MULTIPLE TARGET DETECTION AND ESTIMATION BY EXPLOITING
THE AMPLITUDE MODULATION INDUCED BY ANTENNA SCANNING.
PART I: PARAMETER ESTIMATION’

Maria Greco', Fulvio Gini', and Alfonso Farina’

! Dip. di Ingegneria dell’Informazione, Universita di Pisa, via Diotisalvi, 2 - 56126 Pisa, Italia
Tel: +39-050-568550, Fax: +39-050-568522, e-mail: {f.gini,m.greco}@ing.unipi.it

2Radar & Technology Division, Alenia-Marconi Systems, via Tiburtina Km 12.4, 00131 Roma, Italia
Tel: +39-06-41502279, Fax: +39-06-41502665, e-mail: af ari na@nsj v. it

ABSTRACT

This work deals with the problem of estimating the parameters
of multiple targets present in the same range-azimuth resolution
cell of a surveillance radar. The maximum likelihood (ML) and
the asymptotic ML (AML) estimators are derived. However, they
may be too computationally heavy for surveillance applications.
To maximize the nonlinear two-dimensional criterion of the
AML estimator we propose a computationally efficient algorithm
based on the RELAXation method. The proposed method
overcomes the resolution limitation of the classical monopulse
technique and allows to resolve multiple targets exhibiting an
arbitrarily small difference in azimuth as long as their Doppler
frequencies differ by a fraction of the intrinsic resolution of the
system. The performance of the proposed AML-RELAX estimator
is numerically investigated through Monte Carlo simulation and
Cramér-Rao lower bound calculation.

1. INTRODUCTION

In most of modern radar systems, the target direction of
arrival (DOA) is estimated by the monopulse technique [8],
which in principle can work with just a single pulse. The price to
pay is the need for two tightly matched receiving channels: the
sum (X ) and the difference (A ) channels. The estimate of the
target DOA is a function of the ratio of the A and ¥ channel
outputs. When multiple targets are present in the range-azimuth
cell under test, the monopulse system provides an erroneous
DOA measure [5]. This work describes a method to jointly
estimate complex amplitudes, Doppler frequencies, and DOAs
of multiple targets present in the same range-azimuth cell using
only one receiving channel, exploiting knowledge of the antenna
beam pattern and the fact that the mechanical scanning
impresses an amplitude modulation on the received signal [2].

The rest of this paper is organized as follows. The data
model and the problem statement are introduced in Sect. 2. The
ML and the asymptotic (large sample size) ML (AML)

estimators are derived in Sect. 3. We also propose an efficient
implementation of the AML based on the RELAX method. It
decouples the AML problem into simpler problems, where the
DOA and Doppler frequency of each target signal are estimated
separately and sequentially, starting from the strongest target
signal and ending with the weakest one. In Sect. 4, the
performance of the AML-RELAX algorithm are investigated
and compared to the Cramér-Rao lower bound.

2. DATA MODEL AND PROBLEM STATEMENT

Assume that M point-like targets are present in the range-

azimuth cell under test with direction of arrivals {0;;,}", and

Doppler frequencies {f,,}",. The data vector z is composed by

the collection of the N echoes received during the ToT. The nth
element of z is given by:

M o

2(n) = 2 b,G(n.0y5;) 7" +d(n), =0, N1, ¢))
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where b; is the unknown complex amplitude of the ith target

signal, G(n,6;¢,) is the two-way antenna gain for the nth pulse

from the ith DOA, and f,, €[-0.5,0.5) is the Doppler
frequency of the ith target normalized to the pulse repetition
frequency (PRF). The term d(n) models the disturbance, which
is composed by clutter and thermal noise. Assuming that the
radar antenna rotates mechanically with constant angular
velocity @, rad/s and that the one-way antenna beam pattern
has a Gaussian shape [10], the amplitude of the nth pulse of the
signal backscattered by the ith target is proportional to:

2
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where 0< 0, <0y fori=1,---, M, G, is the maximum gain,
6, is the -3 dB antenna beam width, and 7=1/PRF is the radar
pulse repetition time. The number N of pulses collected during
the time-on-target (ToT) by the radar within the —3 dB points is
given by N =0,/(w,T). In vector notation, the data model is

given by z=A(0)b+d, where z is the Nx1 complex data
vector, b=[h, ---b,,]" is the Mx1 vector of the unknown

complex amplitudes, denotes the transpose operation,
A(B):[a(HTG],fD]) - aOrus > foum )] is the NxM steering

matrix, ©=[076, - Ocu for - fou] is the 2M x1 vector

of the unknown DOAs and Doppler frequencies, a(6;, ;) is
an Nx1 vector which can be factored as the product of the
spatial and temporal steering vectors:
(O, fpi) =8(6r:) OP(fp;), where (©  represents the
Hadamard product [9], [g(0r;)]), =G(n—-1,6,;), and
[P(fp)]), =explj2afp;(n=1)], for n=1,---, N. The elements

