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ABSTRACT
The advantage of IIR filters over FIR ones is that the for-
mers require a much lower order to obtain the desired re-
sponse specifications. However, the existing deterministic
techniques for IIR filter bank design based on heuristic usu-
ally lead to too high order IIR filters and thus cannot be
practically used. In this paper, we propose new method to
solve the low-order IIR filter bank design, which is based
on LMI optimization. Our focus is the QMF bank design,
although other IIR filter related problems can be treated and
solved in similar way.

1. INTRODUCTION

The trade-off between IIR filter and FIR one is that the for-
mer requires much lower orders for a given desired spec-
ification. The existing deterministic methodologies often
lead to too high order IIR filters so the mentioned trade-off
between IIR and FIR filters are hardly enhanced. It is es-
pecially true in the IIR filter bank design problems[7, 5],
which is formulated as follows:
Given two minimum-phase analysis (IIR) filters H0(z) and
H1(z), design two minimum-phase (synthesis) filters G0(z)
and G1(z) such that

H0(z)G0(z) + H1(z)G1(z) = z−n0 for some n0 > 0,(1)
H0(−z)G0(z) + H1(−z)G1(z) = 0. (2)

A natural optimization formulation for handling constraints
(1), (2) is thus

min
G0(z),G1(z)

||z−n0 − [H0(z)G0(z) + H1(z)G1(z)]|| :

s.t (2), (3)

where the analysis filters are predesigned. When the norm
||.|| in (3) is understood as H∞-norm defined by

sup
ω∈[0,2π]

|e−n0ω − [H0(e
ω)G0(e

ω)+

H1(e
ω)G1(e

ω)]|, (4)

we call G0(z), G1(z) by H∞ filters. Analogously, they will
be called by either H2-filters or mixed-norm filters when the

norm ||.|| in (3) is understood as H2-norm defined by

1√
2π

[

∫ 2π

0

|e−n0ω − [H0(e
ω)G0(e

ω) +

H1(e
ω)G1(e

ω)]|2dω]1/2, (5)

or even as a mixed H∞/H2 norm, respectively.
Substituting this value into (3), one gets the equivalent op-
timization problem

min
G(z)

||z−n0 − H(z)G(z)||, (6)

where H(z) = H0(z)H1(−z) − H1(z)H0(−z). (7)

In the case of H∞-filters, problem (6) is a model-matching
or Nehari problem [3]. As a result, the optimal solution
Gopt(z) can be found by classical results of H∞ control
based on solutions of Riccati equations. The disadvantage
of this method is that the order of this optimal solution Gopt(
z) is too high for practical implementation . On the other
hand, it is also obvious that (6) is a particular case of gen-
eral output feedback control problems. However, the solu-
tion is still very conservative because one still has to em-
ploy the balanced truncation[8] to reduce the high order of
the design filter G(z) and one has to use a single Lyapunov
function to handle both H∞ and H2 norms to obtain for an
attractive LMI formulation[4]. In this paper we show that
the following issues are overcome. The first is the high or-
der of designed filters. It will be shown that LMI optimiza-
tion based formulations for fixed order filters (when G(z) in
(6) is restricted on the class of fixed k−th order IIR filers)
are much more attractive than that of output feedback con-
trol, which allow us to solve the problem very effectively.
The second is mixed-norm optimization. Generally, mini-
mized energy(H2-filters) and peak(H∞-filters) are conflict
requirements. Thus, a good trade-off is the mixed-norm fil-
ter problem which can be described by one of the following
ones and/or their combinations

minG(z) [µ||z−n0 − H(z)G(z)||∞ +

(1 − µ)||z−n0 − H(z)G(z)||2], (8)
minG(z) ||z−n0 − H(z)G(z)||2 :

||z−n0 − H(z)G(z)||∞ < γ, (9)
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when 0 < µ < 1 is used to express the trade-off between
H∞ and H2 norm criteria. Then, each norm criterion in (8)
and (9) is derived on its own checking Lyapunov function.
The structure of the paper is as follows. Section 2 sum-
marizes some basic tools used in our approach. Section 3
addresses the optimization problem (6) with H∞-norm and
H2-norm separately treated, while the optimization multi-
criterion problems (8), (9) are discussed in Section 4. The
theoretical development of Sections 3 and 4 are confirmed
by extensive simulation in Section 5. Finally, some conclu-
sions are drawn at Section 6.

