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ABSTRACT

A disadvantage of non-orthogonal transforms is the inevitable
amplification of the quantization noise during synthesis. A
feedback structure can be used to compensate this amplification.

We try to generalize the idea of noise feedback to the case of

non-orthogonal transforms. We explore the application of non-
orthogonal transforms to the coding of quasi-stationary sources
for which the KLT is, strictly speaking, not defined. Transforms
which maximize the coding gain for the assumed model of the
quasi-stationary source are found, which are generally non-
orthogonal. The proposed transforms along with the feedback
structure are seen to perform better than the average KLT for
AR sources and real life speech signals.

1. INTRODUCTION

Transform coding belongs to a class of compression schemes
that decompose a signal into several channels and quantize the
decomposed signal. The decomposition is done in a way that
will result in improvement in performance over that of PCM.
The improvement over PCM is measured by a quantity called
the coding gain, which is the ratio of the reconstruction error
variance in PCM to that in transform coding. For a given input
vector x and transform matrix T, the output vector € is given by

60 =Tx . Assuming the additive noise model for the quantizers
and that the quantization noise in the different channels is

mutually uncorrelated, the output, 0 , of the quantizers is given
by 0 = 6 +q , where q is the quantization noise vector. The
output of the synthesis block is given by X = T™'6. The overall
reconstruction error vector is therefore given by

x—-x=T"q. (1)

Using optimum bit allocation subject to bit rate constraint the
coding gain can be shown to be
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where & are the quantizer constants, o ,? the signal variance of
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k" channel, ), the squared norm of the K" column of T, o

is the total signal variance and M is the transform order. When
the transform matrix is non-orthogonal the @, may not be unity.
This causes amplification of the quantization noise during
reconstruction. Scaling down the @, is of no consequence if we

have perfect reconstruction constraint.

It was shown in [1] that for a given analysis transform the best
choice for the synthesis transform is its inverse. The minimum
mean squared error is achieved by a transformation that
diagonalizes the covariance matrix of the input. This is called
the KLT of the source. A general proof of the optimality of the
KLT is given in [2]. In the context of non-orthogonal transforms
a prediction based lower triangular transform (PLT) has been
proposed in [3]. The transform is arrived at by using the LU
decomposition and symmetry of the auto-correlation matrix.
This transform being non-orthogonal causes amplification of
quantization noise. To eliminate this amplification two minimum
noise structures called MINLAB(IT) and MINLAB(II) have been
arrived at. The idea has been extended to the case of
biorthogonal filter banks in [4]. A coloring filter matrix is used
to shape the psd of the quantization noise in the different
channels to compensate for the amplification taking place due to
the non-orthogonal synthesis filter bank.

2. NOISE FEEDBACK STRUCTURE

. . -1
The reconstruction error is dependent onT "as seen from

(1). In order to compensate for the effect of T™' we would
require to pass the quantization noise through T, but such a
system may essentially have a delay free loop and cannot be
realized. Hence the best we can do is to minimize the effect by
using a premultiplying matrix A, which modifies the
quantization noise through feedback. Assuming the channels to
be quantized from top to bottom, the feedback in any channel
should come from the channels already quantized and not the
current channel or channels yet to be quantized. Hence A should
be lower triangular. This ensures there are no delay free loops in
the system and hence that the system is physically realizable.
Fig 1 shows the proposed noise feedback structure. The
quantization noise is fed back to the quantizers through the
matrix I-A. With this structure the overall reconstruction error

vector becomes € =T ' Aq. Since T is a non-singular matrix it

can be decomposed as T=LDQ, where L is lower triangular, D
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is diagonal and Q is unitary. Let T=T A . Using the above

decomposition T= Q'D'L'A . As seen from (2), the optimum
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Fig 1. Noise feedback structure for non-orthogonal transforms

feedback matrix A can be obtained by minimizing
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From matrix theory it is known that for any matrix P
M-1
[ TPes = percp). )
k=0

Equality holds when P is diagonal. Hence the optimal A should
orthogonalize (LD)" "A . Since this is a lower triangular matrix,

it will be orthogonal only if it is diagonal. Hence (LD)'A=D.

