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ABSTRACT 
 

This work deals with the problem of estimating the parameters 
of multiple targets present in the same range-azimuth resolution 
cell of a surveillance radar. The maximum likelihood (ML) and 
the asymptotic ML (AML) estimators are derived. However, they 
may be too computationally heavy for surveillance applications. 
To maximize the nonlinear two-dimensional criterion of the 
AML estimator we propose a computationally efficient algorithm 
based on the RELAXation method. The proposed method 
overcomes the resolution limitation of the classical monopulse 
technique and allows to resolve multiple targets exhibiting an 
arbitrarily small difference in azimuth as long as their Doppler 
frequencies differ by a fraction of the intrinsic resolution of the 
system. The performance of the proposed AML-RELAX estimator 
is numerically investigated through Monte Carlo simulation and 
Cramér-Rao lower bound calculation. 

 
1. INTRODUCTION 

 
 In most of modern radar systems, the target direction of 
arrival (DOA) is estimated by the monopulse technique [8], 
which in principle can work with just a single pulse. The price to 
pay is the need for two tightly matched receiving channels: the 
sum ( Σ ) and the difference ( ∆ ) channels. The estimate of the 
target DOA is a function of the ratio of the ∆  and Σ  channel 
outputs. When multiple targets are present in the range-azimuth 
cell under test, the monopulse system provides an erroneous 
DOA measure [5]. This work describes a method to jointly 
estimate complex amplitudes, Doppler frequencies, and DOAs 
of multiple targets present in the same range-azimuth cell using 
only one receiving channel, exploiting knowledge of the antenna 
beam pattern and the fact that the mechanical scanning 
impresses an amplitude modulation on the received signal [2]. 
 The rest of this paper is organized as follows. The data 
model and the problem statement are introduced in Sect. 2. The 
ML and the asymptotic (large sample size) ML (AML) 

estimators are derived in Sect. 3. We also propose an efficient 
implementation of the AML based on the RELAX method. It 
decouples the AML problem into simpler problems, where the 
DOA and Doppler frequency of each target signal are estimated 
separately and sequentially, starting from the strongest target 
signal and ending with the weakest one. In Sect. 4, the 
performance of the AML-RELAX algorithm are investigated 
and compared to the Cramér-Rao lower bound. 

 
2. DATA MODEL AND PROBLEM STATEMENT 

 
 Assume that M point-like targets are present in the range-
azimuth cell under test with direction of arrivals M

iiTG 1}{ =θ  and 

Doppler frequencies M
iDif 1}{ = . The data vector z is composed by 

the collection of the N echoes received during the ToT. The nth 
element of z is given by: 
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where bi is the unknown complex amplitude of the ith target 
signal, ),( TGinG θ  is the two-way antenna gain for the nth pulse 
from the ith DOA, and )5.0,5.0[−∈Dif  is the Doppler 
frequency of the ith target normalized to the pulse repetition 
frequency (PRF). The term )(nd  models the disturbance, which 
is composed by clutter and thermal noise. Assuming that the 
radar antenna rotates mechanically with constant angular 
velocity Rω  rad/s and that the one-way antenna beam pattern 
has a Gaussian shape [10], the amplitude of the nth pulse of the 
signal backscattered by the ith target is proportional to:  
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where BTGi θθ <≤0  for Mi ,,1= , 0G  is the maximum gain, 

Bθ  is the –3 dB antenna beam width, and T=1/PRF is the radar 
pulse repetition time. The number N of pulses collected during 
the time-on-target (ToT) by the radar within the –3 dB points is 
given by )( TN RB ωθ= . In vector notation, the data model is 
given by dbAz += )(θ , where z  is the 1×N  complex data 

vector, T
Mbb ][ 1=b  is the 1×M  vector of the unknown 

complex amplitudes, T  denotes the transpose operation, 
[ ]),(),()( 11 DMTGMDTG ff θθ aaA =θ  is the MN ×  steering 

matrix, T
MDDMTGTG ff ][ 11 θθ=θ  is the 12 ×M  vector 

of the unknown DOAs and Doppler frequencies, ),( DiTGi fθa  is 
an 1×N  vector which can be factored as the product of the 
spatial and temporal steering vectors: 

( , ) ( ) ( )TGi Di TGi Dif fθ θ=a g p , where  represents the 
Hadamard product [9], ),1()]([ TGinTGi nG θθ −=g , and 

)]1(2exp[)]([ −= nfjf DinDi πp , for Nn ,,1= . The elements 
of vectors b and θ  are modeled as unknown deterministic 
parameters. The 1×N  disturbance vector d is composed by the 
sum of thermal noise and clutter. It is modeled as a complex 
zero-mean Gaussian random vector with covariance matrix 

