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ABSTRACT 

 
The traditional CFAR processors are based on the sliding-
window concept, which have substantial performance 
degradation under nonhomogeneity. Owing to temporal 
processing and the exploitation of the local homogeneity 
of the map cell, the clutter-map procedure acquires 
enhanced robustness with little CFAR losses. In this paper, 
a Gaussian biparametric clutter-map constant false alarm 
rate (GBCM-CFAR) processor is proposed which merges 
the clutter-map technique and noncoherent integration 
together. It can approximately achieve CFAR independent 
of the original clutter distribution. The performance in the 
presence of fast point targets is assessed, in the examples 
of Weibull and lognormal clutter, in order to elicit the 
effect of the system parameters. Its performance is close to 
that of the optimum Neyman-Pearson detector with little 
CFAR losses in homogeneous environments. It is also 
suitable to deal with the nonhomogeneous situation.  

 

1. INTRODUCTION 
 
Constant false alarm rate (CFAR) processors are widely 
used in radar detection to achieve control of the false 
alarm rate under varying environments. Most of the 
proposed CFAR systems accomplish estimation of the 
background level by processing a bunch of samples, 
which represent the clutter echoes from the spatial cells in 
close proximity to the test cell. The estimation sample 
coincides with a finite size window, thus these systems are 
referred as sliding-window CFAR (SW-CFAR). The SW-
CFAR processor can achieve good performance in 
homogeneous or near homogeneous environments. 
However, its performance may severely degrade due to 
non-homogeneities, which lead to abrupt variations in the 
statistical properties of the echoes across the reference 
cells [1].  

The clutter-map CFAR (CM-CFAR) [2] detector 
relies on another concept, where the radar space is divided 
into several map cells, each containing one or more spatial 
cells. In each scan, the background level estimation of 
each map cell is updated by digital exponential smoothing 
of the clutter returns, memory stored and used in next scan. 

The CM-CFAR processor will not suffer from non-
homogeneities, provided that the size of the map cell is 
small enough. But it suffers the masking effect, which 
leads to the performance degradation due to targets 
dwelling in the same map cell for several scans. 

Previous studies on the CM-CFAR detector have been 
limited to a single pulse. In this paper, we extend the 
analysis of the CM-CFAR detector with R-pulse 
noncoherent integration to get the explicit formulas of the 
false alarm rate and the detection probability. The CFAR 
property of such processor is proven by using an ancillary 
statistic with some approximations. We call this processor 
Gaussian biparametric clutter-map CFAR (GBCM-CFAR). 
Based on the fact that the result of noncoherent integration 
of the amplitudes of independent clutter samples is 
approximately identical to a Gaussian distribution, 
provided that the integration number is large enough, it 
can approximately achieve CFAR independent of original 
clutter distribution. This property is the same as the 
Gaussian biparametric CFAR (GB-CFAR) [3] that is 
based on the sliding-window concept. But GBCM-CFAR 
is more suitable to the real situation than GB-CFAR (or 
SW-CFAR) to cope with nonhomogeneities. Since 
GBCM-CFAR relies on updating the background estimate 
corresponding to the map cell scan-by-scan, the map cell 
size turns out to be much smaller than that of the reference 
window of GB-CFAR (or SW-CFAR). The performance 
of the GBCM-CFAR detector with regard to Weibull and 
lognormal clutter is analyzed. We shall show that its 
performance under homogeneity is close to the optimal. 
 

2. ANALYSIS OF THE GBCM-CFAR DETECTOR 
 
The GBCM-CFAR detector is shown in Fig. 1. Following 
linear-law detection and R-pulse noncoherent integration, 
the integrated data of M  spatial cells belonging to the 
map cell being scanned are fed to the mean estimator and 
the variance estimator to get the sample mean ( )X n and the 
sample variance S  of the th scan. Then the sample 
mean and the sample variance undergo digital exponential 
smoothing by two single-pole loop integrators to update 
the two estimates for the next scan. The loop integrator 
with feedback gain a  is outlined in Fig. 2. It supplies an 
asymptotically unbiased estimate of the expected value of

2 ( )n n
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Figure 1: Block scheme of the GBCM-CFAR processor 
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Figure 2: Loop integrator 

its input. The smoothed sample mean plus the product of 
the smoothed sample standard deviation and a fixed 
coefficient  forms the threshold. The integrated value 
of the test cell is not compared with the current threshold 
value, but with the value stored in the previous scan, so as 
to avoid useful targets returns causing overestimation of 
the threshold. Let 

H

( 1fX n −
1)−

1)n −
( )n

)  denote the output of the upper 
integrator,  denote the output of the lower 
integrator at the ( th scan. The value of the test cell is 
presented as X . Hence the detection decision at the 

th scan is made as following: 

2
f (S n

d

n
1

0
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H

X n X n H S n> − + −<                  (1) 

In the following, we refer to the situation that the 
environment is clutter dominated, namely that the thermal 
noise component can be neglected. It is assumed that the 
amplitudes of the returns from the spatial cells in the same 
map cell are independent and identically distributed (i.i.d.) 
and uncorrelated on a scan-by-scan basis, i.e. that the 
radar carrier frequency varies at least scan-by-scan. Let 
the amplitudes of the spatial cells belonging to the map 
cell at n th scan denote by z n  . 
Performing noncoherent integration generates the new 
statistic: 

( )ij (1 ,1 )i R j M≤ ≤ ≤ ≤

1

( ) ( )
R

j i
i

X n z n
=

= ∑ j

R

                             (2) 

( )jX n

( )X n

 is approximately identical to Gaussian distribution 
when the integration number is large enough [4], i.e. 

