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ABSTRACT

A widely adopted algorithm for the audio segmentation is
based on the Bayesian Information Criterion (BIC), applyed within
a sliding variable-size analysis window. In this work, three differ-
ent implementations of that algorithm are analyzed in detail: (i)
one that keeps updated a pair of sums, that of input vectors and that
of square input vectors, in order to save computations in estimat-
ing covariance matrixes on partially shared data; (ii) one, recently
proposed in the literature, that exploits the encoding of the input
signal with cumulative statistics for the efficient estimation of co-
variance matrixes ; and (iii) an original one, that encodes the input
stream with the cumulative pair of sums of the first approach.

The three approaches have been compared both theoretically
and experimentally, and the proposed original approach will be
shown to be the most efficient.

1. INTRODUCTION

In the last years, many efforts have been devoted to the problem
of audio segmentation by the research community. This is due
to the number of applications of this procedure, that range from
the information extraction from audio data (e.g. broadcast news,
meetings recording), to the automatic indexing of multimedia data,
to the improvement of accuracy of recognition systems.

A widely used approach to audio segmentation is based on the
Bayesian Information Criterion (BIC) [1, 2, 3, 4, 5, 6]. In partic-
ular, in [5] an efficient approach to the shift variable-size window
algorithm has been proposed. The input audio stream is progres-
sively encoded by cumulative statistics, and the encoding is used
to avoid redundant operations in the computation of BIC values.

In this work, the algorithm presented in [5] is analyzed in de-
tail, from the viewpoint of computational cost, and compared, both
in theory and experimentally, with two other possible approaches.
One more direct but more expensive; and an original method that
merges the good ideas of the other two. It will be shown that the
last method is the most efficient.

2. BIC-BASED SEGMENTATION

Segmenting an audio stream means to detect the time indexes cor-
responding to changes in the nature of audio, in order to isolate
segments that are acoustically homogeneous.

Briefly, given a sequenceo1 . . . oN of observation vectors in
the<d space containing at most one change, the method [1] based
on the BIC [7] for audio segmentation rests on the computation of:
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∆BICi =
N

2
log |Σ| − i

2
log |Σ1| − (N − i)

2
log |Σ2| − λP

(1)

for each time indexi, whereP = 1
2

�
d + d(d+1)

2

�
log(N), and

Σ, Σ1 andΣ2 are the covariance matrixes estimated ono1 . . . oN ,
o1 . . . oi andoi+1 . . . oN , respectively. The value ofi that max-
imizes∆BICi is the most likely time index for a change and if
∆BICimax > 0 thenimax is confirmed to be a change. The sen-
sitivity of the method can be tuned by adjusting the valueλ to the
particular task under consideration.

2.1. Multiple Spectral Changes Detection

In order to apply the above described method to an arbitrary large
number of potential changes, we implemented the algorithm de-
picted in Figure 1, inspired by that proposed in [6]. The main idea
is to have a shifting variable-size window for the computation of
BIC values. Moreover, in order to save computations, BIC values
are not computed for each observation within the window, but at a
lower resolution rate, that is increased when a potential change is
detected, to validate it and to refine its time position.

The main steps of the algorithm are:
Search start. ∆BIC values are computed only for the firstNmin

observations.Nmin is the minimum size of the window, that has to
be small to contain no more than one change, but large enough to
allow computation of reliable statistics. Values are computed with
low resolutionδl, i.e. 1 observation out of 30. In order to have
enough observations for computing bothΣ1 andΣ2, ∆BIC are
not computed for theNmargin indexes close to the left and right
boundaries of the window.
Window growth . The window is enlarged by including∆Ngrow

input observations until a change is detected, or a maximum size
Nmax is reached.
Window shift . TheNmax-sized window is shifted on the right by
∆Nshift observations.
Change confirmation. If in one of the three previous steps a
change is detected,∆BIC values are re-computed with the high
resolutionδh, i.e. δh ≈ δl/5, centering the window at the hypoth-
esized change. The current size of the window is kept, unless it
is larger thanNsecond observations, in which case it is narrowed
to that value. If a change is detected again, it is output by the
algorithm.
Window reset. After the change confirmation step, the algorithm
has to go on resizing the analysis window to the minimum value
Nmin and locating it in a position dependent on the result of the
confirmation step (see Figure 2).
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init window(1, Nmin)

while(not end stream)

