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ABSTRACT

We propose a framework for orthonormal symmetric wavelet
transform given a cyclic zero-phase half band filter. The scheme
consists of a design for cyclic wavelet transform with real sym-
metric filters based on the Perfect Reconstruction Circular Convo-
lution Filter Banks accompanied by an implementation in the Dis-
crete Trigonometric Transform domain. This is followed by a brief
discussion on its performance in the context of applications such
as image compression and implementation of symmetric wavelet
transforms based on bandlimited wavelets.

1. INTRODUCTION

In this paper, we propose a design for Perfect Reconstruction Cir-
cular Convolution Filter Banks (PRCC-FB) [1] which yields real
symmetric-periodic analysis and synthesis filters. This is accom-
panied by an implementation in the Discrete Trigonometric Trans-
form (DTT) domain under the assumption of symmetric input and
output sequences.

The proposed framework can be used to implement Symmetric
Wavelet Transforms (SWT) [2]. SWT is a discrete wavelet trans-
form with symmetric inputs and outputs, and requires the use of
linear-phase filters. It solves the problems of coefficient expansion
and border discontinuities inherent in cyclic wavelet transforms.

The paper is organized as follows. In section-2 PRCC-FB are
briefly described. In section-3 the required types of symmetry and
associated DTTs have been discussed. In section-4 we describe
the proposed design, and provide some examples to illustrate the
scheme. It is followed by the implementation in section-5. In
section-6 certain issues pertaining to the use of this framework
in implementation of bandlimited wavelet transforms and image
compression are discussed.

2. PRCC FILTER BANKS

PRCC-FB is a two-band cyclic filter bank which satisfies the cyclic
paraunitary property [3] and hence corresponds to an orthonormal
transformation. It is designed and implemented entirely in the DFT
domain. The implementation is illustrated in fig.1, where ������� is
the input sequence of length � ; �
	 ���
� and ��� ���
� are the anal-
ysis filters; � 	 ���
� and � � ���
� are the synthesis filters; � 	 ����� and��� ���
� are the subband sequences. The general design of PRCC-
FB follows.

The construction of filters described here has been discussed
in detail in [1],[4]. � 	 ����� must satisfy the power complementary

condition following which it takes the general form,��	 ���
����� �
	 ������� �������! #"�� �%$'& ����� �)(+* �+�����, �" (1)

where, � $'& ����� is a zero-phase half band filter [5] and - ���
� is the
phase term. �%$'& ����� must satisfy the following properties,

1. � $'& � �/. �
��� � $'& ���
�
2. �%$'& � ��0213. �
�4�65 .7�
$8& �����
3. �%$'& � ��021:9 �
�4� �%$'& � �
0213. ���

where, all the indices are ��;%<�= � � . � is assumed to be even
throughout. The remaining filters are derived as follows,��� �����>� . � � *@?  (@A �CB	 � �
0D1:9 ���� 	 �����>� � � *@?  (@A � B	 ���
� (2)� � �����>� � � *@?  (@A � B� ���
�
It is to be noted that the conditions for perfect reconstruction do
not depend on - ���
� .

3. SYMMETRIC EXTENSIONS OF SIGNALS AND
ASSOCIATED DTTS

In this section we describe two types of extensions and their re-
lationships with certain DTTs. A thorough investigation has been
carried out in [6] regarding the symmetric extension of sequences,
their association with the family of DTTs and symmetric convolu-
tion.

Consider a finite-length real sequence �E���E� of length � (even).
Its type 2 DCT is as follows,FHG * ������� 1 A:IE�JKML 	 �������ON�<2PRQ3S �%TU� 9 �*WV� X (3)

for Y[Z � Z\�]. 5 . Let �_^`����� be the symmetric-periodic exten-
sion of ������� , a period of which is defined as� ^ ���E�4�a������� 9 ��� 1`�b. � . 58� (4)

for Y\Z � Zc1`�d. 5 . Referring to [6],[7], �e^D����� is a HSHS
Symmetric Periodic sequence (HSHS-SPS) where, HS stands for
Half-sample Symmetry. The DFT of � ^ ����� can be expressed as,F ^ �����4�\��� ?  ( � *fA " FHG * ����� Y�Z � Zg1`�h. 5 (5)
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Fig. 1. PRCC filter bank system. (a) Analysis filter bank (b) Syn-
thesis filter bank. (courtesy:[1])

Using (3) it can be shown that,F G * � 1D�/. �
�i� . F G * ���
�+j YkZ � Za1`�b. 52jF G * ��l �/. �
�i� F G * ���
�+j YkZ � Z l �b. 5 (6)

It is easily seen that substituting any real sequence of the form (6)
in (5) corresponds to the DFT of a HSHS-SPS.

