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ABSTRACT

In this paper, we first present an alternative way of generating over-
sampled linear phase perfect reconstruction filter banks (OSLP-
PRFB). We show that this method provides the minimal factoriza-
tion of a subset of existing OSLPPRFB. The combination of the
new structure and the conventional one leads to efficient imple-
mentations of a general class of OSLPPRFB. Possible application
of the new scheme is discussed.

1. INTRODUCTION

Oversampled filter bank (OSFB) has received growing attentions
recently due to its design flexibility and improved noise resistance
and noise shaping capabilities. For applications in image and video
processing, linear phase is always a desired property. The neces-
sary conditions on the number of symmetric filters N and anti-
symmetric filters IV, for the existence of oversampled linear-phase
paraunitary filter banks were first studied in [1]. The lattice struc-
ture factorizations for systems with either Ny = N, or Ny =
N, + 1 were also developed, based on the result of critically sam-
pled LPPUFB [2]. In [3, 4, 5], the lattice structure in [1] was gen-
eralized to perfect reconstruction case. In particular, a thorough
study of the necessary conditions, lattice structures, and parame-
terizations of OSLPPRFB was presented in [4, 5]. The necessary
conditions derived in them are tighter than those in [1], and lattice
structures for arbitrary feasible N and N, were proposed. Com-
pleteness of the structure for certain subsets is also proved.

Minimality is another important issue to be considered in lat-
tice factorization. A structure is said to be minimal if it uses the
fewest number of delay units to implement a given filter bank [6].
A minimal structure is always preferred in practice since it has
lower complexity than a non-minimal one. Although the minimal
factorization for critically sampled linear phase perfect reconstruc-
tion filter banks has been well known [2], it is still an open prob-
lem for oversampled systems. The lattice factorization family in
[1, 3, 4, 5] is not minimal for certain filter banks, as observed in
[5].

Existing lattice structure generates oversampled systems by
first expanding the input data block, and then applying various
stages of postprocessing. In this paper, we present an alternative
method by applying a postprocessing to a critically sampled LP-
PRFB. We show that this method leads to the minimal factoriza-
tion of a subset of the lattice structure in [5]. We then generalize
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the idea and present an efficient lattice structure for the family of
OSLPPRFB given in [5]. The new structure contains both pre- and
postprocessing of a rectangular core transform, and can be viewed
as a natural generalization of the pre- and postprocessing-based
lattice structure for critically sampled linear phase FB in [7]. Pos-
sible application of the new structure in the robust transmission of
image and video over OFDM system is discussed.

Notations: Throughout the paper, vectors and matrices are
indicated by bold-faced letters. I,, J,, 0, denote n x n identity,
reversal identity and null matrices, respectively.

2. EXISTING LATTICE STRUCTURE

Consider a P-channel, K M -tap oversampled linear-phase perfect

reconstruction filter bank with Vg symmetric filters, N, anti-symmetric

filters, and a decimation factor of M (P > M). The lattice struc-
tures in [4, 5] for such a system can be summarized as
E(z) = Gr-1(2) Gr-2(2) --- G1(2) Eo(2), ()
where the size of G;(2) (¢ = 1,--- , K —1) and Eq(z) are P X P
and P x M, respectively.
For simplicity purpose, we focus on situations with P = 2p,
M = 2m, and Ny = N, = p, where p and m are integers. In this

case, the following choices of Eg(z) and G;(z) can cover a large
family of OSFB:

Eo(z) = Eo = diag(Uq, Vo) W, @
GZ(Z) = diag(Ip, Tl) Wp AP(Z) Wp,

where Ap(z) = diag(Ip, 2~ 1,) and

« V2 [ In JIn V21, I
WM - T Im _Jm ’ WP - T Ip _Ip ’

In (2), Up and V¢ are two p X m tall matrices that are left-
invertible, and T; in each building stage G;(z) is a p x p free
invertible matrix. The implementation is depicted in Fig. 1 (a).