(∆BICimax , imax) ← compute ∆BIC(δl)

while(∆BICimax ≤ 0 &
current win size < Nmax &
not end stream)

growth win(∆Ngrow)
(∆BICimax , imax) ← compute ∆BIC(δl)

while(∆BICimax ≤ 0 & not end stream)
shift win(∆Nshift)
(∆BICimax , imax) ← compute ∆BIC(δl)

if(∆BICimax > 0) then
center win(imax, min(current win size, Nsecond))
(∆BICichange , ichange) ← compute ∆BIC(δh)
if(∆BICichange > 0) then
output(ichange)
init window(ichange + 1, Nmin)

else
init window(imax −∆margin + 1, Nmin)

Fig. 1. Pseudocode of the multiple change detection algorithm.

Fig. 2. The multiple change detection algorithm.

3. COMPUTATIONS

3.1. The Sum Approach (SA)

The evaluation of equation (1) determines the overall computa-
tional cost of the algorithm presented above, since a high number
of ∆BIC values have to be computed for each window.

An efficient way to compute the determinant of the covariance
matrix is based on the Cholesky decomposition which requires
O
�
d3/6

�
operations. The estimation of the mean vectorµ and

of the covariance matrixΣ onN d-sized observations requires, re-
spectively,d(N +1) andd(d+1)(N +1.5) operations. Typically,
the window sizeN is significantly larger than the vector dimension
d, hence the computational cost of the evaluation of the covariance
matrix determinant is not relevant.

In order to reduce the computational cost of estimating like-
lihoods of Normal distributions, required for the computation of
∆BIC values, it is convenient to keep the sums of the input vec-
tors (SV ) and that of the square vectors (SQ):

N current window size
n index of the vector that preceeds the first of the window
T set of vectors inside the window{on+1 . . . on+N}
T̃ set of vectors inside the window after a growth or a shift
Ak set of the firstkδ vectors of the window{on+1 . . . on+kδ}
Bk set of the lastn− kδ vect. of the win.{on+kδ+1 . . . on+N}
SVX sum of vectors of the setX
SQX sum of square vectors of the setX
ΣX covariance matrix on the vectors of the setX
µX mean vector on the vectors of the setX

Table 1. Notation.

SV =

n+NX
i=n+1

oi SQ =

n+NX
i=n+1

oi · ot
i

In fact, besides allowing the easy computation of the needed
parameters:

µ =
1

N
· SV Σ =

1

N
· SQ− µ · µ t

the use ofSV andSQ permits to avoid many redundant operations
in the computation of∆BIC values both within a given window
and after a window growth/shift. With reference to the notation of
Table 1, the following cases can happen:

• growth of the window byδ observations:

– SVT̃ = SVT +
Pn+N+δ

j=n+N+1 oj

– SQT̃ = SQT +
Pn+N+δ

j=n+N+1 oj · ot
j

• shift of the window byδ observations:

– SVT̃ = SVT −
Pn+δ

j=n+1 oj +
Pn+N+δ

j=n+N+1 oj

– SQT̃ = SQT−
Pn+δ

j=n+1 oj ·ot
j +
Pn+N+δ

j=n+N+1 oj ·ot
j

• computation of ∆BICi (at resolutionδ):

– SVAi = SVAi−1 +
Pn+iδ

j=n+(i−1)δ oj

– SQAi = SQAi−1 +
Pn+iδ

j=n+(i−1)δ oj · ot
j

– SVBi = SVT − SVAi

– SQBi = SQT − SQAi

With this approach, in each step of the algorithm the number
of operations for computing equation (1) is:

• growth of the window byδ observations:

d(d + 1) · δ| {z }
SQ

T̃

+ d · δ|{z}
SV

T̃

• shift of the window byδ observations:

d(d + 1) · 2 · δ| {z }
SQ

T̃

+ d · 2 · δ| {z }
SV

T̃

• computation of the cov. matrix of the whole window:

d|{z}
µT

+ 1.5 · d(d + 1)| {z }
ΣT

= 1.5 · d(d + 1) + d
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• computation of ∆BICi values with resolutionδ (∀i, i =
1, . . . , N/δ − 1):

d · δ|{z}
SVAi

+ d(d + 1) · δ| {z }
SQAi

+ d|{z}
SVBi

+ d(d + 1)/2| {z }
SQBi

+ 2 · d|{z}
µAi

, µBi

+

+ 3 · d(d + 1)| {z }
ΣAi

, ΣBi

= d(d + 1) · (δ + 3.5) + d · (δ + 3)

3.2. The Distribution Approach (DA)

In order to further reduce the computational cost of the algorithm,
it is possible to evaluate equation (1) through the approach pro-
posed in [5].