, where m  denote the mean and the 
variance of the amplitudes after integration respectively. 
And ,σ , where m are the mean and 
the variance of the amplitudes before integration. 

2~ ( , )j RN m σ

R zm Rm=

2,R Rσ

2
zσ2

R R= 2,z zσ

Then the sample mean and the sample variance of the 
map cell at th scan are respectively given by n

 2 2
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It is obtained from (3) that ( )X n  is a Gaussian variate, i.e. 
2( ) ~ ( , / )R RX n N m Mσ

M −
2 2( ) ~ ( 1)RS n Mσ −−

,  is a chi square 
variate with (  degrees of freedom, i.e. 

 and they are independent to 
each other [4]. 
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Let us deal with the statistical characteristic of the 
outputs of the two loop integrators. The output ( 1fX n − )  
of the upper loop integrator can be expressed as 

1

0
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Only considering the steady state of the clutter map 
procedure by letting n , the mean and the variance of →∞

( 1fX n − )  can be evaluated through (4) as 
2

2 1,
1f f

R
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am m
a M

σ
σ
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= =

+
⋅                (5)  

Since the PDF of ( )X n  is Gaussian, it can be acquired 
that 2( ,

fXm σ( 1) ~
f

f XX n N− ) )

) a

. The output S n  of the 

lower loop integrator can be expressed as 
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It is hard to determine the statistical distribution of the 
output  from (6). We recall N a  as 
the effective length of the filter memory [5].  can be 
considered as the number of equivalent pulses integrated 
by the clutter map. Thus S n  can be approximately 
expressed as 

2 ( 1fS n− (1 ) /(1 )e = + −

eN

2 ( 1)f −
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Through the previous equation it can be predicted that the 
output [4]. To 
verify the conclusion, a chi square test has been carried 
out, using a population of 1000 samples of the lower loop 
integrator output. The test has been done for several 

2 2 1 1 2( 1) ~ ( 1) ( ( 1)f R e eS n M N N Mσ χ− −− − )−

VI - 542

➡ ➡



values of the map cell size  and the effective length  
of the filter memory. It is shown that the hypothesis of chi 
square distribution can be admitted at a significance level 
of 5%, when  and . 
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1)

)

Hence it is an ancillary statistic whose PDF is independent 
of  and . Under the hypothesis H  of no target 
situation, η  is a Student-t variate with N M  degrees 
of freedom [4]. Letting T  be the (1 -quantile of η , 
we have the false alarm rate P T  which is 
independent of m  and . That proves the CFAR 
property of the GBCM-CFAR detector with some 
approximations. Thus the threshold coefficient is 
expressed as 

zm 2
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e
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3. PERFORMANCE ASSESSMENT 

 
We now proceed to the performance of the GBCM-CFAR 
processor. The false alarm rate is given by 

                (10) { }0 0| (fa T
P P H h d

∞
= > = ∫

where  denotes the PDF of Student-t distribution with 
 degrees of freedom. If a nonfluctuating target 

exists in the background, the detection probability can be 
expressed as 
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where  denotes the signal amplitude after integration 
and  is the signal-to-clutter ratio (SCR) after 
integration. We introduce the SCR improvement factor (IF) 
employing R-pulse noncoherent integration [3] 
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where  is the SCR before noncoherent integration. 
From (11) and (12) we may rewrite the expression for  
related to the original SCR as 
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Furthermore, with respect to the property that t-
distribution is close to standard Gaussian distribution 

when the freedom degree is large [4], the performance of 
the GBCM-CFAR processor approaches the optimum 
Neyman-Pearson detector when , namely : eN →∞ 1a =

lim 1 ( )
e

faN
P

→∞
= −Φ                            (14) 
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= −Φ − = −Φ Φ − − ⋅ z (15) 

where  is the CDF of standard Gaussian distribution. ( )Φ ⋅
It is commonly accepted that the Weibull and 

lognormal distribution are suitable models to describe 
non-Rayleigh clutter. We apply the above theory to 
Weibull and lognormal clutter. The Weibull PDF is  