It was observed in [5] that the above structure is not minimal
for some OSFB. In this paper, we will show when this situation
occurs and more importantly, the minimal lattice structure for such
kinds of OSFB.
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Fig. 1. (a) The existing structure of oversampled filter banks; (b)
Minimal factorization of a subset of (a).

3. AN ALTERNATIVE STRUCTURE

Recall that any linear combination of a group of symmetric (anti-
symmetric) filters is still symmetric (anti-symmetric) [2]. Suppose
Ay (2) is the polyphase matrix of an M -channel, K M -tap criti-
cally sampled LPPRFB. Define

M, = [M/2], My = | M/2]. 3)

It is shown in [2] that A (2) has M, symmetric filters and M,
anti-symmetric filters. Without loss of generality, we assume that
the first M, rows of Az(2) correspond to symmetric filters. We
can thus obtain an oversampled FB by applying a postprocessing
to A (z) as follows:

E(z) = diag(Uq, Vo) Aum(2), )

where Uy is an N; X M, left invertible matrix. It is applied to
the symmetric filters of A as(z) and N, symmetric filters can be
generated. Similarly, IV, anti-symmetric filters can be obtained
after applying the N, x M, left invertible matrix Vg to the anti-
symmetric filters of Aaz(2).

By applying the lattice structure of critically sampled LPPRFB
in [2, 8,9, 7], Eq. (4) leads to another implementation of OSFB.
In particular, when M = 2m, we can write

E(z) = Eo(2) Qx-1(2) Qx—2(2) - - Q1(2) Qo, (5
where Qo = diag(In, Jn) and

Eo(2) = Eo = diag(Uo, Vo) W, ©)

Qi(2) = Am(2) Wi diag(Lnm, Vi) Wy
Here A (z) = diag(Im, 2~ '1,,). The term V; is an m x m
invertible matrix. The corresponding lattice structure is given in
Fig. 1 (b).

Both (1) and (5) can generate P-channel, K M -tap OSFB, but
their approaches are different. In (1), an M x 1 data block is first
expanded into a P x 1 block. Various postprocessing stages are
then applied to the augmented block. In (5), an M-channel criti-
cally sampled FB is first generated before being expanded into a
P-channel oversampled system. The operations in the M -sample
block side can be viewed as preprocessing to the expander Eo.

Clearly, the complexity of (5) is lower than that of (1). Hence,
some immediate questions are: what is the relationship between
the two structures? Which gives better performance? How much
is the difference between them? These questions will be addressed
in this paper.

4. RELATIONSHIP OF THE TWO STRUCTURES

The following theorem shows that the OSFBs represented by (5)
belong to a subset of (1).

Theorem 1 The OSLPPRFB given by (5) and (6) with P = 2p,
M = 2m, and Ny = N, = p can always be factorized in terms
of (1) and (2).

Proof: First, notice that any p X m matrix Uy has the following
properties:

diag(Uo, Ug) W = Wp diag(Uo, Uy),

7
diag(Uo, Uo) AM(Z) = AP(Z) diag(Uo, Uo), ( )

i.e., the matrix diag(Uop, Up) commutes with the butterfly and the
delay chain, with appropriate adjustment of their sizes. To convert
(5) into (1), we need to find a p x p matrix T such that

diag(Uo, Vo) = diag(I,, T1)diag(Uo, Uo), (8

T Up = V. &)

Notice that for left-invertible Ug and Vg, we can always find

two px (p—m) matrices Up and Vo such that U S [Uo, I_J()] and

Vi [Vo, Vo] are invertible. We can thus choose T; = VU™,

which satisfies T1 U = V and therefore Ty Ug = V. This
allows us to write

Eo = diag(Uo, Vo) Wis
= diag(Ip, T1) diag(Ug, U()) W (10)
= diag(I,, T1) Wp diag(Uo, Up).

By (7), the term diag(Uo, Up) in (10) can be further moved across
A (z) and Wz (2) in Qi —1(2). Therefore

Eo Qk_1(2) = G1(2) diag(Uo, Uo Vik_1) W,  (11)

where
G1(z) = diag(I,, T1) Wp Ap(2) Wp. (12)

This shows that by moving the tall matrices into the lattice struc-
ture, we can turn the M x M preprocessing stage Qx—1(z) into
a P x P postprocessing stage G1(z).