Similarly, the type 2 Discrete Sine Transform (DST) of ������� is,F ^ * ������� 1 AmI��JK2L 	 ��������Pfn!opQ S �
T)� 9 �* V� X 5 Z � Zq� (7)

Let �sr
����� be the antisymmetric periodic extension of ������� ,�_^`�����4�a������� . �E� 1D�/. � . 5'� (8)

for YgZ � Zt1D�u. 5 . � r ����� is a HAHA-SPS (HA stands for
Half-sample Antisymmetry). The DFT of �_rW���E� can be expressed
as F r ���
��� .wv � � ?  ( � *fA " F ^ * ���
� Y�Z � Za1`�b. 5 (9)

Using (7),F ^ * ����� � F ^ * � 1D�/. �
�+j Y�Z � Zq1`�b. 52jF ^ * ��l �b. ���>� . F ^ * ���
�+j Y�Z � Z l �b. 5
(10)

where,
F ^ * ���
�%� Y for �x� Y . Again, it can be observed that

substituting any real sequence of the form (10) in (9) corresponds
to the DFT of a HAHA-SPS. Note that the expressions for DCT
and DST are not normalized. All the results in this paper can be
easily normalized by multiplying with appropriate scaling factors.

4. PROPOSED FILTER DESIGN

In [1], symmetric extension of input signal was considered to over-
come the edge artifacts problem inherent in PRCC-FB due to its
cyclic nature. There, the zero-phase symmetry of the filters was
utilized. Here, we propose a different symmetric extension.

The phase term - ���
� in (1) is defined such that,�
	 �����w�zy �%$'& ����� �)(+* � � ?  ( � *fA " Y�Z � Zx�h. 5.{�%$'& ����� �)(�* � � ?  ( � *fA " �tZ � Zq1D�h. 5
(11)

where the length of the filter is 1D� . Using (5) and (6), it can
be easily shown that the above design renders the IDFT of �%	 ���
�
HSHS-SPS. Using (2) the remaining filters are obtained. The IDFT
of � � ����� corresponds to a HAHA-SPS. The synthesis filters are
related to the analysis filters as follows,��	 �����>� �
	 ������ � �����>� .{� � ����� (12)

which implies that the IDFTs of �|	 ����� and �w� ����� are HSHS-SPS
and HAHA-SPS respectively.

Let � G *	 and � G *	 be the DCTs of the first half of the IDFTs of�
	 and ��	 respectively. In the same way, let � ^ *� and � ^ *� be the
DSTs associated with �}� and �w� . From (2),(5) and (9), we can
derive the following, � ^ *� ������� � G *	 � �/. �
� (13)

for Y[Z �C~ � . Equation (13) implies that � ^ *� can be obtained
by flipping � G *	 . We provide two designs, one based on the IIR
filter banks and the other based on the popular Daubechies filter
set, to exemplify the above scheme.

Example 4.1: The power spectrum of a Meyer scaling
function satisfies the conditions of being a zero-phase half
band filter. An orthonormal symmetric filter bank based on the
generalized Meyer class of bandlimited wavelets [1],[4],[8] can
be constructed as follows. Firstly, the power spectrum of the low
pass analysis filter must be appropriately sampled [1] to obtain�%$'& . Then the design technique described above is applied to
obtain the symmetric-periodic filters. The low pass analysis filter
for 1D� �65 1`� thus derived is plotted in fig.2.

Example 4.2: Consider the Daubechies 8 coefficient filter
set and choose ��� l . The power spectrums of the filters cor-
respond to that of zero-phase half band filters. First, a 1`� -point
DFT of the FIR low pass analysis filter �
���	 (“or” corresponds to
the original set), say � �+�	 is computed. Then, � $'& �d� � ���	 ��� * ,
the power spectrum of �
���	 at 1`� -point resolution. Finally, our
design technique is employed. The low pass analysis filter for1D� �65 1`� is plotted in fig.2.