2. EQUIVALENT STATE SPACE-BASED
OPTIMIZATION FORMULATIONS

Our goal in this paper is to provide LMI based attractive
formulations for optimization problems (6), (8), (9). This
section summarizes several useful formulations and basic
tools needed in our derivation.
For an k−order IIR filter

G(z) =

(

k
∑

i=0

aiz
−i

)(

1 +

k
∑

i=1

biz
−i

)−1

(10)

there are matrices AF , BF , LF , MF of dimension k×k, k×
1, 1 × k, 1 × 1, used in the state-space representation of
G(z) such that G(z) = LF (zI − AF )−1BF + MF , and
vice-versa. For short, it is custom to write

G(z) =

[

AF BF

LF MF

]

(11)

Consequently, by introducing the state variable xF
i ∈ Rk,

the relation ZF (z) = G(z)Y (z) in z−domain can be ex-
pressed in state-space setting by the following linear time
invariant (LTI) system

xF
i+1 = AF xF

i + BF yi, AF ∈ R
k×k, BF ∈ R

k×1,

zF
i = LF xF

i + MF yi, LF ∈ R
1×k, MF ∈ R, (12)

where zF
i and yi are time representation of ZF (z) and Y (z),

respectivelly. Now, take any minimal state space realization
of z−n0 and H(z) as

[

H(z)
z−n0

]

=





A B
C D
L 0



 =









AH 0 BH

0 A0 B0

CH 0 DH

0 C0 0









, (13)

which is also written as

xi+1 = Axi + Bwi, A ∈ R
n×n, B ∈ R

n×1,

yi = Cxi + Dwi, C ∈ R
1×n, D ∈ R (14)

zi = Lxi L ∈ R
1×n

where xi ∈ Rn is the newly introduced state variable, yi ∈
R is the time-domain transform of Y (z) = H(z)W (z) and
so is treated as the measured output while zi ∈ R is the
time-domain transform of Z(z) = z−n0W (z) and thus is
treated as the output to be estimated/tracked. Using (12) and
(14), the state-space representation of z−n0 −H(z)G(z) in
(6) is the input-output LTI system

xi+1 = Axi + Bwi, yi = Cxi + Dwi, zi = Lxi;

xF
i+1 = AF xF

i + BF yi, zF
i = LF xF

i + MF yi, (15)

zcl
i = zi − zF

i

In summary, solving any problem in (6), (8), (9), (12) re-
quires one to find AF , BF , LF , MF to minimize either H2

or H∞ or mixed norms of LTI system (15) or system (12).
Without loss of generality, we set MF = 0. The H2-norm
or H∞-norm of LTI systems will be discussed in the next
section.

3. FIXED ORDER OPTIMAL IIR SYNTHESIS
FILTERS

3.1. Optimal H2 synthesis filter

By using the state-space representation (15), formula (5) for
H2-norm is also interpreted as the variance E(z2

cl) of zcl

in (15) under the assumption that wi are white noise with
unit variance. Therefore, with H2-norm in (6) used as our
minimization criterion and G(z) is restricted in the class of
fixed k-order filters, the problem is then to find the matrices
AF , BF , LF of dimension k×k, k× 1, 1×k such that the
variance E(z2

cl) of zcl in (15) is minimized. The main result
of this section is sketched in the following theorem:

Theorem 1 : The optimization problem (6) in the case of
H2-norm used can be solved by the following LMI optimiza-
tion problem

(RLH2) min
X,Q,Qk,ν

ν : (16)

