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ABSTRACT Recently it has been demonstrated in [6] [7] that lapped Hadamard
. ) transforms have many potential applications in synchronous spread
In this paper, we generalize the I_—|adar_nard transform to the thespectrum communication and CDMA. In the past, many construc-
case of lapped transform. élmatrA(z) is a lapped Hadamard o methods for lapped Hadamard matrices have been proposed
transform if it satisfiesA™ (=~ )A(z) = ol for some integerv 4 115116]8][9][10]. In [8] [9], it is shown that we can construatx
and all the entries of its coefficient matrices aré. Many meth- 2 lapped Hadamard transforms by cascading2 Hadamard ma-
ods have been proposed to construct lapped Hadamard matrice§yiceg and diagonal matrices with delay elements. Such a method is

In this paper, we will study these matrices using the theory of pa- generajized to thas x M case in [6] [10]. In [4], the authors show
raunitary filter bank. This approach not only greatly simplifies 4t 2« 2 Japped Hadamard matrix can be constructed from a pair
the analysis o_f lapped Hadamard transform but also gives rise o Golay sequences [11] and vice versa. In [5], the authors show
new construction methqu that can generate a much wider class OBOW to construct larger lapped Hadamard matrices from smaller
lapped Hadamard matrices. lapped Hadamard matrices. Except [6], all the construction meth-
ods are derived using a time-domain approach, which often in-
1. INTRODUCTION volves complicated expressions.
In this paper, we apply the theory of paraunitary matrices to
Hadamard transform has found many applications in various areasghe study of lapped Hadamard matrices. All the derivations will
of signal processing. A/ x M constant matrixH is called a be done using a-domain approach. This approach not only gives
Hadamard transform if a compact description of the previous results, but also enable us
to generalize previous methods. Moreover we will introduce some
H H = MI, new methods for the construction of lapped Hadamard matrices.
The new methods enable us to generate a much wider class of
and allits entrieg;; € {+1, —1}. In[1] the author showed thatif  |apped Hadamard matrices.
anM x M Hadamard matrix exists, thew = 2 or M is a multi-
ple of 4. It was widely conjectured that this is also a sufficient con- 2. DEEINITIONS AND PRELIMINARIES
dition. In the past, many methods have been introduced for their ’

constructions [2]. This paper studies lapped Hadamard transforms,, this section, we will describe a number of tools that will be use-

. . N-1 —k;
A (I:IalésallM X é\/f p?jlynom(ljal matfrle(_;;) Tth:O ?(k)?]\thdals ful for later discussions. Consider the polynomial matixz) =
called a lapped Hadamard transform if all the entries o y Zf;ol a(n)z~" with nonzeroa(0) anda(N — 1). The constant

M matricesa(k) are+1 and A (z) satisfies matricesa(n) are the coefficient matrices. The numbérsand

(N — 1) are respectively the length and the orderfofz). All
matrices studied in this paper are square matrices. The tilde of
A(z) is defined as

AT(z"HA(z) = MNL

When A(z) is a constant matrix independent of the lapped

Hadamard matrix reduces to a Hadamard matrix. Matrices satis- g(z) =AT(zY).
fying the above expression are also known as paraunitary matrices ) ] ] ) )
[3]. In frequency domainA (¢’“) is unitary for all frequencies. Using the tilde notation, an/ x M matrix A(z) is paraunitary

In other words, lapped Hadamard transforms are the special clasgPU) if

of paraunitary matrices whose coefficient matrices are antipodal.

These matrices are closely related to complementary sequences

[4][5]. When a lapped Hadamard matri&(z) and its inverse When all the entries of all the nonzero coefficient matriaés)

AT(z71) are used as the analysis and synthesis polyphase maare=1, thenA (z) will be called anantipodal (AP) matrix. A PU

trices of a filter bank, we have a paraunitary filter bank [3] where AP matrix will be called a lapped Hadamard matrix.

all the filter coefficients are-1. Let A(z) andB(z) be twoM x M AP matrices with lengths

N, and N, respectively. In general, the AP property is not pre-
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Moreover if A(z) and B(z) have the same length, the matrix
A(2%)+2"'B(2%) will also be AP. These AP-property preserving
operations will be useful in understanding of many construction
methods described later.