The same strategy can be applied to the half band filter de-
signed in [9]. The filter sets for a multilevel decomposition can
be derived by decimation of the preceding filter set in the DFT or
DTT domain.

5. A DTT DOMAIN IMPLEMENTATION

The design described in section-4 can be implemented using type-
2 DCTs and type-2 DSTs of the sequences involved. In [10], DTTs
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Fig. 2. Symmetric-periodic low pass analysis filters derived from
(a) Meyer half band filter (b) Daubechies (coeff-8) half band filter

have been used, but only for the filtering operations. Here, we
utilize the periodicity of the filters to perform even decimation and
interpolation operations in the DTT domain itself (i.e. on the lines
of [1]).

The filter bank implementation is divided into four parts. For
each part we derive the equivalent DTT domain implementation.

5.1. Low Pass Filtering and Decimation

Let ������� be the real input sequence of length � (even). It is ex-
tended as in (4) and filtered by �%	 ����� of section-4. Let ��	 ����� be
the resulting 1`� point sequence. Using (5),�|	 �����4�g��� ?  ( � *fA " F}G * �����7����� ?  ( � *fA " � G *	 ����� (14)

for Y[Z � Z�1`�]. 5 . The decimation can be implemented using
DFT domain techniques described in [1], [3]. Let �p	 ����� be the
DFT of the decimated sequence.� 	 ��������� � 	 ���
� 9�� 	 � ��9 �
�)� 0D1 (15)

Substituting (14) in (15) and using (6),� 	 ���
������U�D�+�)�* � FHG * ���
� � G *	 ���
� . FHG * � �h. �
� � G *	 � �h. ���)�� �8� ��D� �! �"
(16)

for Y�Z � Zx��. 5 . The term ��	 ���
� in (16) has the form (6). This
implies �� %�¢¡ � � 	 ���
�f� is a HSHS-SPS. Let � G *	 ���
� be the DCT
of the first half of �� %�¢¡ � �£	 �����f� . Then,� G *	 ������� 5l}¤ F}G * ����� � G *	 ����� . FHG * � �/. ��� � G *	 � �h. �
�'¥

(17)

for Y¦Z � Zx�
021s. 5 . It is to be noted that
F G * � � �4� � G *	 � � �4�Y . From the above equation we see that low pass filtering followed

by decimation can be accomplished in the DCT domain itself.

5.2. High Pass Filtering and Decimation

We proceed the same way as in the previous section using � ^ *� and
(9) instead. The resulting subband sequence ��� ���
� is as follows,� � �����w�.wv � �U�D�+�)�* � FHG * ���
� � ^ *� ���
� 9 FHG * � �/. �
� � ^ *� � �h. ���)�� �8� ��M§ �! �"

(18)

for Y¨Z � Z��©. 5 , The term �|� ����� of (18) is of the form (10)
and therefore, (18) is similar to (9). This implies �� %�¢¡ � ��� ���
�f�
is a HAHA-SPS. Let � ^ *� ���
� be the DST of the first half of�� %�¢¡ � �ª� ���
�f� . Then,� ^ *� ������� 5l�� FHG * ���
� � ^ *� ���
� 9 FHG * � �h. �
� � ^ *� � �h. ���)�

(19)
for 5 Z � Z«��021 . Thus, the high pass filtering followed by
decimation operation is accomplished in the DTT domain.

5.3. Upsampling and Low Pass Filtering

Here, �C	 ���
� (the output of low pass filtering and decimation) is
the input sequence which can be expressed as,� 	 ���
���g� � ?  (@A � G *	 ����� Y�Z � Zq�h. 5 (20)

Upsampling can be implemented as described in [1],[3]. The 1D� -
point DFT of the interpolated sequence is,�£¬ ������� �C	 ����� Y�Z � Zq1D�h. 5 (21)

This sequence is filtered by ��	 ���
� . Let the resulting sequence be­ 	 ����� . Employing (5) for �|	 ����� and rearranging,­ 	 �������\��� ?  (@A � ��� ?  ( � *fA " � G *	 ����� � G *	 ���
�)� (22)

for Y®Z � Zd1`�¯. 5 . The term � � ?  (@A in (22) corresponds
to a circular left shift of the IDFT of the term in the braces by 5
sample. Now we consider the filter bank framework described in
section-4. The phase condition imposed on the filters corresponds
to a circular left shift of the reconstructed sequence by 5 sample
relative to the original sequence. Therefore, the resulting sequence
needs to be shifted circularly to the right by 5 sample. Instead we
ignore the term � � ?  (@A in (22),­ 	 �������\��� ?  ( � *fA " � � G *	 ����� � G *	 �����)�� �'� ��`° �! #" (23)

for Y±Z � Zg1`�]. 5 , where,
­ 	 ���
�4�®� I � ?  (�A ­ 	 ����� . The term� * ���
� is similar to (6) which implies that (23) is of the form (5).

