson detector when N, — o, namely a=1:

lim P, =1-@(T) (14)

lim P, =1-0(T - /i) =1- @[ *(1-P,) - fIF 1,1 (15)
where @(-) isthe CDF of standard Gaussian distribution.

It is commonly accepted that the Weibull and
lognormal distribution are suitable models to describe
non-Rayleigh clutter. We apply the above theory to
Weibull and lognormal clutter. The Weibull PDF is

B-1 B
fw(x)zg[aij exp{—(alj } x>0,a >0, B >0(16)

We acquire the I F of the Weibull distribution through (12)

- r(1+2/p)
i _Jﬁr(u 2/B)-[C(1+1/ )

The lognormal PDF is

fl (X) =

(17)

2
X\/;iﬁzexp{— (|n;([32(x) } x>0,a eR, B >0(18)
Then the IF of the lognormal distribution is
exp(2o + 2B %)

VR @2 ep

In Fig. 3, curves of the threshold coefficient T
required to achieve a false darm rate of 10° for different
map cell sizes M and for several values of N, are shown.

It reveals that as N, or M increases lower values for the

threshold coefficient are obtained in all cases, as expected.
This suggests that as long as the assumption of local
homogeneity holds true, the higher N, and M , the better

performance. This is consistent with the discussion
leading to (14) and (15).

The results of the detection performance are presented
in Fig. 4 for Weibull and lognormal background. Fig. 4(a)
represents the detection performance versus the SCRA,

before integration for M =8, R=64 and different values
of N, in Weibull clutter. In Fig. 4(a), the curves
corresponding to the shape parameter p=1and B =2 (i.e.
the Rayleigh distribution as a specia case of the Weibull
distribution) are given, so as to €licit the influence of the
clutter spikiness. All the plots refer to P, =10°. For

comparison purposes, the curves of the optimum Neyman-
Pearson detector for both cases are aso shown for the
same value of P, . So the CFAR losses can be read from

the figure as the horizontal displacement between the
curve and the corresponding leftmost one. It is shown that
the CFAR losses of both cases are below 1dB, namely that
the performance of the GBCM-CFAR system is close to
the optimal. Referring to the influence of the Weibull
clutter shape parameter B on the detection performance,
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Figure 3: Threshold coefficient T versus M , the size of
map cell, for different valuesof N_, P, =10°.
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Figure 4: Detection performance of GBCM-CFAR for
point-like targets in Weibull and lognormal clutter. M =8,
P,=10°, R=64 . (a) Weibull background, o =09,
left: p=2, right: p=1. (b) lognormal background,
o =09, left: B =0.355, right: § =1.147.
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it indicates that higher tails of the distribution result in
worse performance. As to the detection probability of 0.9,
the performance of B =1 corresponding to the spikier
clutter is shown about 4dB CFAR loss as to the case of
B=2.

Similar plots are depicted in Fig. 4(b) with reference
to the case of lognormal clutter. The curves corresponding
to the shape parameter g =0.355 and B =1.147 are given,
because p =0.355 makes the lognormal distribution as

spiky as the Rayleigh one and the spikiness of the
lognormal clutter with g =1.147 is similar to the Weibull

case with B =1 [6]. The same conclusions are drawn as

Weibull clutter for the CFAR loss and the heavy-tail effect.

The CFAR loss between B =1.147 and B =0.355 of the
lognormal clutter islarger than the Weibull case.

4. CONCLUSION

In this paper we have introduced and assessed a Gaussian
biparametric clutter-map CFAR processor based on
dividing the radar space into several map cells, in order to
perform the background estimation. The CFAR property
of the detector independent of the original clutter
distribution has been proven with some approximations.
The performance of the GBCM-CFAR procedure has been
investigated subjective to Weibull and lognormal clutter
with discussion of the effect of system parameters and
distribution parameters. In the homogeneous environment,
the performance of GBCM-CFAR s close to that of the
optimum Neyman-Pearson detector with little CFAR
losses as long as N,>15 and M >2. It is adso more

suitable than GB-CFAR (or SW-CFAR) to cope with the
nonhomogeneous situation.

However, GBCM-CFAR still suffers the masking
effect. A possible solution is to enable or disable the
update procedure of the loop integrator depending on
whether or not atarget is declared in the current scan. And
further work should be done to analyze the sensitivity of
the false alarm rate when the CFAR condition is not met,
namely that there are some possible mismatches between
the actual clutter condition and the detector design.
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