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ABSTRACT

In this paper, we generalize the Hadamard transform to the the
case of lapped transform. A matrixA(z) is a lapped Hadamard
transform if it satisfiesAT (z−1)A(z) = αI for some integerα
and all the entries of its coefficient matrices are±1. Many meth-
ods have been proposed to construct lapped Hadamard matrices.
In this paper, we will study these matrices using the theory of pa-
raunitary filter bank. This approach not only greatly simplifies
the analysis of lapped Hadamard transform but also gives rise to
new construction methods that can generate a much wider class of
lapped Hadamard matrices.

1. INTRODUCTION

Hadamard transform has found many applications in various areas
of signal processing. AnM × M constant matrixH is called a
Hadamard transform if

HT H = MI,

and all its entrieshij ∈ {+1, −1}. In [1] the author showed that if
anM ×M Hadamard matrix exists, thenM = 2 or M is a multi-
ple of 4. It was widely conjectured that this is also a sufficient con-
dition. In the past, many methods have been introduced for their
constructions [2]. This paper studies lapped Hadamard transforms.
A causalM ×M polynomial matrixA(z) =

PN−1
k=0 a(k)z−k is

called a lapped Hadamard transform if all the entries of theM by
M matricesa(k) are±1 andA(z) satisfies

AT (z−1)A(z) = MNI.

When A(z) is a constant matrix independent ofz, the lapped
Hadamard matrix reduces to a Hadamard matrix. Matrices satis-
fying the above expression are also known as paraunitary matrices
[3]. In frequency domain,A(ejω) is unitary for all frequenciesω.
In other words, lapped Hadamard transforms are the special class
of paraunitary matrices whose coefficient matrices are antipodal.
These matrices are closely related to complementary sequences
[4][5]. When a lapped Hadamard matrixA(z) and its inverse
AT (z−1) are used as the analysis and synthesis polyphase ma-
trices of a filter bank, we have a paraunitary filter bank [3] where
all the filter coefficients are±1.
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Recently it has been demonstrated in [6] [7] that lapped Hadamard
transforms have many potential applications in synchronous spread
spectrum communication and CDMA. In the past, many construc-
tion methods for lapped Hadamard matrices have been proposed
[4][5][6][8][9][10]. In [8] [9], it is shown that we can construct2×
2 lapped Hadamard transforms by cascading2× 2 Hadamard ma-
trices and diagonal matrices with delay elements. Such a method is
generalized to theM×M case in [6] [10]. In [4], the authors show
that a2×2 lapped Hadamard matrix can be constructed from a pair
of Golay sequences [11] and vice versa. In [5], the authors show
how to construct larger lapped Hadamard matrices from smaller
lapped Hadamard matrices. Except [6], all the construction meth-
ods are derived using a time-domain approach, which often in-
volves complicated expressions.

In this paper, we apply the theory of paraunitary matrices to
the study of lapped Hadamard matrices. All the derivations will
be done using az-domain approach. This approach not only gives
a compact description of the previous results, but also enable us
to generalize previous methods. Moreover we will introduce some
new methods for the construction of lapped Hadamard matrices.
The new methods enable us to generate a much wider class of
lapped Hadamard matrices.

2. DEFINITIONS AND PRELIMINARIES

In this section, we will describe a number of tools that will be use-
ful for later discussions. Consider the polynomial matrixA(z) =PN−1

n=0 a(n)z−n with nonzeroa(0) anda(N − 1). The constant
matricesa(n) are the coefficient matrices. The numbersN and
(N − 1) are respectively the length and the order ofA(z). All
matrices studied in this paper are square matrices. The tilde of
A(z) is defined as eA(z) = AT (z−1).

Using the tilde notation, anM ×M matrixA(z) is paraunitary
(PU) if eA(z)A(z) = cI, for some nonzero constant c. (1)

When all the entries of all the nonzero coefficient matricesa(n)
are±1, thenA(z) will be called anantipodal (AP) matrix. A PU
AP matrix will be called a lapped Hadamard matrix.

Let A(z) andB(z) be twoM ×M AP matrices with lengths
Na andNb respectively. In general, the AP property is not pre-
served by additions and multiplications. However it can be verified
that the following two matrices are AP:

A(z)B(zNa), A(z) + z−NaB(z).
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Moreover if A(z) and B(z) have the same length, the matrix
A(z2)+z−1B(z2) will also be AP. These AP-property preserving
operations will be useful in understanding of many construction
methods described later.

