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ABSTRACT 
 
A disadvantage of non-orthogonal transforms is the inevitable 
amplification of the quantization noise during synthesis. A 
feedback structure can be used to compensate this amplification. 
We try to generalize the idea of noise feedback to the case of 
non-orthogonal transforms. We explore the application of non-
orthogonal transforms to the coding of quasi-stationary sources 
for which the KLT is, strictly speaking, not defined. Transforms 
which maximize the coding gain for the assumed model of the 
quasi-stationary source are found, which are generally non-
orthogonal. The proposed transforms along with the feedback 
structure are seen to perform better than the average KLT for 
AR sources and real life speech signals. 

 

1. INTRODUCTION 
 

Transform coding belongs to a class of compression schemes 
that decompose a signal into several channels and quantize the 
decomposed signal. The decomposition is done in a way that 
will result in improvement in performance over that of PCM. 
The improvement over PCM is measured by a quantity called 
the coding gain, which is the ratio of the reconstruction error 
variance in PCM to that in transform coding. For a given input 
vector x and transform matrix T, the output vector θ  is given by 
 Tx=θ . Assuming the additive noise model for the quantizers 
and that the quantization noise in the different channels is 
mutually uncorrelated, the output, θ

)
, of the quantizers is given 

by q+=θθ
)

, where q is the quantization noise vector. The 

output of the synthesis block is given by .1θ
)) −= Tx The overall 

reconstruction error vector is therefore given by 
                                     .1qTxx −=− )                               (1) 
Using optimum bit allocation subject to bit rate constraint the 
coding gain can be shown to be  
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where kε are the quantizer constants, the signal variance of 

k

2
kσ

th channel, kω the squared norm of the kth column of T ,  
is the total signal variance and M is the transform order. When 
the transform matrix is non-orthogonal the 

1− 2
xσ

kω may not be unity. 
This causes amplification of the quantization noise during 
reconstruction. Scaling down the kω is of no consequence if we 
have perfect reconstruction constraint. 
It was shown in [1] that for a given analysis transform the best 
choice for the synthesis transform is its inverse. The minimum 
mean squared error is achieved by a transformation that 
diagonalizes the covariance matrix of the input. This is called 
the KLT of the source. A general proof of the optimality of the 
KLT is given in [2]. In the context of non-orthogonal transforms 
a prediction based lower triangular transform (PLT) has been 
proposed in [3]. The transform is arrived at by using the LU 
decomposition and symmetry of the auto-correlation matrix. 
This transform being non-orthogonal causes amplification of 
quantization noise. To eliminate this amplification two minimum 
noise structures called MINLAB(I) and MINLAB(II) have been 
arrived at. The idea has been extended to the case of 
biorthogonal filter banks in [4]. A coloring filter matrix is used 
to shape the psd of the quantization noise in the different 
channels to compensate for the amplification taking place due to 
the non-orthogonal synthesis filter bank.  
 

2. NOISE FEEDBACK STRUCTURE 
 

The reconstruction error is dependent on as seen from  

(1). In order to compensate for the effect of we would 
require to pass the quantization noise through T , but such a 
system may essentially have a delay free loop and cannot be 
realized. Hence the best we can do is to minimize the effect by 
using a premultiplying matrix A, which modifies the 
quantization noise through feedback. Assuming the channels to 
be quantized from top to bottom, the feedback in any channel 
should come from the channels already quantized and not the 
current channel or channels yet to be quantized. Hence A should 
be lower triangular. This ensures there are no delay free loops in 
the system and hence that the system is physically realizable. 
Fig 1 shows the proposed noise feedback structure. The 
quantization noise is fed back to the quantizers through the 
matrix I-A. With this structure the overall reconstruction error 
vector becomes Since T is a non-singular matrix it 
can be decomposed as T=LDQ, where L is lower triangular, D 

1−T
T 1−

.1AqTe −=
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is diagonal and Q is unitary. Let T~ = . Using the above 

decomposition . As seen from (2), the optimum 
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  Fig 1. Noise feedback structure for non-orthogonal transforms 
 
feedback matrix A can be obtained by minimizing  

∏∏
−

=

−

=





= 





 −

,0

1

0

)3()(~ 1

kk

M

k

M

k
k ALDω

From matrix theory it is known that for any matrix P   

                                 ∏ .                                 (4)  

Equality holds when P is diagonal. Hence the optimal A should 

orthogonalize . Since this is a lower triangular matrix, 

it will be orthogonal only if it is diagonal. Hence . D=− ALD 1)(
This implies . Since the diagonal elements of A 
should be one, the optimal solution is A=L. The optimal A is 
unique since L is uniquely determined by T. It is shown below 
that the feedback structure always reduces the reconstruction 
error variance. Equation (3) can be simplified as 