Kronecker product will be useful for the construction of larger

lapped Hadamard matrices from smaller lapped Hadamard matri-

ces. Given two square matricés(z) andB(z) with dimensions
M, and M, respectively, their Kronecker produgt(z) @ B(z)
is defined as (we have dropped the argumefarr notational sim-

plicity)

AgpB AnB Ao, B
Ai0B A1B A1, m—1B
Av-10B Am-11B Ary-1,m-1B

whereA;;(z) is theijth element ofA (z). Note thatA (z) @ B(z)

is anM, My, x M, M, matrix. Moreover if the lengths oA (z) and
B(z) are N, and N, respectively, then the length #{(z) @ B(z)
will be N, + N, — 1. One can verify that the tilde A& (z) @ B(z)

is equal toA (z) @ B(z). Let the dimensions of the matricas B,

C andD be so that all the matrix multiplications in the following
expression are defined. Then the product rule states that

(A ®B)(C®D) = (AC) @ (BD).

Using the product rule, one can immediately show that given two
PU matricesA (z) andB(z) (not necessarily of the same dimen-
sions), their Kronecker produ# (z) ® B(z) is also PU.

3. EXISTING CONSTRUCTION METHODS

In this section, we will review come existing construction meth-

ods for lapped Hadamard matrices. Though many of these meth-

ods were originally derived using time-domain sequences, we will

whereA(z) is the diagonal matrix

A(2) = diag[1,z"", ...,z M.

As bothH; and A(z) are PU (1), so are their products. Hence
E(z) are PU for allk. Moreover it is not difficult to verify that

all the coefficient matrices iR (z) havet1 as their entries. Thus
E,(z) are lapped Hadamard transforms. Note that the length of
the lapped Hadamard matd, (z) is M*. For moderate numbers
M andk, the length ofE, (z) becomes very large.

In [5], several algorithms were given for the construction of
larger lapped Hadamard matrices from smaller lapped Hadamard
matrices. LetA(z) be anM x M lapped Hadamard matrix with
length N. Then consider the following twBM x 20 matrices

A(z2g + zflA(z?

Eo(2) <—A 22) 4+ 27 A(Z?)

~A() + z*1A<z2>>

A(Z?) + 27 A(Z?) ('3)
_ (AR +2VAR) —AG) 2 NAG)

Bu(e) = <*A(z)+z*NA(z) A(z)+z*NA(Z>>' @

Clearly bothE;(z) are AP matrices with lengtBN. Using the
paraunitariness oA (z), one can verify by direct multiplication
thatE;(z) are also PU. Thu;(z) are lapped Hadamard matri-
ces. The matriceE(z) andE (z) can be viewed as “interlaced”
and “cascade” versions di(z) respectively. By repeatedly ap-
plying the above methods, starting from 2 lapped Hadamard
transform, one can generate x 2 lapped Hadamard transforms
for all integerk.

It was also shown in [5] that we can construct lapped Hadamard
matrices by applying the Kronecker product. [tbe ani/;, x
M), Hadamard matrix and (z) be anM, x M, lapped Hadamard
matrix with lengthN,. Form the followingM;, M, x My M, ma-
trix

E(z) = H® A(2). (5)

adopt thez-domain expression as it gives a more Compact expres- Itis Clearly an AP matrix. As the Kronecker prOdUCt of PU matri-

sion. Moreover, we will use the theory of PU matrices to explain
these methods.
It was shown in [4] tha? x 2 lapped Hadamard transforms are

ces is also PUE(z) is a lapped Hadamard matrix of lengh, .
Though it was not mentioned in [5], one can verify thafz) © H
is also a lapped Hadamard matrix.

closely related to complementary sequences, or more commonly

known as Golay sequences. A pair of AP sequendgs) =
SN ) ai(n)z~" (i = 0, 1) are complementary if they satisfy [11]

Ao(2)Ao(2) + A1(2) AL (2) = 2N.

Using these sequences, we form

20 = (100 Tonas)

One can verify by direct multiplication thd(2)E(z) = 2NTI;
the matrixE(z) is a lapped Hadamard matrix. Though comple-
mentary sequences can be generalized to the cagesgfquences
[5], unfortunately there is no known method to constriittx M
lapped Hadamard matrices frali complementary sequences.