of vectors b and 6 are modeled as unknown deterministic
parameters. The N x1 disturbance vector d is composed by the
sum of thermal noise and clutter. It is modeled as a complex
zero-mean Gaussian random vector with covariance matrix
M, =E{dd”}=0 M, where o) is the unknown total

disturbance power and M is the normalized covariance matrix,
ie. [M];=1 for i=1,---,N . In this first part of the work we

assume that the number M of targets is known and we tackle
only the “estimation problem.” The “detection problem,” which
consists of determining the number M of targets, is the subject of
the second part [4]. In summary, the goal here is to estimate b
and O based on the observation of N consecutive samples

{z(n)}f,\':’ol. We exploit knowledge of the antenna main beam

pattern and the consequent amplitude modulation impressed on
the signal backscattered by each target. This basic idea was
originally described in [10] for a single target scenario. In [1] a
linear algorithm for the estimation of a single target DOA was
proposed. In this paper, we extend on these works to consider
the presence of multiple targets in the same range-azimuth
resolution cell. In [2] the same estimation problem was solved
assuming that the Doppler frequencies were a priori known.
Here, we remove this unrealistic assumption.

3. ML AND ASYMPTOTIC ML ESTIMATION

Conditioned to a given 6 and b, the data vector z is
complex Gaussian distributed with probability density function
(pdf) given by:

— H 71 —
o, (2:.6) = (z— Ab)" M~ (z - Ab)
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where, for ease of notation, we omitted the dependence of A(0)
on 0. Derivation of the ML estimator and of the Cramér-Rao
lower bound (CRLB) is formally identical to that presented in
[2] for known Doppler frequencies, with the only difference that
now O is the 2M x1 vector defined in Sect. 2, instead of the
M x1 vector containing only the unknown DOAs. The ML

derived for the deterministic target amplitude model is often
termed conditional ML (CML) [6,9]. In [2], performance
analysis of the DOA CML estimator was carried out assuming
the stochastic model for b. The CML estimate is obtained by
maximizing the likelihood function (LF) p,(z;b,0) in (3) with

respect to 0 and b. After some manipulations we find:
A Hyq-1 Har-1 a1 A Hng-1,, - “4)
0y =argmaxz" M AA"MTA)T A'M z,
)
by =(ATMTA)TATM 'z )

Calculation of éCML requires the 2M-dimensional (2M-D)
nonlinear maximization of the functional:

FO)=2z"MT'AA"™M'A)'A"M 'z, (6)

where ©=[8, - 6, f, - fy]  There denotes the

generic parameter vector. When only one target is present in the
range-azimuth cell under test, © is a 2x1 vector and b is a
scalar. In particular, estimator (4) becomes:
Hyg-l E
2" M~'a(@, f)
a”(0./)M"a(0./)
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where a(0, /) =g(60) ©Op(f) is the overall target steering vector

introduced in Sect. 2. It is useful now, for future developments,
to define the following quantity:

[2"M a0, 1) ’
a0,/ )M a0, )’

r©./)=F®),_ = ®)

which is the LF for the single target scenario. Therefore,
(éCML, fCML) =argmax, ,I'(0, /) is the CML estimator for the

single target scenario. The CML estimator (4) requires a
nonlinear 2M-D maximization. Generally this maximization is
computationally cumbersome and may be not feasible in real-
time. Therefore, it would be useful to find a suboptimum
algorithm which trades off good performance with
computational complexity. We use the CML estimator as a
starting point to derive an algorithm based on M 2-D
maximizations instead of one 2M-D maximization of F(0).
Under the hypothesis that the Doppler frequencies are separated,

that is ‘fDi —ij‘ >1/N when i # j, in [3] we prove that
2
v "M (g@)ops))

F(0)= +o(N) )
g(gwi)@p(f;—))” M (g8)op(f))

where we used Landau’s notation:
k def . —k ,
f(N)=0o(N )ogllmN f(N)=0, (10)
—®©

so that f(N)=o0(N) means that lim, ,, N"'f(N)=0, i.c. the
term o(N) in (9) is negligible for large N with respect to the
sum of the M terms. Therefore, F(0) is asymptotically formed
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by the superposition of the M terms {I'(6;,f;);i=1,---,M}.

