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ABSTRACT 
 

This work deals with the problem of detecting and estimating 
multiple radar targets present in the same range-azimuth 
resolution cell of a surveillance radar system with a 
mechanically rotating antenna. First, the target parameters are 
estimated assuming a maximum number of possible targets. To 
this purpose we use the asymptotic maximum likelihood (AML) 
RELAX estimator derived in the first part [3]. Subsequently, 
these estimates are used in a sequentially hypotheses test (SHT) 
procedure. The statistic of the test at each step of the SHT 
procedure is derived using an asymptotic expression of the 
generalized likelihood ratio test (GLRT) statistic. An upper 
bound of the false alarm probability is derived in closed form, 
whereas detection performance of the proposed SHT detector is 
investigated through Monte Carlo simulation. 

 
1. INTRODUCTION 

 
 In most modern radar systems, the target direction of arrival 
(DOA) is estimated by the monopulse technique [8]. When 
multiple targets are present in the range-azimuth resolution cell 
under test (CUT), the monopulse method provides an erroneous 
DOA measure [5]. This work describes a method to detect 
multiple targets present in the same CUT using only one 
receiving channel, exploiting knowledge of the antenna beam 
pattern and the amplitude modulation impressed on the received 
signal by mechanical scanning [1]. In the literature, the problem 
of estimating the number of components present in a multi-
component signal is termed the “detection problem” or “model 
order selection”. Many authors have investigated the model 
order selection problem by using information theoretic criteria 
(ITC) [9-11], maximum a posteriori probability (MAP) methods 
[4], or sequential hypotheses testing (SHT) methods [7,9].  
 The SHT approach is based on a sequential procedure 
which tests a set of mutually exclusive hypotheses mH  and 
alternatives mK . More precisely, at step m  the SHT procedure 

tests the hypothesis 1−mH , “There are 1−m  targets”, 
against the alternative 1−mK , “There are m  targets”, 
by comparing the test statistic )(zmS  with a proper threshold 

mλ . Therefore, hypotheses },,,{ 110 max−MHHH  are tested in 
sequence, going to the next one only if previous hypotheses have 
been rejected, and stopping when an hypothesis is accepted or 
eventually at step maxM , where maxM  is the maximum number 
of possible targets. The most relevant feature of SHT with 
respect to ITC methods is that they allow to control the 
probability of overestimating the number of targets, i.e. the 
probability of false alarm ( FAP ). Since the possibility of 
controlling FAP  is fundamental in surveillance radar 
applications, we focus our attention on the SHT procedure.  
 The rest of this paper is organized as follow. In Section 
2, the data model and the problem statement are introduced. The 
SHT detection method is described in Section 3. Some 
numerical results of our performance analysis and concluding 
remarks are reported in Section 4. 

 
2. DATA MODEL AND PROBLEM STATEMENT 

 
 Assume that M point-like targets are present in the range-
azimuth resolution cell under test with direction of arrivals 
(DOA) M

iiTG 1}{ =θ  and Doppler frequencies M
iDif 1}{ = . The 1×N  

complex data vector z is composed by the collection of the N 
echoes received during the time on target (ToT). In vector 
notation, the data model for M targets is given by 
 

dbAdaz +=+= ∑
=

)(),(
1

θ
M

i
DiTGii fb θ ,  (1) 

 

where T
Mbb ][ 1=b  is the 1×M  vector of the unknown 

complex amplitudes, T  denotes the transpose operation, 
[ ]),(),()( 11 DMTGMDTG ff θθ aaA =θ  is the MN ×  steering 
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matrix, T
MDDMTGTG ff ][ 11 θθ=θ  is the 12 ×M  vector 

of the unknown DOAs and Doppler frequencies (normalized to 
the pulse repetition frequency, PRF), with )5.0,5.0[−∈Dif  and 

),0[ BTGi θθ ∈ , where Bθ  is the –3dB azimuth antenna beam 
width, ),( DiTGi fθa  is an 1×N  vector which can be factored as 
the product of the spatial and temporal steering vectors: 

( , ) ( ) ( )TGi Di TGi Dif fθ θ=a g p , where  represents the 
Hadamard product, )]1(2exp[)]([ −= nfjf DinDi πp , and 

),1()]([ TGinTGi nG θθ −=g , for Nn ,,1= , ),( TGinG θ  is the 
two-way antenna gain for the nth pulse from the ith DOA. We 
assume that the antenna beam pattern )(⋅G  has a Gaussian shape 
[1-3]. The elements of b and θ  are modeled as unknown 
deterministic parameters. The 1×N  disturbance vector d is 
composed by thermal noise and clutter. It is modeled as a 
complex zero-mean Gaussian random vector with covariance 
matrix MddM 2}{ d

H
d E σ== , where 2

dσ  is the total 
disturbance power and M  is the normalized covariance matrix, 
i.e. 1][ , =iiM  for Ni ,,1= . In this work, we assume that dM  
is a priori known. In a realistic radar scenario it must be 
estimated from secondary data [2]. 
 In [3] we assumed that the number M of targets is known 
and we tackled the problem of estimating b and θ . The 
“detection problem,” which consists of determining the number 
M of targets, is the subject of this second part. In summary, the 
goal here is to jointly estimate M, b, and θ , based on the 
observation of the complex data vector z. The solution of the 
detection problem builds on the results obtained in [1] and [3]. 
We propose here a sequential hypotheses test approach, which 
employs the asymptotic maximum likelihood (AML) estimates 
of b and θ  derived as described in [3]. 