Let
­ G *	 ����� be the DCT of the first half of the IDFT of

­ 	 ���
� .­ G *	 ���
���² �* � G *	 ���
� � G *	 ���
�+j Y¦Z � Z A * . 52jY j �
� A * j. �* � G *	 � �h. ��� � G *	 �����+j A * 9 5 Z � Zq�h. 5 (24)

Thus we see that the operations of upsampling followed by low
pass filtering can be performed using the DCTs of the sequences
involved.
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5.4. Upsampling and High Pass Filtering

Adopting the same procedure as above, but using 9 and �³� ���
� in-
stead, the sequence

­ � ����� is derived.­ � ���
�4� . � � ?  ( � *fA " � � ^ *� ����� � ^ *� �����)�� �8� ��`´ �, �" (25)

for Y}Z � Z�1`�µ. 5 . �e¶ ����� is similar to (6). The equation (25)

is of the form (5). Let
­ G *� ����� be the DCT of the first half of the

IDFT of
­ � ���
� .­ G *� �������² Y j �
� Y j. �* � ^ *� ���
� � ^ *� ���
�+j 5 Z � Z A * j. �* � ^ *� � �/. ��� � ^ *� �����+j A * 9 5 Z � Za�/. 5(26)

From the above equation it is seen that upsampling followed by
high pass filtering can be implemented completely in the DTT do-
main.F G * ����� , the DCT of the input sequence can be reconstructed

by,
F G * �����\� ­ G *	 ���
� 9 ­ G *� ����� . Hence, the filter bank of

section-4 can be implemented completely in the DTT domain us-
ing (17),(19),(24) and (26).

6. COMPUTATIONAL ANALYSIS AND POSSIBLE
APPLICATIONS

The DTT domain implementation of a one level 5 -D wavelet
decompostion requires the computation of 5 � -point DCT,1 Hadamard products of real � -length vectors, 5 �
021 -point
IDCT, and 5 �
0D1 -point IDST. The computation of 1-D � -
point DCT or DST requires T A *k· <D¸ � V multiplications andT ¶¹A*q· <2¸ �/.7��9 5 V additions [11]. The total number of mul-
tiplications for a one level decomposition is � � · <D¸ �º9 5D» ¼D�
as against 1D� � · <2¸ �½9hY » ¼D� for the FFT domain implemen-
tation of the same [12]. The total number of additions isT)¾ � · <D¸ �/.�¿* ��9 ¾ V .

It is evident that the proposed filter bank structure is well suited
for implementing SWT based on orthogonal bandlimited wavelets.
However, it should be noted that the application of the proposed
structure is not limited to bandlimited wavelets alone.

We applied the proposed scheme on images using filter sets of
examples 4.1 and 4.2 and compared the performance with that of
the popular ÀM0DÁ biorthogonal filter set. The results are given in
table 1. It is to be noted that after the decomposition is performed
using (17) and (19), the results in the DTT domain can be quan-
tized and encoded directly rather than perform the IDCTs and ID-
STs of the individual subbands. Also, a multilevel decomposition
can be achieved by computing only the 1 Hadamard products for
each level after the DCT of the input signal is initially computed.
This way the complexity of the scheme can be greatly reduced.

7. CONCLUSION

We proposed a design and implementation scheme for a class of
orthonormal cyclic wavelet transforms using PRCC filter banks.
The design yields a real and symmetric filter set given a half band
filter. To supplement it, a DTT domain implementation which as-
sumes symmetric input and output sequences was proposed. The

Method avg. PSNR
Our Meyer 24.9525
scheme Daub. 8 24.9395
based on Daub. 32 24.9524

Biorth. 9/7 24.6481

Table 1. Average PSNR in db for 12 test images [13] using a two
level transform and reconstructing only the low pass component.

framework may serve as an efficient implementation of SWT based
on bandlimited wavelets and may also find application in image
compression.
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