This implies A = LDD. Since the diagonal elements of A
should be one, the optimal solution is A=L. The optimal A is
unique since L is uniquely determined by T. It is shown below
that the feedback structure always reduces the reconstruction
error variance. Equation (3) can be simplified as
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Without the feedback the above term is given by
M-1 M-1
[Tex = H(L‘“D_ZL_' s (6)
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Using (4) and the fact that the determinant of L is unity we get
M-1 M-1
H o > H di?. )
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Hence from (5) and (7) we have
M-l M-l
H & < H o (8)
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When the transform matrix is orthogonal, L and hence A is the
identity matrix and feedback is inconsequential. For the case of a
lower triangular transform, i.e. when DQ = I, the optimal A is

the transform matrix itself and the feedback totally eliminates
the amplification of quantization noise.

3. TRANSFORM CODING FOR QUASI-
STATIONARY SOURCES

We consider the quasi-stationary model of the signal, i.e. the
signal is comprised of NV stationary processes. The signal at any
instance is the outcome of any one of the processes chosen
randomly, where each process occurs with some known
probability o; such that oy 4 oy + 0= 1.

The problem is to find some transform T of dimension M
which will optimize the actual coding gain for some bit
allocation scheme and for a given fixed bit budget. The KLT in
this case is not defined or defined only if the auto-correlation
matrices of the constituting processes are simultaneously
diagonalizable[5]. Generally, a fixed signal dependent transform
which diagonalizes the long-term averaged auto-correlation
matrix (which is sub-optimal) is most commonly used. Whether
the average KLT is more towards an optimum for any process
will depend on the auto-correlation matrices as well as the
probabilities. Another solution for such non-stationary signals is
a switching transform which changes according to the changing
signal statistics. However the complexity of the encoder and
decoder would be much more than that for a fixed transform. For
the assumed quasi-stationary source model, among the class of
fixed transforms, we try to find a solution better than the KLT of
the averaged auto-correlation.

3.1. Bit Allocation

The actual coding gain should be the average of the coding
gains of the given transform for each of the processes,

N
C, = Z a;C,, 9)
i=1
where C g is the coding gain of T for the i process. If the N

processes are assumed to be zero mean and unit variance then
(9) can be written as
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where &; is the quantizer constant for the i process, &;; 1is the

K" channel quantizer constant for the i™ process, o, is the

squared norm of the #” column of either T~ or T™' A depending
on the structure used, R is the bits allocated to the k™ channel

and O'l-i is the variance of the k" channel for the i” process.

3.1.1. Fixed bit allocation

The bit allocation is dependent on the statistics of the signals
in the different channels, which are again non-stationary. Hence
we need to find a bit allocation scheme that is optimal with
respect to the average statistics of the signals. Let the average
variance of each channel be

N
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The optimal bit allocation for this case is then given by
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With this bit allocation scheme the cost function to be optimized
i.e. the overall coding gain becomes
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3.1.2. Adaptive bit allocation

Adaptive bit allocation is one, which adapts to the changing
signal statistics. With regard to our problem this would mean
that we are using a separate optimal bit allocation for each of the
N processes. The bit allocation in this case is given by
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The overall coding gain then becomes
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3.2. AR Source

We consider here the coding of a quasi-stationary source using
the KLT, transform T without noise feedback and T with noise
feedback for each of the two cases of fixed and adaptive bit
allocation. The performance of the three, in terms of coding
gain, is compared. The KLT is designed for the average auto-
correlation matrix. The transform T with and without feedback
is obtained by the optimization of the cost functions (13) and
(15). The transform parameters enter the optimization in a

complex form in the quantities O'l-i and @, . We have used

Simulated Annealing for optimization and it was found to give a
better solution than other methods. The simulation results
presented here are for the case of two AR(4) processes, with
psds that are the mirror images of each other, which form the
constituting processes of the non-stationary source. Transform
orders from two to seven are considered. Fig. 2(a) and 2(b) show
the variation of the coding gain versus the probability o in the
case of adaptive and fixed bit allocation respectively. Transform
of order four is used. In both figures the optimized transform
with feedback performs superior to KLT. However, the
optimized transform without feedback bettered the KLT only
with adaptive bit allocation. In general the optimal transform is
non-orthogonal and the feedback structure is seen to give up to
1.6 dB improvement over the case without feedback.
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a) Adaptive bit allocation b) Fixed bit allocation
Fig 2. Coding gain Vs probability o;. KLT(solid), Transform
without feedback(dotted), transform with feedback(dash-dotted).
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a) Adaptive bit allocation b) Fixed bit allocation
Fig 3. Coding gain Vs transform order. KLT(solid), Transform
without feedback(dotted), transform with feedback(dash-dotted).