1
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The lognormal PDF is 
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Then the IF of the lognormal distribution is 
2
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In Fig. 3, curves of the threshold coefficient T  
required to achieve a false alarm rate of 10  for different 
map cell sizes  and for several values of  are shown. 
It reveals that as N  or  increases lower values for the 
threshold coefficient are obtained in all cases, as expected. 
This suggests that as long as the assumption of local 
homogeneity holds true, the higher  and , the better 
performance. This is consistent with the discussion 
leading to (14) and (15). 
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The results of the detection performance are presented 
in Fig. 4 for Weibull and lognormal background. Fig. 4(a) 
represents the detection performance versus the SCR  
before integration for M ,  and different values 
of  in Weibull clutter. In Fig. 4(a), the curves 
corresponding to the shape parameter β =  and  (i.e. 
the Rayleigh distribution as a special case of the Weibull 
distribution) are given, so as to elicit the influence of the 
clutter spikiness. All the plots refer to P . For 
comparison purposes, the curves of the optimum Neyman-
Pearson detector for both cases are also shown for the 
same value of . So the CFAR losses can be read from 
the figure as the horizontal displacement between the 
curve and the corresponding leftmost one. It is shown that 
the CFAR losses of both cases are below 1dB, namely that 
the performance of the GBCM-CFAR system is close to 
the optimal. Referring to the influence of the Weibull 
clutter shape parameter β  on the detection performance,

zλ
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Figure 3: Threshold coefficient T  versus , the size of 
map cell, for different values of , . 
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(a)                                         (b) 

Figure 4: Detection performance of GBCM-CFAR for 
point-like targets in Weibull and lognormal clutter. , 

, . (a) Weibull background, α = , 
left: , right: . (b) lognormal background, 

, left: , right: . 
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it indicates that higher tails of the distribution result in 
worse performance. As to the detection probability of 0.9, 
the performance of β  corresponding to the spikier 
clutter is shown about 4dB CFAR loss as to the case of 

. 

1=

2β =
Similar plots are depicted in Fig. 4(b) with reference 

to the case of lognormal clutter. The curves corresponding 
to the shape parameter β =  and  are given, 
because  makes the lognormal distribution as 
spiky as the Rayleigh one and the spikiness of the 
lognormal clutter with β =  is similar to the Weibull 
case with β  [6]. The same conclusions are drawn as 
Weibull clutter for the CFAR loss and the heavy-tail effect. 
The CFAR loss between β =  and  of the 
lognormal clutter is larger than the Weibull case. 
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4. CONCLUSION 
 

In this paper we have introduced and assessed a Gaussian 
biparametric clutter-map CFAR processor based on 
dividing the radar space into several map cells, in order to 
perform the background estimation. The CFAR property 
of the detector independent of the original clutter 
distribution has been proven with some approximations. 
The performance of the GBCM-CFAR procedure has been 
investigated subjective to Weibull and lognormal clutter 
with discussion of the effect of system parameters and 
distribution parameters. In the homogeneous environment, 
the performance of GBCM-CFAR is close to that of the 
optimum Neyman-Pearson detector with little CFAR 
losses as long as N  and . It is also more 
suitable than GB-CFAR (or SW-CFAR) to cope with the 
nonhomogeneous situation. 

15e ≥ 2M ≥

However, GBCM-CFAR still suffers the masking 
effect. A possible solution is to enable or disable the 
update procedure of the loop integrator depending on 
whether or not a target is declared in the current scan. And 
further work should be done to analyze the sensitivity of 
the false alarm rate when the CFAR condition is not met, 
namely that there are some possible mismatches between 
the actual clutter condition and the detector design. 
 

5. REFERENCES 
 
[1] E. Conte, and M. Lops, “Clutter-map CFAR detection for 
range-spread targets in non-Gaussian clutter. Part I: System 
design”, IEEE Trans. Aerospace and Electronic Systems, Vol. 
AES-33, pp. 432-443, April 1997. 
 
[2] R. Nitzberg, “Clutter map CFAR analysis”, IEEE Trans. 
Aerospace and Electronic Systems, Vol. AES-22, pp. 419-421, 
July 1986. 
 
[3] H.D. Meng, X.Q. Wang, and Y.N. Peng, “New CFAR 
processor independent of original noise distribution”, 
Proceeding of CIE International Conference on Radar, pp. 
368-371, October 2001. 
 
[4] J.K. Patel, C.H. Kapadia, and D.B. Owen, Handbook 
of Statistical Distributions, Marcel Dekker, New York, 
1976. 
 
[5] M. Lops, and M. Orsini, “Scan-by-scan averaging 
CFAR”, IEE Proc. F, Vol. 136, pp.249-254, December 
1989. 
 
[6] E. Conte, M.D. Bisceglie, M. Lops, “Clutter-map CFAR 
detection for range-spread targets in non-Gaussian clutter. Part II: 
Performance assessment”, IEEE Trans. Aerospace and 
Electronic Systems, Vol. AES-33, pp. 444-454, April 1997. 
 
 
 

VI - 544

➡ ➠