In [8] [9] [6] [10] , it was shown that lapped Hadamard trans-
forms can be constructed from Hadamard matrices M dte such
that Hadamard matrices exist and Kj, be Hadamard matrices.
Let Eq(z) = Hy. Consider the following\/ x M matrices:

Epii(2) = HiAGY)E(2), fork=0,1,..., (2)

4. NEW RESULTS

In the following, we will first generalize the results in (3), (4) and
(5). Then two new construction methods will be given.

Let A(z) andB(z) be lapped Hadamard matrices with the
same dimensio/ and the same lengtN,,. Then one can gener-
alize the result in (3) by constructing the matrix

< A+ 27'B(2?)
—A(Z)) + 27 'B(2?)

Eo(2) A(%)+ 2 B(2)

—A() + z_lB(22)>

It is not difficult to verify by direct multiplication that the above
Eo(z) is a lapped Hadamard matrix with leng?tv,. Let C(z)

be anotheM x M lapped Hadamard matrix with lengfii.. Then
one can verify that the following matrix is a lapped Hadamard
transform with lengti NV, + N¢).

A(z) + 27 NC(2)

Ei(2) = <*A(z) AEA ~A(2) + Z—Nac(z>> .

A(2) + 27N C(2)

The above result can be viewed as a generalization of (4).
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One can also generalize (5) by taking the Kronecker product The matrixC(z), formed in such a manner, is called the Agayan-
of two lapped Hadamard matrices. However special care has to beSarukhanyan multiplication oA (z™*) andB(z), denoted as
taken so that the AP property of these matrices is not destroyed.
Let B(z) andC(z) be lapped Hadamard matrices of dimensions C(2) = A(z™) ®as B(2).
M, and M, respectively. LetV, and N. be their lengths respec-
tively. Then one can show that the resulting matrices of the follow-
ing two Kronecker products are lapped Hadamard matrices with

One can verify that alC;; (z) are AP matrices of the same length
and henceC(z) is an AP matrix. Applying the PU properties

length(Ny, + N, — 1) and dimension\/, M. of A(z) andB(z), one can show thal(2)C(z) = ol, where
a = $M;M; N.Ny. HenceC(z) is a lapped Hadamard matrix.
Eo(z) = B(2") ® C(2) (6) Clearly, one can verify thaA (z) ® 45 B(2"*), whereN, is the
length of A(z), is also a lapped Hadamard transform. Note that
Ei(z) = B(2) ® C(z™) (7) when one of the matrices, s#/(z), has dimensioi/,, = 2, then

The above seemingly simple generalization of the Kronecker prod- the dimension ofC(z) will be M,. Using this method, one can

uct method includes (3), (4) and (5) as special cases. To see thisdenerate lapped Hadamard matrix with ‘Iengfhfor_ any integer
let k. Let M be such that Hadamard matrickk of dimension\/

exist. Let

14271 14271

B(z) = (_1_'_2,1 Lgot ) , and C(z) = A(z2). 14278 14271

Ei(z) = (71+271 14 o1 > ®as H.

ClearlyE1(z) is anM x M lapped Hadamard matrix of length
2%, Fork > 1, we carry out the following iterations:

Then (6) and (7) reduce respectively to (3) and (4).

Construction Method Using the Agayan-Sarukhanyan Multi-
plication Theorem: By taking the Kronecker product of two ma- ( 14 ok 14 ok
z — z

trices with dimensiond/, andM,, we will get a matrix of dimen- Epii(z) = . .
14272 14272

) ®as Ex(2).

sionM, My. In [2], it was shown that we can reduce the dimension
using the elegant multiplication theorem of Agayan-Sarukhanyan. )
It was shown that given two Hadamard matrices of dimensions Clearly allEx (z) areM x M PU matrices as the Agayan-Sarukhanyan
M, and M, one can construct a Hadamard matrix of dimension Multiplication preserves ,Ehe PU property. Moreotgy(z) are