Fig. 3(a) and 3(b) show the variation of the coding gain with the
transform order. Here we have considered the point o; =0.5 on
the coding gain versus o, curves as the operating point and
varied the transform order. In both cases we see considerable
improvement in the coding gain over that of KLT.

3.3. Speech

Speech is known to be a quasi-stationary signal i.e. it is
comprised of various small stationary segments. This fits
approximately in our assumed model of a quasi-stationary
source. Hence the above concept can be applied to speech. The
TIMIT database was used in all the simulations presented in this
section. All the speech signals used were 16 KHz sampled with
16 bits/sample representation. AR modeling was used to
estimate a model for a general speech signal. A twelfth order AR
model was used to get the spectral envelope of the phonemes.
The Ipc vectors so obtained were clustered using the k-means
method using simple Euclidean distance as the distance measure.
The number of processes constituting the speech signal is taken
to be equal to the number of clusters into which the speech units,
the phonemes, are segregated. The phonetic transcription
available in the TIMIT database was used to identify and
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segregate the phonemes to be used for clustering. Different
number of clusters were considered starting from two to twelve.
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Fig 4 SNR Vs bit rate for single speaker (a,b) and multiple
speakers (c,d). KLT (solid), non-orthogonal transform (dashed)

The probabilities of occurrence of the representative processes
are obtained during the clustering, as the size of each cluster
divided by the total size of all clusters. Uniform quantization
was used in all the channels. We have also used the numerically
obtained optimum values for the overload points, assuming the
Laplacian pdf for the speech signal. The SNR versus bit rate
curves are compared with those of the KLT designed for the
average statistics of the signal. All simulations were carried out
only for female speakers. For the case of a single speaker eight
spoken sentences of the speaker were taken as the training data
and two as test data. The performance in all the cases is better
than the KLT. We have next considered the across speaker
variability. Six spoken sentences from each of the five different
speakers were used as training data and four sentences from each
speaker were used as the test data. In this case it was found that
the best performance is obtained for the transform designed with
five clusters. Better performance is obtained for lower transform
orders as seen from table 1 because the optimization converges
to the optimum solution when the number of free variables is
less. The proposed transform consistently performs better than
the KLT at all rates. An average improvement in SNR of about
1.5 dB over the KLT at all bit rates from 1 to 10 bits/sample is
observed in the best case and a peak improvement of around 4.5
dB at higher bit rates. Figure 4 shows the performance
comparison for the test data.
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TABLE I
Average Improvement in SNR

Transform 2 3 4 5 6 7
order M
Single SNR (dB) | 1.1 1.5 1.3 0.4 0.1 0.4
Speaker improvement
Number of | 2 3 5 5 6 5
clusters N
Multiple SNR (dB) | 1.2 1.3 1.0 1.0 | 0.3 0.9
Speakers | improvement
Number of | 5 5 5 5 5 5
clusters N
4. CONCLUSION

To minimize the quantization noise amplification occurring due
to non-orthogonal transforms, a noise feedback structure has
been found. The feedback matrix is obtainable from the QR
factorization of the transform matrix and is unique for a given
invertible transform matrix. It always reduces the reconstruction
error variance for a non-orthogonal transform. Next we have
considered the coding of quasi-stationary signals with an
assumed model. Transforms have been found, by numerical
optimization, which outperform the KLT designed for the
average signal statistics. The two cases of fixed and adaptive bit
allocation have been considered. Results on AR signals and
speech show that in both cases the transform gives a higher
coding gain than the average KLT. The transforms obtained
were highly non-orthogonal, and the feedback structure gave a
further increase in the coding gain.
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