Successively applying the procedure in (8) to (11), all M x M
stages Q;(z) can be converted into P x P stages G;(z). Finally
we can move diag(Uo, Up) into Q1(z). Let

Eo £ diag(Uo, UgV1)WunQo, (13)

a structure in the form of (1) can be obtained. W

Theorem 1 states that (5) covers a subset of (1). Clearly, for
OSFB in this subset, the implementation in (5) is preferred, since
it has lower complexity than (1) has. In fact, the structure in (5) is
the minimal factorization, since it uses the same number of delay
units as an M -channel, K M-tap critically sampled FB, and the
minimality of the latter has been well established [2].

An counter example was given in [5] to illustrate that (1) is
not minimal for some cases. However, no minimal solution was
found in [5]. It is easy to verify that our proposed structure in (5)
provides the minimal implementation of the example in [5].
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Fig. 2. Efficient implementation of the class of OSLPPRFB in (1).

5. EFFICIENT IMPLEMENTATION FOR GENERAL
CASE

Although an M x M preprocessing stage can always be converted
into a P x P postprocessing stage, the converse is true only in some
special cases. Consider the lattice given in (1) and (2). In order to
move diag(Uo, Up) into G1(z), we have to find an m x m matrix
'V such that

diag(Ug, Vo) = diag(Uo, Ug)diag(Ly, V1), (14)

ie.,
UopV; = V. (15)

Such a 'V exists if and only if Up and Vo span the same column
space. In this case, the structure can be simplified into

Gl(Z)Eo = diag(Uo, Ton)WMQl(z)QO, (16)

where
Q1(2) = Am(2)Wudiag(Im, Vi)W

If Up and T'1 Uy also span the same column space, we can extract
the term diag(Uop, Up) in (16) and further simplify the lattice.
This procedure can be repeated until Ug and T;Up do not have
the same column space foran¢ € [1,..., K —1].

This suggests the following efficient implementation of an OSFB
given by (1):

Theorem 2 When P = 2p, M = 2m, and Ny = N, = p, an
OSLPPRFB given by (1) can be implemented as

1

a7

Gi(2)Eo [] Q;(2)Qo,

i=Ko

where Ko + K1 = K — 1, and G;(z) and Q;(z) are given in (2)
and (6), respectively.

(18)

i=Kq

The structure is illustrated in Fig. 2. Theorem 2 reduces the com-
plexity by maximizing the number of preprocessing stages. As a
result, the number of delay units is reduced from (K — 1)p in (1)
to Kom + K1p. However, whether this structure is minimal or not
is still an open problem.

The results in Theorem 1 and Theorem 2 reveal the funda-
mental difference between oversampled FB and critically sampled
FB. For critically sampled system, it is shown in [7] that an FB of
given length can be implemented via both pre- and postprocessing
of a core transform. Moreover, the pre- and postprocessing stages
can be freely converted to each other without changing the com-
plexity of the implementation. Whereas in oversampled system,
although preprocessing stages can be converted into postprocess-
ing stages, the converse is not true in general. Moreover, a conver-
sion between pre- and postprocessing affects the complexity of the
structure.

6. DESIGN EXAMPLES

By Theorem 2, the OSFBs covered by (1) can be classified into
some subsets, according to the number of possible preprocessing
stages in their implementations. In this section, we compare the
performance of OSFBs in different subsets. The design criterion
is to minimize the stopband energy, which is given by

P-1

=3 [, (@I BEF) oy o

where H;(e*) and F(e?*) are the frequency responses of the i-th
analysis filter and synthesis filter, respectively, and €2; denotes the
stopband of the ¢-th subband. The choice of stopbands is similar
to that in [8].