Kronecker product will be useful for the construction of larger
lapped Hadamard matrices from smaller lapped Hadamard matri-
ces. Given two square matricesA(z) andB(z) with dimensions
Ma andMb respectively, their Kronecker productA(z) ⊗ B(z)
is defined as (we have dropped the argumentz for notational sim-
plicity)0BBB@

A00B A01B · · · A0,M−1B
A10B A11B · · · A1,M−1B

...
...

. . .
...

AM−1,0B AM−1,1B · · · AM−1,M−1B

1CCCA ,

whereAij(z) is theijth element ofA(z). Note thatA(z)⊗B(z)
is anMaMb×MaMb matrix. Moreover if the lengths ofA(z) and
B(z) areNa andNb respectively, then the length ofA(z)⊗B(z)
will be Na +Nb−1. One can verify that the tilde ofA(z)⊗B(z)

is equal toeA(z)⊗ eB(z). Let the dimensions of the matricesA, B,
C andD be so that all the matrix multiplications in the following
expression are defined. Then the product rule states that

(A⊗B)(C⊗D) = (AC)⊗ (BD).

Using the product rule, one can immediately show that given two
PU matricesA(z) andB(z) (not necessarily of the same dimen-
sions), their Kronecker productA(z)⊗B(z) is also PU.

3. EXISTING CONSTRUCTION METHODS

In this section, we will review come existing construction meth-
ods for lapped Hadamard matrices. Though many of these meth-
ods were originally derived using time-domain sequences, we will
adopt thez-domain expression as it gives a more compact expres-
sion. Moreover, we will use the theory of PU matrices to explain
these methods.

It was shown in [4] that2×2 lapped Hadamard transforms are
closely related to complementary sequences, or more commonly
known as Golay sequences. A pair of AP sequencesAi(z) =PN−1

n=0 ai(n)z−n (i = 0, 1) are complementary if they satisfy [11]

A0(z) eA0(z) + A1(z) eA1(z) = 2N.

Using these sequences, we form

E(z) =

�
A0(z) −z−N+1 eA1(z)

A1(z) z−N+1 eA0(z)

�
.

One can verify by direct multiplication thateE(z)E(z) = 2NI;
the matrixE(z) is a lapped Hadamard matrix. Though comple-
mentary sequences can be generalized to the case ofM sequences
[5], unfortunately there is no known method to constructM ×M
lapped Hadamard matrices fromM complementary sequences.

In [8] [9] [6] [10] , it was shown that lapped Hadamard trans-
forms can be constructed from Hadamard matrices. LetM be such
that Hadamard matrices exist and letHk be Hadamard matrices.
Let E0(z) = H0. Consider the followingM ×M matrices:

Ek+1(z) = HkΛ(zMk

)Ek(z), for k = 0, 1, . . . , (2)

whereΛ(z) is the diagonal matrix

Λ(z) = diag[1, z−1, . . . , z−M+1].

As bothHk andΛ(z) are PU (1), so are their products. Hence
Ek(z) are PU for allk. Moreover it is not difficult to verify that
all the coefficient matrices inEk(z) have±1 as their entries. Thus
Ek(z) are lapped Hadamard transforms. Note that the length of
the lapped Hadamard matrixEk(z) is Mk. For moderate numbers
M andk, the length ofEk(z) becomes very large.

In [5], several algorithms were given for the construction of
larger lapped Hadamard matrices from smaller lapped Hadamard
matrices. LetA(z) be anM ×M lapped Hadamard matrix with
lengthN . Then consider the following two2M × 2M matrices

E0(z) =

�
A(z2) + z−1A(z2) −A(z2) + z−1A(z2)
−A(z2) + z−1A(z2) A(z2) + z−1A(z2)

�
.

(3)

E1(z) =

�
A(z) + z−NA(z) −A(z) + z−NA(z)
−A(z) + z−NA(z) A(z) + z−NA(z)

�
. (4)

Clearly bothEi(z) are AP matrices with length2N . Using the
paraunitariness ofA(z), one can verify by direct multiplication
thatEi(z) are also PU. ThusEi(z) are lapped Hadamard matri-
ces. The matricesE0(z) andE1(z) can be viewed as “interlaced”
and “cascade” versions ofA(z) respectively. By repeatedly ap-
plying the above methods, starting from a2× 2 lapped Hadamard
transform, one can generate2k × 2k lapped Hadamard transforms
for all integerk.

It was also shown in [5] that we can construct lapped Hadamard
matrices by applying the Kronecker product. LetH be anMh ×
Mh Hadamard matrix andA(z) be anMa×Ma lapped Hadamard
matrix with lengthNa. Form the followingMhMa×MhMa ma-
trix

E(z) = H⊗A(z). (5)

It is clearly an AP matrix. As the Kronecker product of PU matri-
ces is also PU,E(z) is a lapped Hadamard matrix of lengthNa.
Though it was not mentioned in [5], one can verify thatA(z)⊗H
is also a lapped Hadamard matrix.

