MULTIPLE TARGET DETECTION AND ESTIMATION BY EXPLOITING
THE AMPLITUDE MODULATION INDUCED BY ANTENNA SCANNING.
PART II: DETECTION"

Fulvio Gini', Federica Bordoni', Maria Greco', and Alfonso Farina’

! Dip. di Ingegneria dell’Informazione, Universita di Pisa, via Diotisalvi, 2 - 56126 Pisa, Italia
Tel: +39-050-568550, Fax: +39-050-568522, e-mail: name.surname@ing.unipi.it

2Radar & Technology Division, Alenia-Marconi Systems, via Tiburtina Km 12.4, 00131 Roma, Italia
Tel: +39-06-41502279, Fax: +39-06-41502665, e-mail: af ari na@nsj v. it

ABSTRACT

This work deals with the problem of detecting and estimating
multiple radar targets present in the same range-azimuth
resolution cell of a surveillance radar system with a
mechanically rotating antenna. First, the target parameters are
estimated assuming a maximum number of possible targets. To
this purpose we use the asymptotic maximum likelihood (AML)
RELAX estimator derived in the first part [3]. Subsequently,
these estimates are used in a sequentially hypotheses test (SHT)
procedure. The statistic of the test at each step of the SHT
procedure is derived using an asymptotic expression of the
generalized likelihood ratio test (GLRT) statistic. An upper
bound of the false alarm probability is derived in closed form,
whereas detection performance of the proposed SHT detector is
investigated through Monte Carlo simulation.

1. INTRODUCTION

In most modern radar systems, the target direction of arrival
(DOA) is estimated by the monopulse technique [8]. When
multiple targets are present in the range-azimuth resolution cell
under test (CUT), the monopulse method provides an erroneous
DOA measure [5]. This work describes a method to detect
multiple targets present in the same CUT using only one
receiving channel, exploiting knowledge of the antenna beam
pattern and the amplitude modulation impressed on the received
signal by mechanical scanning [1]. In the literature, the problem
of estimating the number of components present in a multi-
component signal is termed the “detection problem” or “model
order selection”. Many authors have investigated the model
order selection problem by using information theoretic criteria
(ITC) [9-11], maximum a posteriori probability (MAP) methods
[4], or sequential hypotheses testing (SHT) methods [7,9].

The SHT approach is based on a sequential procedure
which tests a set of mutually exclusive hypotheses H, and

alternatives K, . More precisely, at step m the SHT procedure

tests the hypothesis H “There are m-1 targets”,

m-1>

against the alternative K “There are m targets”,

m-1>2
by comparing the test statistic S,,(z) with a proper threshold
4, - Therefore, hypotheses {H,,H,,--,H, _} are tested in

sequence, going to the next one only if previous hypotheses have
been rejected, and stopping when an hypothesis is accepted or

eventually at step M, , where M, is the maximum number

of possible targets. The most relevant feature of SHT with
respect to ITC methods is that they allow to control the
probability of overestimating the number of targets, i.e. the

probability of false alarm ( P, ). Since the possibility of

controlling  Pr, is fundamental in surveillance radar

applications, we focus our attention on the SHT procedure.

The rest of this paper is organized as follow. In Section
2, the data model and the problem statement are introduced. The
SHT detection method is described in Section 3. Some
numerical results of our performance analysis and concluding
remarks are reported in Section 4.