Fig. 3 shows two 16-tap OSFBswith P =8, M =4, K =4,
and Ny = N, = 4. All free matrices are chosen to be orthogonal.
An n X n square orthogonal matrix is modeled by (g) rotation an-
gles, whereas an n x m (n > m) tall orthogonal matrix is modeled
by (g) - (”;m) rotation angles. Fig. 3 (a) gives the optimized re-
sult when there are three stages of 8 x 8 postprocessing. Fig. 3 (b)
corresponds to a structure with two stages of 4 x 4 preprocessing
and one stage of 8 x 8 postprocessing. The two structures involve
28 and 18 rotations, respectively. In addition, the second structure
also saves 8 butterflies by using preprocessing. Their stopband en-
ergy as defined in (19) are 0.84 and 1.14, respectively. Although
the first result has less stopband energy, Fig. 3 shows that their
worst stopband attenuations are quite close. Hence the structure
with preprocessing provides a fast approximation of the optimal
solution with satisfactory performance.

On the other hand, when there is only one postprocessing stage
and no preprocessing stage, an 8-tap OSFB is generated. It has 16
rotation angles, but the stopband energy increases to 2.31. This
also suggests that the structure with preprocessing is an economi-
cal way of boosting the system performance.

7. APPLICATION IN ERROR-RESILIENT DATA
TRANSMISSION OVER OFDM SYSTEM

Apart from the stopband energy, some other design criteria for
OSFB have been proposed. For example, to improve the robust-
ness of the system against data loss in transmission, the combina-
tion of coding gain and MSE of linear prediction was adopted in
[1], where the linear prediction was used to estimate the lost data
from the available subband coefficients.

Since the tall matrices Up and Vo in (5) are at the end of
the FB signal flow, the idea in the linearly precoded OFDM (LP-
OFDM) in [10] can be applied to take full advantage of the re-
dundancy such that small amount of data loss can be perfectly re-
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Fig. 3. Design examples of paraunitary OSFB with P = 8, M = 4, K = 4, and N, = N, = 4: (a) Optimized result with three stages of
postprocessing; (b) Optimized result with two stages of preprocessing and one stage of postprocessing.

covered. This method can be useful for transmission over OFDM-
based wireless communication systems, such as the wireless LAN.

The idea in LP-OFDM is to choose Up and V as special
Vandermonde matrices:

Uo(ia .7) :ag7 Vo(i, ]): ga (20)
where the two sets {a; } 1%, and {8; } /1%, contain distinct elements,
respectively. This guarantees that any M, rows of Ug and any M,
rows of Vg are nonsingular.

Suppose an M, X 1 vector x is obtained before Uy, then af-
ter the insertion of redundancy and transmission over the OFDM
system, the received signal can be written as

y =DUox +e, 1)

where e is the additive channel noise, and D is a Ny, x N, di-
agonal matrix containing the attenuation of the involved OFDM
subchannels.

If D is invertible, we can find the estimate X of x by

%= (Uj Uy 'Uj D y.

This is the best linear unbiased estimate (BLUE) of x when the
noise is white.

When there are deep fading subchannels in the OFDM system,
some diagonal entries of D could be very small, generating large
diagonal entries in D!, This can seriously amplify the noise and
cause decoding errors. However, since Uy introduces redundancy
in the transmitted data, we can afford to discard the corresponding
elements in y when deep fading subchannels are detected in D.
The original signal can still be recovered as long as there are M,
reliable subchannels in D. A similar approach can be applied to
the anti-symmetric filter coefficients as well.

This method can tolerate up to N, — M and N, — M, lost
data in each block of symmetric coefficients and anti-symmetric
coefficients, respectively. Interleaving technique can be applied to
further improve the error-correction capability.

To ensure satisfactory performance for both source coding and
channel coding, we can optimize the coding gain of the overall
OSFB under the Vandermonde constraint of Ug and V. The de-
sign and application of this method is under our investigation.

(22)

8. CONCLUSION

We present an alternative method of generating oversampled LP-
PRFB. Its relationship to existing OSFB is established. The result

leads to efficient implementations of a large class of OSFB. Some
design examples are demonstrated, and the potential application of
the new scheme in error-resilient data transmission over OFDM is
discussed. Although this paper focuses on OSFB with even chan-
nel, even decimation factor and same number of symmetric and
anti-symmetric filters, the result can be generalized to other cases
with appropriate modifications.
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