N T

[C D ]

[

−X + AT XA AT XB
BT XA −I + BT XB

]

N[C D ] < 0 (17)
[

X LT

L ν

]

> 0 (18)

Q = ET
0kQkE0k, Qk ≥ 0





−X + Q 0 AT (X − Q)
0 −I BT (X − Q)

(X − Q)A (X − Q)B −X + Q



 < 0 (19)

where E0k is the k × n matrix with k unit column vectors
and n − k zero column vectors. The optimal k-order filter
(11) is easily derived from the optimal solution of (16) as
follows: X is defined as the formula

X =

[

X E0k

E0k Q−1
K

]

.
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Then, we solve the following LMIs in respect to variables
K = [ AF BF ] and LF .





−X ∗ ∗
0 −I ∗

ΘkAΘT
k B1,ak −X−1



+

(





0
0

Bak



K [Cak D21,ak 0 ] + (∗)) < 0, (20)

[

X CT
1,ak

C1,ak ν

]

+

[

0
DT

ak

]

LT
F [ 0 −I ] +

[

0
−I

]

LF [ Dak 0 ] > 0 . (21)

in which Acl = ΘkAΘT
k + BakKCak, Bcl = B1,ak +

BakKD21,ak, C1,ak = [ L 0k ], Dak = [ 0kn In ],

Θk =

[

In

0nk

]

, Bak =

[

0nk

Ik

]

, Cak =

[

0kn Ik

C 01k

]

,

B1,ak =

[

B
0k1

]

, D21,ak =

[

0k1

D

]

.

3.2. Optimal H∞ synthesis filter

The time-domain interpretation of H∞-norm defined by (4)
is the following input-output relation of system (15)

sup
∑

∞

i=0
||wi||2=1

√

√

√

√

∞
∑

i=0

||zi||2,

The optimization problem (6) with H∞-norm used is solved
by one of the equivalent optimization problems expressed
briefly as the following:

Theorem 2 The problem is solved by

(RLH∞) min
X,Q,Qk,γ

γ : (22)

Q = ET
0kQkE0k, Qk ≥ 0





−X + Q ∗ ∗
0 −γI ∗

(X − Q)A (X − Q)B −X + Q



 < 0 (23)

[N T

[C D ]
0

0 I

]





T1 T2 L
T3 T4 0
LT 0 −γI





[N[C D ] 0

0 I

]

< 0, (24)

where T1 = −X + AT XA, T2 = AT XB, T3 = BT XA,
T4 = −γI + BT XB.

Moreover, note that once a solution X, Q of (22) has been
found, the optimal k−order filter (12) can be easily derived
by a procedure similarly to that in the end of the previous
subsection.
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Fig. 1. Frequency response of analysis and synthesis filters,
the results of H2 filters

4. FIXED-ORDER OPTIMAL MULTI-CRITERION
FILTERS

In this subsection, we discuss the solution for the multi-
criterion optimization problems (8), (9). In the discussion
below, we now provide a direct approach, which require
much large dimensional LMIs with more matrix-variables
involved. The following result is based on LMI optimiza-
tion formulation for problems (8), (9), where each H∞-
norm and H2-norm criterion is checked by its own Lya-
punov variables X̂ and Ŷ , respectively.

min
X̂ ,Ŷ,V̂ ,K̂,L̂F ,γ,ν

µγ + (1 − µ)ν : (25)





−X̂ ∗ ∗
0 −I ∗

T11 T12 T13



 < 0, (26)

[

X̂ ∗
[ L −L̂F ] Z

]

> 0, Z < ν (27)







−Ŷ ∗ ∗ ∗
0 −γI ∗ ∗

T15 T16 T17 ∗
T18 −MF D 0 −γI






< 0, (28)

in which

V =

[

V11 V12

V21 V22

]

, ΠV =

[

In 0
0 Ṽ12V

−1
22

]