2. DATA MODEL AND PROBLEM STATEMENT

Assume that M point-like targets are present in the range-
azimuth resolution cell under test with direction of arrivals

(DOA) {QTGI.};ZI and Doppler frequencies { fD,-}f-Zl, The Nx1

complex data vector z is composed by the collection of the N
echoes received during the time on target (7o7). In vector
notation, the data model for M targets is given by

M

2= ba(0. ;) +d=AO)b+d, (1)
i=1

where b=[b, ---b,, 1" is the M x1 vector of the unknown

complex amplitudes, denotes the transpose operation,
A(0) = [a(HTGl,fDl) < a@rarr> S om )] is the NxM steering
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matrix, 8=[0;6, - Orgar fo1 - fpm ] is the 2M x1 vector

of the unknown DOAs and Doppler frequencies (normalized to
the pulse repetition frequency, PRF), with f),; €[-0.5,0.5) and

O €10,05), where 6, is the —3dB azimuth antenna beam
width, a(6;;, fp;) is an N x1 vector which can be factored as

the product of the spatial and temporal steering vectors:
a(0ri, [pi) =8(0r;) ©OP(fp;), where  ©  represents the
Hadamard [P(fp)], = explj27fp; (n=1)],  and
[g(@rc)], =G(n—164), for n=1,---, N, G(n,0;) is the
two-way antenna gain for the nth pulse from the ith DOA. We
assume that the antenna beam pattern G(-) has a Gaussian shape

product,

[1-3]. The elements of b and 6 are modeled as unknown
deterministic parameters. The N x1 disturbance vector d is
composed by thermal noise and clutter. It is modeled as a
complex zero-mean Gaussian random vector with covariance
M, =E{dd”}=0M, where o2 is the total
disturbance power and M is the normalized covariance matrix,
ie. [M];; =1 for i=1,--,N . In this work, we assume that M,

matrix

is a priori known. In a realistic radar scenario it must be
estimated from secondary data [2].

In [3] we assumed that the number M of targets is known
and we tackled the problem of estimating b and 6. The
“detection problem,” which consists of determining the number
M of targets, is the subject of this second part. In summary, the
goal here is to jointly estimate M, b, and 0, based on the
observation of the complex data vector z. The solution of the
detection problem builds on the results obtained in [1] and [3].
We propose here a sequential hypotheses test approach, which
employs the asymptotic maximum likelihood (AML) estimates
of band 0 derived as described in [3].

3. SEQUENTIAL HYPOTHESES TEST

To derive the test statistic S,,(z), we adopt the generalized
likelihood ratio test (GLRT) [6]. The test at step m is given by:

S,(z)=2InL;,(z)=2In Piu, (Zle ,ém)

R Km-1 (2)
(ZHm—l;Sm—l) z j“m nm:L"'aM

Hp—1

—2In pZ‘Hm—l max >

where L, (z) denotes the generalized likelihood ratio (GLR)

for hypothesis H,,_, and alternative K and we used the fact

m—=1>

that K, , =H, =“m targets”, Pin,, (z|Hm;9m ,) is the data
probability density function (pdf) under hypothesis H,,, and
9, is the maximum likelihood (ML) estimate of 9,
where 8, =[07 bl 1" is the vector of 2m real and m complex

target parameters, 0, and b, are the parameter vectors

previously defined for m=M. The procedure stops the first time
the statistic does not exceed the threshold or when the number m
of hypothesized targets reaches the maximum value M, . If

the procedure stops at step m we estimate M =m—1, otherwise

M=M max - The GLRT statistic (2) depends nonlinearly on the
observed data and, unfortunately, its pdf is unknown for finite
sample size. Therefore, we resort to asymptotic analysis. More
precisely, to derive the test statistic, we use the large sample size
expression of the compressed (with respect to b, ) log-
likelihood function (LLF) that was obtained in [3], that is given
by
Hyag-1

N z’'M 'z
Inp,, (@H,:8,.b,)=- ln(”NﬂfN\M\)JrT
d

2 ©)

L& M, 1)
= +o(N)

oy S a0, )M a0, 1)

where l;m is the ML estimate of b,, [1], and we used Landau’s

notation:

S =o(NE lim N F(N) =0, 0

i.e. the term o(N) in (3) is negligible with respect to the sum of

the m terms for large N. In the right-hand term of (3) the terms in
square brackets are irrelevant, since they cancel out when we
calculate the GLR. An efficient algorithm to derive the AML

estimate of 0, based on the RELAX approach is described in
[3]. The AML-RELAX estimator orders the elements of f)m
such that |[b, ], [2[[b,],,, |, for k=12,-.m—1, ie. in
decreasing order, and the elements of ém are ordered
consequently. Inserting in equation (2) In Pan,, (lem;ém,ﬁm)

obtained from (3), after a few manipulations (not reported here
for lack of space, all the details can be found in [2]), we obtain
that asymptotically (large N) the GLRT statistic assumes the
form:

~ ~ 2
@/oD)|e"M 2151 F )

aH(éTGm"fDm )M_la(éTGm ’.fbm)

Sm (Z) = 21nLG,m (Z) = > (5)

where (émm, f‘Dm) is the AML estimate of the mth target

parameters under hypothesis #,,. An additional complication
we encounter in the attempt to calculate
Py (m) =Pr{S,,(z) > lmle_l} , is that the target complex

amplitude b, is zero under hypothesis H therefore

m—1
parameters [, and 6;, of the mth most powerful target

signal are not observable. As a consequence, the standard
asymptotic theory of GLRT is not applicable. However,
conditioned on an arbitrary Doppler frequency-DOA pair,

(émm, j} pm)=(0, 1), GLRT theory states that the asymptotic
distribution of the test statistic at step m is known under H,,_, .

In particular, the conditional test statistic has asymptotically a
Chi-Squared distribution, with number of degrees of freedom
equal to the difference in the number of parameters under the
two opposite hypotheses, H, and H,_; [6]. In our case, this
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difference is two, corresponding to the real and imaginary part

of b, . Therefore, 2lnLG!m(z;9,f)~;(§ under H

[T

as” stands for asymptotically (N — o), and we rendered
explicit the dependence on @ and f to stress the fact that

w1 » Where

instead of replacing (0yg,,,/fp,, ) With their ML estimates, we
are conditioning the GLR on an arbitrary pair (€, f ). Based on
the GLRT approach, the statistic is given by the value of the mth
highest peak of InL; ,(z0,f), ie. S§,(z) is obtained by
calculating InZ; ,(z;0,f) at the location of the mth most
powerful target component in the (6, f )-plane. To derive the
pdf of S, (z), assume that we implement the 2-D nonlinear

maximization required by (5) using a 2-D grid search approach:

2

z,M'a(0,, f;)
S (z) =maxS (z;k,])=max 6
w(2) nax w (25K, 1) o2 2 @,/ M a0, 1) (6)

for k=1,---,K,and /=1,---,L, where K x L is the size of the

2-D grid over which we search to derive the ML estimate of the
two parameters of the mth most powerful target component. In
(6) we defined z, as the “new” data vector obtained by

removing from z the first m-1 most powerful target components:

m—1 . N N as M
z,, =2- 2 b0, fp;)= 2. ba(Org;. fp;) +d. (7
i=1 i=m
To select the values of the thresholds {4,} we need to
derive the distribution of S,,,,(z) under H, , M being the
actual number of targets. The pdf of SM+1(z;k,Z)|HM is a

central Chi-Squared with two degrees of freedom (the proof is
reported in [2]). It is worth stressing that we did not use large
sample size analysis to derive the asymptotic distribution of the
GLRT statistic, but we used an asymptotic expression of the
LLF to derive a test statistic that has asymptotically the same
form, and therefore also the same pdf, as the GLRT (2). The

distribution of S, , (z)|H v could be easily found if the random
variables {S,,.,; (z;k,l)|H w jx, were independent. In this case,

the local probability of false alarm at step m =M +1 is

A

Poy(M +1)=Pr{S,,(2) > Ay | Hy f=1-(1-e 2 ). (8)

Therefore, assuming that we want P, (M +1)=a, so that

globally we get P, <« , we select the thresholds as
A ==2I[1= (=) ], m=1, M+ 1, M, ©)

Result (9) follows from the assumption that the random variables
{Sun (z;k,l)lHM }x, are independent. Unfortunately, this
assumption doesn’t hold in our case. In fact, even if for/, =/, ,
Sya(z:k, 1) and S,,,,(z;k,l,) are conditionally independent,
provided that N is large enough, S,,,,(z;k,,/) and S,,,,(z;k,,])
are not independent. However, the interesting fact about this

approach is that even if {S,,,,(z;k, l)|HM }x, are correlated, still
this choice guarantees that P, <« (the proof is outlined in
[2]). Therefore, we use (9) to select {4, } . Another method to
select the threshold is described in [2].