 
3. SEQUENTIAL HYPOTHESES TEST 

 
 To derive the test statistic )(zmS , we adopt the generalized 
likelihood ratio test (GLRT) [6]. The test at step m is given by: 
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where )(, zmGL  denotes the generalized likelihood ratio (GLR) 

for hypothesis 1−mH  and alternative 1−mK , and we used the fact 

that ≡≡− mm HK 1 “m targets”, ),;( mmH Hp
m

ϑzz  is the data 

probability density function (pdf) under hypothesis mH , and 

mϑ̂  is the maximum likelihood (ML) estimate of mϑ , 

where TT
m

T
mm ][ bθϑ =  is the vector of m2  real and m  complex 

target parameters, mθ  and mb  are the parameter vectors 
previously defined for m=M. The procedure stops the first time 
the statistic does not exceed the threshold or when the number m 
of hypothesized targets reaches the maximum value maxM . If 

the procedure stops at step m we estimate 1ˆ −= mM , otherwise 

max
ˆ MM = . The GLRT statistic (2) depends nonlinearly on the 

observed data and, unfortunately, its pdf is unknown for finite 
sample size. Therefore, we resort to asymptotic analysis. More 
precisely, to derive the test statistic, we use the large sample size 
expression of the compressed (with respect to mb ) log-
likelihood function (LLF) that was obtained in [3], that is given 
by 
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where mb̂  is the ML estimate of mb  [1], and we used Landau’s 
notation:  

0)(lim)()( =⇔= −

→∞
NfNNoNf k

N

defk , (4) 
 

i.e. the term ( )o N  in (3) is negligible with respect to the sum of 
the m terms for large N. In the right-hand term of (3) the terms in 
square brackets are irrelevant, since they cancel out when we 
calculate the GLR. An efficient algorithm to derive the AML 
estimate of mθ  based on the RELAX approach is described in 

[3]. The AML-RELAX estimator orders the elements of mb̂  

such that 1
ˆ ˆ| [ ] | | [ ] |m k m k+≥b b , for 1,,2,1 −= mk , i.e. in 

decreasing order, and the elements of mθ̂  are ordered 

consequently. Inserting in equation (2) )ˆ,ˆ;(ln mmmH Hp
m

bzz θ  

obtained from (3), after a few manipulations (not reported here 
for lack of space, all the details can be found in [2]), we obtain 
that asymptotically (large N) the GLRT statistic assumes the 
form: 
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where ( mDmTG f̂,θ̂ ) is the AML estimate of the mth target 

parameters under hypothesis mH . An additional complication 
we encounter in the attempt to calculate 

})(Pr{)( 1−>= mmmFA HSmP λz , is that the target complex 

amplitude mb  is zero under hypothesis 1−mH , therefore 
parameters mDf  and mTGθ  of the mth most powerful target 
signal are not observable. As a consequence, the standard 
asymptotic theory of GLRT is not applicable. However, 
conditioned on an arbitrary Doppler frequency-DOA pair, 
( mDmTG f̂,θ̂ )=( f,θ ), GLRT theory states that the asymptotic 

distribution of the test statistic at step m is known under 1−mH . 
In particular, the conditional test statistic has asymptotically a 
Chi-Squared distribution, with number of degrees of freedom 
equal to the difference in the number of parameters under the 
two opposite hypotheses, mH  and 1−mH  [6]. In our case, this 
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difference is two, corresponding to the real and imaginary part 

of mb . Therefore, 2
2χθ

as

mG fL ~),;(ln2 , z  under 1−mH , where 

“as” stands for asymptotically ( ∞→N ), and we rendered 
explicit the dependence on θ  and f  to stress the fact that 
instead of replacing ( mDmTG f,θ ) with their ML estimates, we 

are conditioning the GLR on an arbitrary pair ( f,θ ). Based on 
the GLRT approach, the statistic is given by the value of the mth 
highest peak of ),;(ln , fL mG θz , i.e. )(zmS  is obtained by 

calculating ),;(ln , fL mG θz  at the location of the mth most 

powerful target component in the ( f,θ )-plane. To derive the 
pdf of )(zmS , assume that we implement the 2-D nonlinear 
maximization required by (5) using a 2-D grid search approach: 
 

),(),(

),(2max),;(max)( 1

21

2),(),(
lklk

H

lk
H
m

d
lkmlkm ff

f
lkSS

θθ

θ

σ aMa

aMz
zz

−

−

==  (6) 