MddM 2}{ d
H

d E σ== , where 2
dσ  is the unknown total 

disturbance power and M  is the normalized covariance matrix, 
i.e. 1][ , =iiM  for Ni ,,1= . In this first part of the work we 
assume that the number M of targets is known and we tackle 
only the “estimation problem.” The “detection problem,” which 
consists of determining the number M of targets, is the subject of 
the second part [4]. In summary, the goal here is to estimate b 
and θ  based on the observation of N consecutive samples 

1
0)}({ −

=
N
nnz . We exploit knowledge of the antenna main beam 

pattern and the consequent amplitude modulation impressed on 
the signal backscattered by each target. This basic idea was 
originally described in [10] for a single target scenario. In [1] a 
linear algorithm for the estimation of a single target DOA was 
proposed. In this paper, we extend on these works to consider 
the presence of multiple targets in the same range-azimuth 
resolution cell. In [2] the same estimation problem was solved 
assuming that the Doppler frequencies were a priori known. 
Here, we remove this unrealistic assumption. 

 
3. ML AND ASYMPTOTIC ML ESTIMATION 
 

 Conditioned to a given θ  and b, the data vector z is 
complex Gaussian distributed with probability density function 
(pdf) given by: 
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where, for ease of notation, we omitted the dependence of )(θA  
on θ . Derivation of the ML estimator and of the Cramér-Rao 
lower bound (CRLB) is formally identical to that presented in 
[2] for known Doppler frequencies, with the only difference that 
now θ  is the 12 ×M  vector defined in Sect. 2, instead of the 

1×M  vector containing only the unknown DOAs. The ML 

derived for the deterministic target amplitude model is often 
termed conditional ML (CML) [6,9]. In [2], performance 
analysis of the DOA CML estimator was carried out assuming 
the stochastic model for b. The CML estimate is obtained by 
maximizing the likelihood function (LF) ),;( θbzzp  in (3) with 
respect to θ  and b. After some manipulations we find: 
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θ
θ . (4) 

zMAAMAb 111 )(ˆ −−−= HH
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Calculation of CMLθ̂  requires the 2M-dimensional (2M-D) 
nonlinear maximization of the functional: 
 

zMAAMAAMz 1111 )()( −−−−= HHHF θ , (6) 
 

where T
MM ff ][ 11 θθ=θ  here denotes the 

generic parameter vector. When only one target is present in the 
range-azimuth cell under test, θ  is a 12×  vector and b is a 
scalar. In particular, estimator (4) becomes: 
 

),(),(

),(
maxarg)ˆ,ˆ( 1

21

, ff

f
f H

H

f
CMLCML θθ

θ
θ

θ aMa

aMz
−

−

= , (7) 

 

where ( , ) ( ) ( )f fθ θ=a g p  is the overall target steering vector 
introduced in Sect. 2. It is useful now, for future developments, 
to define the following quantity: 
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which is the LF for the single target scenario. Therefore, 

),(maxarg)ˆ,ˆ( , ff fCMLCML θθ θ Γ=  is the CML estimator for the 
single target scenario. The CML estimator (4) requires a 
nonlinear 2M-D maximization. Generally this maximization is 
computationally cumbersome and may be not feasible in real-
time. Therefore, it would be useful to find a suboptimum 
algorithm which trades off good performance with 
computational complexity. We use the CML estimator as a 
starting point to derive an algorithm based on M 2-D 
maximizations instead of one 2M-D maximization of )(θF . 
Under the hypothesis that the Doppler frequencies are separated, 
that is 1Di Djf f N− >  when ji ≠ , in [3] we prove that 
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where we used Landau’s notation:  
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so that ( ) ( )f N o N=  means that 1lim ( ) 0N N f N−
→∞ = , i.e. the 

term ( )o N  in (9) is negligible for large N with respect to the 
sum of the M terms. Therefore, )(θF  is asymptotically formed 
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by the superposition of the M terms },,1);,({ Mifii =Γ θ . 
Result (9) implies that: 
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Based on this observation, we assume large N and we neglect the 
term )1(o  in (9) to obtain the asymptotic (large N) maximum 
likelihood (AML) estimator: 
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In words, the AML estimates θ  from the locations of the M 
highest peaks of ),( fθΓ . It is less computationally heavy than 
the CML, in fact it replaces the 2M-D nonlinear search required 
by the CML of (8) with the search of the locations of the M 
highest peaks of a 2-D functional. We expect that if N is large 
enough, the performance loss of the AML over the CML will be 
negligible. In Fig. 1 we plot ),( fθΓ  in the presence of two 

targets (M=2); we defined 22
dii bSDR σ= , for Mi ,,1= . 

 
Fig. 1. Plot of ),( fθΓ , for M=2, N=32, 2=Bθ , 9.01 =TGθ , 

5.12 =TGθ , 3.021 −=−= DD ff , dBSDRSDR 2021 == ,  and 

−∞→CNR , i.e. M=I, where I is the identity matrix. 
 