Let ΣN e µN be the sample covariance matrix and the mean
of a set ofN d-dimensional observations. If a (sub)set of∆ obser-
vations with covariance matrixΣ∆ and mean vectorµ∆ has to be
added or subtracted to that set, the parameters of the updated set
of vectors can be computed by:

ΣN±∆ =
N

N ±∆
ΣN ± ∆

N ±∆
Σ∆ ±

± N∆

(N ±∆)2
(µN − µ∆) (µN − µ∆)t (2)

µN±∆ =
N

N ±∆
µN ± ∆

N ±∆
µ∆ (3)

This formulation requires only3 · d(d + 1) + d and3 · d op-
erations for computingΣN±∆ andµN±∆, respectively, instead of
d(d + 1)(N ±∆ + 1.5) andd(N ±∆ + 1) required by the plain
definitions.

The alternative approach consists in computing from the input
audio streamo1, o2, . . . , oNaudio the set of triples(Σn

1 , µn
1 , n),

wheren = δh, 2δh, 3δh, . . . , Naudio.
The keys of this processing are equations (2) and (3) which

allow to obtain(Σn
1 , µn

1 , n) from (Σ
n−δh
1 , µ

n−δh
1 , n − δh) and

(Σn
n−δh+1, µ

n
n−δh+1, δh), where Σn

n−δh+1 and µn
n−δh+1 are

computed directly from the vectorson−δh+1, on−δh+2, . . . , on

through the definitions.
Since in this approach the estimation of a new distribution is

based on already computed distributions, it will be referred with
the name “distribution approach” (DA).

By constrainingδl andNsecond to be integers multiples ofδh

and by chosingNmin, Nmax, ∆Ngrow, ∆Nshift, ∆Nmargin to
be divisible byδl, it is possible to use the cumulative distributions
(Σn

1 , µn
1 , n) for the evaluation of∆BIC values and to reduce the

cost of the computation. In fact, whatever the step of the algo-
rithm is, the covariance matrixes required by equation (1) can be
estimated by exploiting equation (2) (and (3)):

Σn+N
n+1 =

n + N

N
Σn+N

1 − n

N
Σn

1 − (n + N)n

N2
×

×
�
µn+N

1 − µn
1

��
µn+N

1 − µn
1

�t

(4)

Σn+i
n+1 =

n + i

i
Σn+i

1 − n

i
Σn

1 − (n + i)n

i2
×

×
�
µn+i

1 − µn
1

��
µn+i

1 − µn
1

�t

(5)

Σn+N
n+i+1 =

n + N

N − i
Σn+N

1 − n + i

N − i
Σn+i

1 − (n + N)(n + i)

(N − i)2
×

×
�
µn+N

1 − µn+i
1

��
µn+N

1 − µn+i
1

�t

(6)

Of course, equation (4) is evaluated only once for a given window,
while equations (5) and (6) have to be evaluated for each time in-
dex of interest (depending on the resolution). A scheme of the DA
approach is given in Figure 3.

Fig. 3. ∆BICi computation in the DA approach.

The number of operations required by each step of the algo-
rithm with the DA approach is:

• growth or shift of the window byδ observations:

d(δ + 1)| {z }
µn+N+δ

n+N+1

+ d(d + 1)(δ + 1.5)| {z }
Σn+N+δ

n+N+1

+ 3 · d(d + 1) + 4 · d| {z }
(Σn+N+δ

1 ,µn+N+δ
1 ,n+N+δ)

= d(d + 1)(δ + 4.5) + d(δ + 5)

Note that this cost is that of the input stream encoding.

• computation of the cov. matrix of the whole window:

3 · d(d + 1) + d| {z }
Σn+N

n+1

• computation of ∆BICi values with resolutionδ (∀i, i =
1, . . . , N/δ − 1):

6 · d(d + 1) + 2 · d| {z }
Σn+i

n+1, Σn+N
n+i+1

3.3. The Cumulative Sum approach (CSA)

In previous methods, the estimation of the statistics required for
the computation of the BIC are based either on the use of the sum
and square sum of input vectors that fall inside the analysis win-
dow, or on the use of the set of statistics computed only once, as
the observations from the input stream are available. A combina-
tion of the two basic ideas gives the possibility to implement an
even more efficient approach.