 

for Kk ,,1= , and Ll ,,1= , where LK ×  is the size of the 
2-D grid over which we search to derive the ML estimate of the 
two parameters of the mth most powerful target component. In 
(6) we defined mz  as the “new” data vector obtained by 
removing from z the first m-1 most powerful target components: 
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 To select the values of the thresholds }{ mλ  we need to 
derive the distribution of )(1 z+MS  under MH , M being the 

actual number of targets. The pdf of MM HlkS ),;(1 z+  is a 
central Chi-Squared with two degrees of freedom (the proof is 
reported in [2]). It is worth stressing that we did not use large 
sample size analysis to derive the asymptotic distribution of the 
GLRT statistic, but we used an asymptotic expression of the 
LLF to derive a test statistic that has asymptotically the same 
form, and therefore also the same pdf, as the GLRT (2). The 
distribution of MM HS )(1 z+  could be easily found if the random 

variables lkMM HlkS ,1 }),;({ z+  were independent. In this case, 

the local probability of false alarm at step 1+= Mm  is  
 

{ } KL
MMMFA

M

eHSMP )1(1|)(Pr)1( 2
11

1+−

++ −−=>=+
λ

λz . (8) 
 

Therefore, assuming that we want α=+ )1(MPFA , so that 
globally we get α≤FAP , we select the thresholds as  
 

])1(1ln[2 1 KL
m αλ −−−= , max,,1,,1 MMm += . (9) 

 

Result (9) follows from the assumption that the random variables 
lkMM HlkS ,1 }),;({ z+  are independent. Unfortunately, this 

assumption doesn’t hold in our case. In fact, even if for 21 ll ≠ , 
),;( 11 lkSM z+  and ),;( 21 lkSM z+  are conditionally independent, 

provided that N is large enough, ),;( 11 lkSM z+  and ),;( 21 lkSM z+  
are not independent. However, the interesting fact about this 

approach is that even if lkMM HlkS ,1 }),;({ z+  are correlated, still 

this choice guarantees that α<FAP  (the proof is outlined in 
[2]). Therefore, we use (9) to select }{ mλ . Another method to 
select the threshold is described in [2]. 

 
4. NUMERICAL PERFORMANCE ANALYSIS 
 

 We assumed that two targets are present: M=2. 
Performance has been evaluated in terms of the following 
conditional probabilities. Probability of detection:  

}2ˆPr{ == MPD })(,)(,)(Pr{ 2332211 HSSS λλλ ≤>>= zzz ; 
probability of false alarm:  

}2ˆPr{ >= MPFA })(,)(,)(Pr{ 2332211 HSSS λλλ >>>= zzz ; 
probability of target missing: 

}))(,)(())(Pr{(}2ˆPr{ 2221111 HSSSMPM λλλ ≤>∪≤=<= zzz . 

 They have been calculated by averaging over 410  
realizations of the SHT statistics max

1})({ M
mMm HS =z , with 

4max =M . The detection thresholds were selected to provide 
210)( −=mPFA  for each m. The analysed scenarios were 

obtained by changing only one parameter at time, while keeping 
all the others constant: dBSDRSDR 2021 == , °= 2Bθ , 

16=N , ]5.19.0[][ 21 °°=TGTG θθ , ]3.03.0[][ 21 −=DD ff . 
Performance have been investigated as a function of all target 
and disturbance parameters, however here we report only a small 
subset of the results. The results described here were derived 
assuming M=I, i.e. only thermal noise is present, whereas the 
case where also correlated clutter is present is investigated in 
[2].  
 In Figs. 1-4 we plot the performance of the SHT procedure. 
Note that in Fig. 1 and Fig. 3, the MP -curve does not show up. 
This is because the curves were plotted in log-scale and out of 

410  Monte Carlo trials, the SHT procedure never produced at 

the output the decision 0ˆ =M  or 1ˆ =M  (in this cases we have 

1ˆˆ =+ FAD PP ). The results show that for 8≥N  and 
dBSDRi 5≥  (i=1,2), the SHT algorithm performs very well 

( 1≅DP ) and it always guarantees a FAP  lower than 210−=α . 
Fig. 2 reveals that when dBSDR 52 < (and 1SDR = dB20 ), the 
algorithm sometimes misses the least powerful target. Fig. 3 
shows that the algorithm always resolves targets that have the 
same DOA, provided they have different Doppler frequencies. 
On the contrary, targets that have the same Doppler frequency 
but different DOAs cannot be resolved by the SHT procedure. In 
fact, Fig. 4 shows that when 21 DD ff = , the algorithm always 
decides for the presence of a single target. However, this is not a 
problem of the SHT procedure, but a problem of the AML-
RELAX algorithm [1,3]. To resolve multiple targets with the 
same Doppler frequency and different DOAs, we should use the 
true ML estimator in place of the AML [1]. 
 These numerical results, and other not reported for lack of 
space, demonstrate the ability of the SHT method to correctly 
detect and estimate multiple targets present in the same range-
azimuth cell under test, for a typical surveillance radar scenario. 
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Fig. 1. Plot of DP , FAP , MP  versus N. 
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Fig. 2. Plot of DP , FAP , MP  versus 2SDR . 
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Fig. 3. Plot of DP , FAP , MP  versus the DOA of target #2. 
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Fig. 4. Plot of DP , FAP , MP  versus 2Df . 
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