 The AML problem is reminiscent of the problem of jointly 
estimating the frequencies of a signal composed by multiple 
sinusoids. In that case, the function to be maximized is the 1-D 
Periodogram and the problem is reverted into a sequence of 1-D 
maximization problems through a RELAXation approach [7]. In 
our case for each component we have to estimate two 
parameters, therefore the 1-D Periodogram is replaced by the 2-
D functional ),( fθΓ . Based on this observation, to reduce the 
computational complexity of the AML algorithm, we used an 
algorithm based on the RELAX method. The most important 
feature of RELAX is that it decouples the multidimensional 
maximization problem into a series of simpler 1-D problems. In 
general, maximizations with respect to ),( 11 fθ , ),(, MM fθ  
are coupled. It can be shown (see [3]) that when N goes to 
infinity, 1 ( , )N fθ− Γ  approaches to non-zero values only for 

M
iiDff 1}{ == , whatever the values of θ  and M

iiTG 1}{ =θ  are. This 

suggests that it is possible to estimate },{ iDiTG fθ  estimating 

first all the { }Dif  from the locations of the highest peaks of the 
FFT of the (whitened) data; then the DOAs can be estimated by 
plugging ˆ{ }Dif  in the AML, which estimates sequentially the M 
DOAs performing M one-dimensional nonlinear maximizations 
of ),( fθΓ  in (8), calculated sequentially for DMD fff ˆ,,ˆ

1= , 

or by plugging ˆ{ }Dif  in the CML estimator for known Doppler 
frequencies [2,3]. These ideas are exploited here to derive an 
algorithm based on RELAX. The most important feature of 
RELAX is that it allows us to decouple the search of the 
locations of the M highest peaks in the 2-D functional ),( fθΓ  
into a sequence of 1-D nonlinear maximization problems. 
Roughly speaking, RELAX estimates first the parameters of the 
strongest component; then removes the contribution of the 
strongest component from the data and proceeds with the second 
strongest component; and so on up to the Mth component. Then, 
it iteratively refines the estimates of each pair ),( iDiTG fθ  
working again on a component-by-component basis. The details 
on the RELAX algorithm are not reported here for lack of space, 
the details can be found in [3]. 

 
4. NUMERICAL PERFORMANCE ANALYSIS 
 

 We now investigate the performance of the AML 
estimator implemented using the RELAX approach. The root 
mean square error (RMSE) was derived by running 103 Monte 
Carlo simulations and compared with the square root of the 
Cramér-Rao lower bound (RCRLB). We assumed that two 
targets are present in the resolution cell under test with 
deterministic unknown complex amplitudes. The behavior of 
RMSE and RCRLB was investigated as a function of N, SDR , 

21 DD fff −=∆ , 21 TGTG θθθ −=∆ , and CNR. However, only a 
small subset of results is shown here. If not otherwise stated, the 
signal parameters are N=16, 2=Bθ , 9.01 =TGθ , 5.12 =TGθ , 

3.021 −=−= DD ff , dBSDRSDR 2021 ==  and −∞→CNR . 

)ˆ( TGiRMSE θ and )( TGiRCRLB θ  are measured in degrees. In 
Figs. 2 and 3, we plot the performance of Doppler frequency and 
DOA estimators, respectively, as a function of the number N of 
integrated pulses. For 16≥N  the performance of the estimators 
are very close to the RCRLB. In Figs. 4 and 5, the same curves 
are plotted as a function of 2SDR , while 1b  is kept constant, so 
that dBSDR 201 = . The threshold effect, typical of non-linear 
estimators, is quite evident for dBSDR 52 < . The numerical 
results described here were derived assuming M=I, i.e. 

−∞→CNR . When the clutter is also present M is non-diagonal 
and, in a realistic radar scenario, it must be estimated from 
secondary data. 
 

5. CONCLUDING REMARKS 
 

 In summary, our analyses corroborate the following results: 
(i) efficient estimators of DOAs and Doppler frequencies are 
asymptotically decoupled; (ii) multiple targets can be resolved 
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even if they have the same DOA, provided they have well 
separated Doppler frequencies, i.e. | | 1Di Djf f N− >  when 

ji ≠ ; (iii) the DOA estimator is almost insensitive to the 
relative angular position of the targets and it exhibits good 
performance even for low values of N and SDR; (iv) for low 
values of SDR, the Doppler frequency estimator is affected by 
the threshold effect, but it is almost efficient above the 
threshold; (v) the worst case scenario is when the disturbance is 
composed by only thermal noise. 
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Fig. 2. Plot of )ˆ( DifRMSE  and )( DifCRLB , i=1,2. 
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Fig. 3. Plot of )ˆ( TGiRMSE θ  and )( TGiCRLB θ , i=1,2. 
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Fig. 4. Plot of )ˆ( DifRMSE  and )( DifCRLB , i=1,2. 
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Fig. 5. Plot of )ˆ( TGiRMSE θ  and )( TGiCRLB θ , i=1,2. 
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