4. NEW RESULTS

In the following, we will first generalize the results in (3), (4) and
(5). Then two new construction methods will be given.

Let A(z) andB(z) be lapped Hadamard matrices with the
same dimensionM and the same lengthNa. Then one can gener-
alize the result in (3) by constructing the matrix

E0(z) =

�
A(z2) + z−1B(z2) −A(z2) + z−1B(z2)
−A(z2) + z−1B(z2) A(z2) + z−1B(z2)

�
.

It is not difficult to verify by direct multiplication that the above
E0(z) is a lapped Hadamard matrix with length2Na. Let C(z)
be anotherM×M lapped Hadamard matrix with lengthNc. Then
one can verify that the following matrix is a lapped Hadamard
transform with length(Na + Nc).

E1(z) =

�
A(z) + z−NaC(z) −A(z) + z−NaC(z)
−A(z) + z−NaC(z) A(z) + z−NaC(z)

�
.

The above result can be viewed as a generalization of (4).
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One can also generalize (5) by taking the Kronecker product
of two lapped Hadamard matrices. However special care has to be
taken so that the AP property of these matrices is not destroyed.
Let B(z) andC(z) be lapped Hadamard matrices of dimensions
Mb andMc respectively. LetNb andNc be their lengths respec-
tively. Then one can show that the resulting matrices of the follow-
ing two Kronecker products are lapped Hadamard matrices with
length(Nb + Nc − 1) and dimensionMbMc.

E0(z) = B(zNc)⊗C(z) (6)

E1(z) = B(z)⊗C(zNb) (7)

The above seemingly simple generalization of the Kronecker prod-
uct method includes (3), (4) and (5) as special cases. To see this,
let

B(z) =

�
1 + z−1 −1 + z−1

−1 + z−1 1 + z−1

�
, and C(z) = A(z).

Then (6) and (7) reduce respectively to (3) and (4).

Construction Method Using the Agayan-Sarukhanyan Multi-
plication Theorem: By taking the Kronecker product of two ma-
trices with dimensionsMa andMb, we will get a matrix of dimen-
sionMaMb. In [2], it was shown that we can reduce the dimension
using the elegant multiplication theorem of Agayan-Sarukhanyan.
It was shown that given two Hadamard matrices of dimensions
Ma andMb, one can construct a Hadamard matrix of dimension
MaMb/2. WIt turns out that we can also apply the multiplica-
tion theorem of Agayan-Sarukhanyan to the construction of lapped
Hadamard matrices. LetA(z) andB(z) be lapped Hadamard ma-
trices of dimensionsMa andMb respectively. Suppose that their
lengths areNa andNb respectively. Consider the following parti-
tions:

A(z) =

�
A00(z) A01(z)
A10(z) A11(z)

�
, B(z) =

�
B00(z) B01(z)
B10(z) B11(z)

�
,

whereAij(z) andBij(z) areMa/2×Ma/2 andMb/2×Mb/2
matrices respectively. This partition is always possible asMa and
Mb are even (see the remark at the end of this section for a proof).
Form the followingMaMb

2
× MaMb

2
matrix with length(NaNb):

C(z) =

�
C00(z) C01(z)
C10(z) C11(z)

�
,

where the submatrices are given by

C00(z) = 1
2
(A00(z

Nb) + A01(z
Nb))⊗B00(z) +

1
2
(A00(z

Nb)−A01(z
Nb))⊗B10(z),

C01(z) = 1
2
(A00(z

Nb) + A01)(z
Nb)⊗B01(z) +

1
2
(A00(z

Nb)−A01(z
Nb))⊗B11(z),

C10(z) = 1
2
(A10(z

Nb) + A11(z
Nb))⊗B00(z) +

1
2
(A10(z

Nb)−A11(z
Nb))⊗B10(z),

C11(z) = 1
2
(A10(z

Nb) + A11(z
Nb))⊗B01(z) +

1
2
(A10(z

Nb)−A11(z
Nb))⊗B11(z).

The matrixC(z), formed in such a manner, is called the Agayan-
Sarukhanyan multiplication ofA(zNb) andB(z), denoted as

C(z) = A(zNb)⊗AS B(z).

One can verify that allCij(z) are AP matrices of the same length
and henceC(z) is an AP matrix. Applying the PU properties
of A(z) andB(z), one can show thateC(z)C(z) = αI, where
α = 1

4
M2

aM2
b NaNb. HenceC(z) is a lapped Hadamard matrix.