The idea is to encode the input stream, not through the distri-
butions as in DA, but with the sums of the SA approach, that is with
the sequence of triples(SQn

1 , SV n
1 , n) computed at resolutionδh.

The higher efficiency is given by: (i) the redundant computations
of the SA approach are avoided since each input vector is used only
once, during the encoding of the input stream; (ii) the new encod-
ing is cheaper than the DA encoding (cf. the grow/shift costs); (iii)
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step #operations
growth/shift d(d + 1)δ + dδ

Σn+N
n+1 2d(d + 1) + 2d

∆BICi 4d(d + 1) + 4d

Table 2. Cost of each algorithm step with the CSA approach.

the computation of covariance matrixes from sums requires less
operations than starting from other distributions.

The costs of each step of the algorithm of this new approach,
that can be referred with the name “cumulative sum approach”
(CSA), are reported in Table 2.

4. EXPERIMENTAL EVALUATION

For experiments, the test data was selected from the IBNC cor-
pus [8], a collection of radio news programs. The performance
was measured on recordings of 6 programs (about 75 minutes of
audio) where 212 changes were manually annotated.

4.1. Costs comparison

Since the computation of∆BICi values is doneN/δ − 1 times
in each window, the total cost of the algorithm mainly depend on
the cost of that operation, and this is the reason for which the DA
approach is convenient with respect to the SA approach; in fact, the
number of operations with the DA approach does not depend onδ,
unlike the SA does, and in our case (d = 13) it results convenient
for δ ≥ 3.

In order to validate the theoretical comparison done in Subsec-
tions 3.1, 3.2 and 3.3, and in particular the dependence of the over-
all computational cost from the resolutionδ, the three approaches
have been run with a simplified setup. We setNmin = Nmax, in
order to eliminate the window grow step, and the value ofλ was set
high enough that no candidate change was detected, constraining
the computations to be done only at resolutionδl = δ.

Given the setup in the caption, the total number of operations
required by the three approaches are given in the columns “#oper-
ations”1 of Table 3, for different values ofδ. The execution times
were measured on a Pentium III 600MHz on the 75-minute test
set.

#operations1 execution time
SA DA/SA CSA/SA SA DA/SA CSA/SA

δ (·106) % % (s) % %
1 380.6 123.9 92.1 887.9 103.8 94.1
5 127.1 80.1 61.5 290.4 68.4 62.6
10 95.4 59.0 46.3 215.5 50.2 46.2
25 76.4 37.4 31.0 168.9 32.0 30.0

Table 3. Theoretical and experimental costs comparison of SA,
DA and CSA approaches. Setup:Naudio = 50000, Nmin =
Nmax = 1000, ∆Nshift = 200, ∆Nmargin = 50, d = 13.

Finally, the comparison of the three approaches is made on the
best setup of the algorithm. Results in terms of geometric mean
(F-score) of precisionand recall of change detection is reported
in Table 4, together with execution times. The slight difference

1The values include the cost of the computation of the covariance ma-
trixes determinant (d3/6).

in change detection score is due to some minor differences in the
implementations. For what concerns the execution times, sinceδl

was set to 25, the ratio between the costs of the three implementa-
tions expected from the results of Table 3 is confirmed.

F-score execution time (s) % vs. SA
SA 88.4 309.3 —
DA 89.4 108.0 34.9
CSA 89.4 91.2 29.5

Table 4. Performance comparison of SA, DA and CSA approaches
in their best setup:Nmin = 500, Nmax = 2000, Nsecond =
1500, ∆Ngrow = 100, ∆Nshift = 300, ∆Nmargin =
100, δl = 25, δh = 5, λ = 2.175.

5. CONCLUSIONS

In this work three different approaches to the implementation of
a widely adopted BIC-based audio segmentation algorithm have
been analyzed: (i) a simple method that uses only a sum and a
square sum of the input vectors, in order to save computations in
estimating covariance matrixes on partially shared data; (ii) the
approach proposed in [5] that encodes the input signal with cumu-
lative distributions; and (iii) an original approach that encodes the
input signal in cumulative pair of sums. The two latter approaches
exploit the typical approximation made in that algorithm, that is
the use of a resolution lower than 1 for change detection.

The three approaches have been compared both theoretically
and experimentally, and the proposed original approach has been
shown to be the most efficient.
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