, V11 ∈ Rn×n,

V12 = ET
0kṼ12, Ṽ12 ∈ Rk×k, X̂ = ΠV XΠT

V ,

K̂ = Ṽ12 [ AF V −T
22 Ṽ T

12 BF ] , Λk =

[

ET
0k

Ik

]

,

V̂ = ΠV V ΠT
V =

[

V11 ET
0kṼ12V

−T
22 Ṽ T

12

Ṽ12V
−1
22 V21 Ṽ12V

−T
22 Ṽ T

12

]

,
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V̂1 ∈ Rn×n, V̂2 ∈ Rk×k, V̂3 ∈ Rn×k,

T11 = V̂ ΘkAΘk+ΛkK̂Cak, T12 = V̂ ΘkB+ΛkK̂D21,ak,
T13 = X̂ − (V̂ + V̂ T ), L̂F = LF (Ṽ12V

−1
22 )T , T15 =

V̂ ΘkAΘk +ΛkK̂Cak , T16 = V̂ ΘkB+ΛkK̂D21,ak, T17 =

Ŷ − (V̂ + V̂ T ), T18 = [ L − MF C −L̂F ]. Once solution
(25) is found, K = [AF BF ] and LF defining the filter
G in (11) are derived by the following formula

AF = ÂF V̂ −1
2 , BF = B̂F , LF = L̂F V̂ −1

2 . (29)

5. SIMULATION

We use the same low-pass third-order IIR Chebyshev filter
H0(z) as in [1]

H0(z) =
0.1412 + 0.3805z−1 + 0.3805z−2 + 0.1412z−3

1 − 0.3011z−1 + 0.3694z−2 − 0.0250z−3

and H1(z) = H0(−z), which is high-pass. Since such
best error performance becomes extremely small at delay
no = 10, we take this value of n0 for further design of
low-order synthesis filters G(z) in (6), whose size varies
from 8 to 11, so the order of synthesis filters, G0 and G1

in (1)-(2) accordingly varies from 11 to 14. For filter or-
der comparison, note that H∞ control based formulation of
[1] results in order 34 of their designed filters. The values
of matrix Eok is generated randomly in many trials for H2

and H∞-filters to select its best solution. All the synthesis
filters G0, G1 provided below are also low-pass and high-
pass, respectively. Figure 1 shows frequency responses of
two analysis filters H0, H1 and those of two synthesis fil-
ters G0, G1, generated by H2 filter design in two cases of
11 and 14 order. Two synthesis filters G0, G1, which are the
results of H∞ and mixed-norm filter design, have the same
shapes to the results of H2 filter design with a little differ-
ence in magnitude distortion. In figure 1, the 14-th order
synthesis filters track both stopband and passband of analy-
sis filters and its result is better than 11-order filters does. In
figure 2, as expected, the distortion with H2 filters has peak
value larger than that with H∞ and mixed-norm ones, but
its energy distortion is smaller than that of the others. The
peak distortion (energy distortion, resp.) with the mixed fil-
ter is larger (smaller, resp.) than that with H∞ filter but still
smaller (larger, resp.) than that with H2-filter.

6. CONCLUSIONS

In constrast to FIR filter design theory, which is mature
enough, there are a lot of open issues to be addressed in IIR
filters. In this paper we have propsed an effective method for
solving the low-order IIR QMF bank design, which is cer-
tainly among most challenging issues in the filter bank de-
sign. Three optimization criteria were discussed: H2-filter,
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-90

-80

-70

-60

-50

-40

-30

ω  in  π  units

D
B

H2 filter  

Hinf filter

Hmix filter

Fig. 2. Magnitude of frequency error |z−n0 −
(H0(z)G0(z) + H1(z)G1(z))| with 14-order H2, H∞ and
mixed-norm synthesis filters

H∞ filter and mixed-norm filters. Our proposed method
yields IIR synthesis filters of much smaller order comparing
to existing methods thus reduces the implementation com-
plexity of the overall filter bank.
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