4. NUMERICAL PERFORMANCE ANALYSIS

We assumed that two targets are present: M=2.
Performance has been evaluated in terms of the following
conditional probabilities. Probability of detection:

P, = Pr{M =2} =Pr{S,(z) > 1,,5,(z) > 1,,5;(z) < /13|H2} ;
probability of false alarm:

Py = Pr{M >2} =Pr{S,(z) > 4,,5,(z) > 1,,5;(z) > /13|H2};
probability of target missing:

Py =Pr{M <2} =Pr{($,(z) < 1) U(S(2) > 4, 5,(2) < 1| H,}.

They have been calculated by averaging over 10*
realizations of the SHT statistics {Sm(z)lH M}%:"}“X , with

M ..« =4. The detection thresholds were selected to provide

P.,(m)=107" for each m. The analysed scenarios were

obtained by changing only one parameter at time, while keeping
all the others constant: SDR, =SDR, =20dB, 0,=2°,
N=16, [Or1 O16,]1=[0.9°1.5°], /o1 f pa =[-0.30.3].
Performance have been investigated as a function of all target
and disturbance parameters, however here we report only a small
subset of the results. The results described here were derived
assuming M=I, i.e. only thermal noise is present, whereas the
case where also correlated clutter is present is investigated in
(2].

In Figs. 1-4 we plot the performance of the SHT procedure.
Note that in Fig. 1 and Fig. 3, the P,, -curve does not show up.

This is because the curves were plotted in log-scale and out of
10* Monte Carlo trials, the SHT procedure never produced at

the output the decision M=0 or M=1 (in this cases we have
IsD +13FA =1). The results show that for N >8 and
SDR, >5dB (i=1,2), the SHT algorithm performs very well

(P, =1) and it always guarantees a P, lower than o =107
Fig. 2 reveals that when SDR, <5 dB (and SDR, =20 dB ), the

algorithm sometimes misses the least powerful target. Fig. 3
shows that the algorithm always resolves targets that have the
same DOA, provided they have different Doppler frequencies.
On the contrary, targets that have the same Doppler frequency
but different DOAs cannot be resolved by the SHT procedure. In
fact, Fig. 4 shows that when f,, = f,,, the algorithm always

decides for the presence of a single target. However, this is not a
problem of the SHT procedure, but a problem of the AML-
RELAX algorithm [1,3]. To resolve multiple targets with the
same Doppler frequency and different DOAs, we should use the
true ML estimator in place of the AML [1].

These numerical results, and other not reported for lack of
space, demonstrate the ability of the SHT method to correctly
detect and estimate multiple targets present in the same range-
azimuth cell under test, for a typical surveillance radar scenario.

VI -535




Probability (log scale)

Probability (log scale)

Probability (log scale)

-4 | | |

10
4 8 16 32 64
Number of integrated pulses, NV
Fig. 1. Plot of Py, , Py, Py, versus N.
1
10"
10°
10”
10™ | | | | | | |
0 5 10 15 20 25 30 35 40
Signal-to-disturbance power ratio, SDR
Fig. 2. Plot of P, , Py, Py, versus SDR, .
1
10"
10°
10”
10"

Direction of arrival of target #2, 9T(‘2 (degrees)

Fig. 3. Plot of P,,, Py, Py, versusthe DOA of target #2.

Probability (log scale)

o A

-05 -04 -03 -02 01 0 01 02 03 04 05
Doppler frequency of target #2, sz
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