Clearly, one can verify thatA(z) ⊗AS B(zNa), whereNa is the
length ofA(z), is also a lapped Hadamard transform. Note that
when one of the matrices, sayA(z), has dimensionMa = 2, then
the dimension ofC(z) will be Mb. Using this method, one can
generate lapped Hadamard matrix with length2k for any integer
k. Let M be such that Hadamard matricesH of dimensionM
exist. Let

E1(z) =

�
1 + z−1 −1 + z−1

−1 + z−1 1 + z−1

�
⊗AS H.

ClearlyE1(z) is anM × M lapped Hadamard matrix of length
21. Fork ≥ 1, we carry out the following iterations:

Ek+1(z) =

 
1 + z−2k −1 + z−2k

−1 + z−2k

1 + z−2k

!
⊗AS Ek(z).

Clearly allEk(z) areM×M PU matrices as the Agayan-Sarukhanyan
multiplication preserves the PU property. MoreoverEk(z) are
AP matrices with length2k. HenceEk(z) areM × M lapped
Hadamard matrices with length2k. Comparing our results with
(2), we see that the matrices constructed using (2) have length
equal toMk whereas our matrices have length2k.

Butterfly Structure Method: LetM be a number such that Hadamard
matrices exist. From [1], we know thatM is either 2 or a multiple
of 4. Define the following twoM ×M matrices:

BM = IM/2 ⊗
�

1 1
1 −1

�
,

�(z) = diag[1 z−1 1 z−1 · · · 1 z−1].

Let E0(z) = H, anM × M Hadamard matrix. Fork ≥ 0, we
form

Ek+1(z) = BM�(z2k

)PkEk(z), (8)

wherePk areM ×M permutation matrices. It is clear thatEk(z)
are PU. Moreover they are also AP matrices due to the insertion of
delay elements in�(z). The length ofEk(z) is 2k. For example,
Fig. 1 shows the implementation ofEk(z) for k = 2 andM =
4. Note that the butterfly structure has an additional advantage
of low complexity. The computational cost for adding one stage
is M additions. Note that whenM is a power of two,H can
also be realized usinglog2 M stages of the butterflies [12]. To
implement a lapped Hadamard matrix of length2k, we only need
(k + log2 M)M additions.
Connection Between the Butterfly Structure Method and (2):When
the number of channelsM is a power of two, we can show that
the butterfly structure method includes (2) as a special case. We
demonstrate this for the caseM = 8. To do this, we need to
show thatHΛ(z) in (2) can be expressed as a product of matri-
ces of the formB8�(z)P as in (8). It is well-known [12] that the
8× 8 Hadamard matrix can be implemented efficiently the butter-
flies. Using such an efficient structure, we can implementHΛ(z)
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Figure 1: A4× 4 lapped Hadamard matrixE2(z) constructed by
the butterfly method.

as in Fig. 2(a). After moving some delay elements to the right of
the butterflies, we can redraw Fig. 2(a) as Fig. 2(b). Note that
each stage (indicated by the box) in Fig. 2(a) can be described by

B8�(z2i

)Pi by choosing the permutation matrixPi properly.

Figure 2: (a) An implementation ofHΛ(z). (b) An equivalent
system.

Remark: It was known [1] that Hadamard matricesH exist only
for dimensions of 2 or a multiple of 4. Whether this is also a
necessary condition for the existence of lapped Hadamard ma-
trices is still unknown. But it is easy to see that the dimension
of lapped Hadamard matrices has to be even. Too see this, let
A(z) =

PN−1
n=0 a(n)z−n be anM ×M lapped Hadamard trans-

form. The PU property ofA(z) (defined in (1)) implies that

aT (N − 1)a(0) = 0.

As a(n) are AP matrices, the above equation implies that the di-
mensionM is even.

5. CONCLUSIONS

In this paper, we have studied lapped Hadamard matrices. The the-
ory of PU matrices was applied to analysis and synthesize these

matrices. Using such an approach, we can not only prove all pre-
vious construction methods in a simple manner but also generalize
their results. New methods that can generate a much wider class of
lapped Hadamard matrices are also introduced. One can generalize
the definition of lapped Hadamard matrix to the complex case. An
M ×M matrix A(z) =

PN−1
n=0 a(n)z−n is a lapped Hadamard

matrix if all the entries of the coefficient matrices have unit mag-
nitude andA†(1/z∗)A(z) = MNI, where∗ and † denote the
complex conjugate and transpose conjugate respectively. It can be
verified that except the method using Agayan-Sarukhanyan multi-
plication theorem, all the methods described in this paper can be
modified for the construction of complex lapped Hadamard matri-
ces.
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