M, M,/2. WIt turns out that we can also apply the multiplica- AP matrices with lengtt2”. HenceEy(z) are M x M lapped

tion theorem of Agayan-Sarukhanyan to the construction of lapped Hadamard matrices with I_engm’“. Comparing our results with
Hadamard matrices. Leét(z) andB(z) be lapped Hadamard ma- (2), we seE that the matrices constructed using (2) have length
trices of dimensiong/, and M, respectively. Suppose that their €dual toM ™ whereas our matrices have length

lengths areV, and N, respectively. Consider the following parti-

tions: Butterfly Structure Method: Let M be a number such that Hadamard

matrices exist. From [1], we know that is either 2 or a multiple
Alz) = Aoo(z) Aoi(z) B(z) = Boo(z) Boi(z) of 4. Define the following twal/ x M matrices:
Z)= Ap(z) An(z))’ 2= Bio(z) Bii(z))’

1
= Iy
whereA ;(z) andB,;(z) areM, /2 x M, /2 andM,/2 x M, /2 By M/2® (1 —1) ?
matrices respectively. This partition is always possibld&sand 0 — diagll 21 27V .1 ot
M, are even (see the remark at the end of this section for a proof). (2) tag[l z : an
Form the following™e™e x MaMb matrix with length(Na N ): Let Eo(2) = H, anM x M Hadamard matrix. Fok > 0, we
form )
) = (goo(z) 801(2)) : Eit1(2) = Bu6(=" )PLEx(2), ®
10(2)  Cu(2) whereP, areM x M permutation matrices. It is clear thf (z)
where the submatrices are given by are PU. Moreover they are also AP matrices due to the insertion of
delay elements i#(z). The length ofEx(z) is 2°. For example,
Coo(z) =  $(Ac0(2™*) + Ap1(2™?)) @ Boo(z) + Fig. 1 shows the implementation & (z) for k = 2 andM =
%(Aoo(sz) . A01(sz)) © Bio(2), 4. Note that the butterfly structure has an additional advantage

of low complexity. The computational cost for adding one stage
is M additions. Note that whed/ is a power of two,H can

Coi(2) = 1(Aoo(2™") + Ao1)(2™") © Bou(2) + also be realized usinlpg, M stages of the butterflies [12]. To
| Ny N, implement a lapped Hadamard matrix of length we only need
2(Aoo(z™") — Aor(27")) ® Bu(2), (k + log, M)M additions.
Connection Between the Butterfly Structure Method andijen
C — l(A Noy 4 A Ny B the number of channeld/ is a power of two, we can show that
10(2) 21( 10( N) +Au(e N)) ® Boo(2) + the butterfly structure method includes (2) as a special case. We
5(A10(2™") — A11(27?)) ® B1o(2), demonstrate this for the casd = 8. To do this, we need to

show thatHA(z) in (2) can be expressed as a product of matri-
N N ces of the formBs0(z)P as in (8). It is well-known [12] that the
A1o(27?) + A1 (7)) @ Boi (2) + 8 x 8 Hadamard matrix can be implemented efficiently the butter-
1

Cu(z) = 5(
3(A10(z"") — A1 (2™)) ® Bui(2). flies. Using such an efficient structure, we can implentdnt(z)
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— - . ) matrices. Using such an approach, we can not only prove all pre-
_ N f >< < vious construction methods in a simple manner but also generalize
H P, ! P, - their results. New methods that can generate a much wider class of
7 7 o1 >< 22 lapped Hadamard matrices are also introduced. One can generalize
o oy » = the definition of lapped Hadamard matrix to the complex case. An

e

0(z) By 0(z2) B,

M x M matrix A(z) = Zg;ol a(n)z~" is a lapped Hadamard
matrix if all the entries of the coefficient matrices have unit mag-

_ nitude andAf(1/2*)A(z) = M NI, where* and denote the
Figure 1: A4 x 4 lapped Hadamard matri, (z) constructed by complex conjugate and transpose conjugate respectively. It can be
the butterfly method. verified that except the method using Agayan-Sarukhanyan multi-
plication theorem, all the methods described in this paper can be

N . ) modified for the construction of complex lapped Hadamard matri-
as in Fig. 2(a). After moving some delay elements to the right of

the butterflies, we can redraw Fig. 2(a) as Fig. 2(b). Note that Aqnowledgementie would like to thank Prof. S. C. Pei at the
each stage (indicated by the box) in Fig. 2(a) can be described bypenartment of Electrical Engineering, National Taiwan University

Bs@(z*")P; by choosing the permutation mati; properly. for bringing our attention to the results on Hadamard matrices with
non power-of-two dimensions.
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