Result (9) implies that:
M

NT'F(®)= lim > max N"T(6,.f,). (11)

N> S(0,.1)

lim max
N=oo (G, .00 15 5 Su)

Based on this observation, we assume large N and we neglect the
term o(l) in (9) to obtain the asymptotic (large N) maximum
likelihood (AML) estimator:

M
arg max ST, 1) . (12)

(01055 Ou >S5S ) i=1

In words, the AML estimates © from the locations of the M

highest peaks of I'(@, f). It is less computationally heavy than

the CML, in fact it replaces the 2M-D nonlinear search required
by the CML of (8) with the search of the locations of the M
highest peaks of a 2-D functional. We expect that if N is large
enough, the performance loss of the AML over the CML will be
negligible. In Fig. 1 we plot I'(d, f) in the presence of two

targets (M=2); we defined SDR; = |b,-|2/o-§ Jfori=1---,M.

i 05 0 -

Fig. 1. Plot of T'(0, f) , for M=2, N=32, 6, =2°, 0, =09°,
Orgy =1.5°, fp1 =—fp>» =—0.3, SDR, =SDR, =20dB, and
CNR — —0, i.e. M=L, where 1 is the identity matrix.

The AML problem is reminiscent of the problem of jointly
estimating the frequencies of a signal composed by multiple
sinusoids. In that case, the function to be maximized is the 1-D
Periodogram and the problem is reverted into a sequence of 1-D
maximization problems through a RELAXation approach [7]. In
our case for each component we have to estimate two
parameters, therefore the 1-D Periodogram is replaced by the 2-
D functional I'(@, /). Based on this observation, to reduce the
computational complexity of the AML algorithm, we used an
algorithm based on the RELAX method. The most important
feature of RELAX is that it decouples the multidimensional
maximization problem into a series of simpler 1-D problems. In
general, maximizations with respect to (8,, 1)), -, @y fur)

are coupled. It can be shown (see [3]) that when N goes to
infinity, N™'T(, f) approaches to non-zero values only for

f= {fD,-}fZ1 , whatever the values of € and {HTG,-}?L are. This
suggests that it is possible to estimate {f;;;,fp;} estimating
first all the {f,,} from the locations of the highest peaks of the
FFT of the (whitened) data; then the DOAs can be estimated by
plugging {f i} in the AML, which estimates sequentially the M
DOAs performing M one-dimensional nonlinear maximizations

of I'(0, f) in (8), calculated sequentially for f = J}D] REEEN fDM s

or by plugging { f'D,.} in the CML estimator for known Doppler
frequencies [2,3]. These ideas are exploited here to derive an
algorithm based on RELAX. The most important feature of
RELAX is that it allows us to decouple the search of the
locations of the M highest peaks in the 2-D functional I'(6, f)
into a sequence of 1-D nonlinear maximization problems.
Roughly speaking, RELAX estimates first the parameters of the
strongest component; then removes the contribution of the
strongest component from the data and proceeds with the second
strongest component; and so on up to the Mth component. Then,
it iteratively refines the estimates of each pair (6;4;,fp;)

working again on a component-by-component basis. The details
on the RELAX algorithm are not reported here for lack of space,
the details can be found in [3].

4. NUMERICAL PERFORMANCE ANALYSIS

We now investigate the performance of the AML
estimator implemented using the RELAX approach. The root
mean square error (RMSE) was derived by running 10° Monte
Carlo simulations and compared with the square root of the
Cramér-Rao lower bound (RCRLB). We assumed that two
targets are present in the resolution cell under test with
deterministic unknown complex amplitudes. The behavior of
RMSE and RCRLB was investigated as a function of N, SDR,
Af = fp1— fp2» AO =015 —0;, , and CNR. However, only a
small subset of results is shown here. If not otherwise stated, the
signal parameters are N=16, 0, =2°, 05 =0.9°, O, =1.5",

for=—fpy =—03, SDR, =SDR,=20dB and CNR—>-.

RMSE (éTGi) and RCRLB(0;;) are measured in degrees. In
Figs. 2 and 3, we plot the performance of Doppler frequency and
DOA estimators, respectively, as a function of the number N of
integrated pulses. For N >16 the performance of the estimators
are very close to the RCRLB. In Figs. 4 and 5, the same curves
are plotted as a function of SDR, , while b, is kept constant, so

that SDR, =20 dB . The threshold effect, typical of non-linear
estimators, is quite evident for SDR, <5dB . The numerical

results described here were derived assuming M=I, i.e.
CNR — -0 . When the clutter is also present M is non-diagonal
and, in a realistic radar scenario, it must be estimated from
secondary data.

5. CONCLUDING REMARKS

In summary, our analyses corroborate the following results:
(i) efficient estimators of DOAs and Doppler frequencies are
asymptotically decoupled; (i) multiple targets can be resolved
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even if they have the same DOA, provided they have well
separated Doppler frequencies, i.e. \fDi—ij|>1/N when

i# j; (iii) the DOA estimator is almost insensitive to the
relative angular position of the targets and it exhibits good
performance even for low values of N and SDR; (iv) for low
values of SDR, the Doppler frequency estimator is affected by
the threshold effect, but it is almost efficient above the
threshold; (v) the worst case scenario is when the disturbance is
composed by only thermal noise.
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Fig. 2. Plot of RMSE(f,,;) and \JCRLB(f,) , i=1.2.
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