                      ∏ .             (5)  −22
kd

Without the feedback the above term is given by 

                            .              (6)  ,kk

Using (4) and the fact that the determinant of L is unity we get 

                                  ∏                              (7)  ∏
M

k

Hence from (5) and (7) we have                                  

                                 ∏                                 (8)  ∏
−

=
k

When the transform matrix is orthogonal, L and hence A is the 
identity matrix and feedback is inconsequential. For the case of a 
lower triangular transform, i.e. when DQ = I, the optimal A is 
the transform matrix itself and the feedback totally eliminates 
the amplification of quantization noise.  

 

3. TRANSFORM CODING FOR QUASI-
STATIONARY SOURCES 

 
We consider the quasi-stationary model of the signal, i.e. the 

signal is comprised of N stationary processes. The signal at any 
instance is the outcome of any one of the processes chosen 
randomly, where each process occurs with some known 
probability αi such that α1 + α2 +… + αN = 1.  

θ̂

The problem is to find some transform T of dimension M 
which will optimize the actual coding gain for some bit 
allocation scheme and for a given fixed bit budget. The KLT in 
this case is not defined or defined only if the auto-correlation 
matrices of the constituting processes are simultaneously 
diagonalizable[5]. Generally, a fixed signal dependent transform 
which diagonalizes the long-term averaged auto-correlation 
matrix (which is sub-optimal) is most commonly used. Whether 
the average KLT is more towards an optimum for any process 
will depend on the auto-correlation matrices as well as the 
probabilities. Another solution for such non-stationary signals is 
a switching transform which changes according to the changing 
signal statistics. However the complexity of the encoder and 
decoder would be much more than that for a fixed transform. For 
the assumed quasi-stationary source model, among the class of 
fixed transforms, we try to find a solution better than the KLT of 
the averaged auto-correlation. 

 
3.1. Bit Allocation 
 

The actual coding gain should be the average of the coding 
gains of the given transform for each of the processes, 

                                                                    (9)  ∑
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where is the coding gain of T for the i
igC th process. If the N 

processes are assumed to be zero mean and unit variance then  
(9) can be written as 
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where iε is the quantizer constant for the ith process, ikε  is the 

kth channel quantizer constant for the ith process, kω  is the 

squared norm of the kth column of either or depending 
on the structure used,  is the bits allocated to the k

1−T AT 1−

ikR th channel 

and  is the variance of the k2
ikσ th channel for the ith process. 

 
3.1.1. Fixed bit allocation 

The bit allocation is dependent on the statistics of the signals 
in the different channels, which are again non-stationary. Hence 
we need to find a bit allocation scheme that is optimal with 
respect to the average statistics of the signals. Let the average 
variance of each channel be  
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The optimal bit allocation for this case is then given by 
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With this bit allocation scheme the cost function to be optimized 
i.e. the overall coding gain becomes 
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3.1.2. Adaptive bit allocation 

Adaptive bit allocation is one, which adapts to the changing 
signal statistics. With regard to our problem this would mean 
that we are using a separate optimal bit allocation for each of the 
N processes. The bit allocation in this case is given by 

                        

MM

l
ill

ikk
ik RR

1
1

0

2

2

2log
2
1










+=

∏
−

=
σω

σω
.             (14)  

The overall coding gain then becomes 
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3.2. AR Source 
 
We consider here the coding of a quasi-stationary source using 
the KLT, transform T without noise feedback and T with noise 
feedback for each of the two cases of fixed and adaptive bit 
allocation. The performance of the three, in terms of coding 
gain, is compared. The KLT is designed for the average auto-
correlation matrix. The transform T with and without feedback 
is obtained by the optimization of the cost functions (13) and 
(15). The transform parameters enter the optimization in a 
complex form in the quantities and 2

ikσ kω . We have used 
Simulated Annealing for optimization and it was found to give a 
better solution than other methods. The simulation results 
presented here are for the case of two AR(4) processes, with 
psds that are the mirror images of each other, which form the 
constituting processes of the non-stationary source. Transform 
orders from two to seven are considered. Fig. 2(a) and 2(b) show 
the variation of the coding gain versus the probability α1 in the 
case of adaptive and fixed bit allocation respectively. Transform 
of order four is used. In both figures the optimized transform 
with feedback performs superior to KLT. However, the 
optimized transform without feedback bettered the KLT only 
with adaptive bit allocation. In general the optimal transform is 
non-orthogonal and the feedback structure is seen to give up to 
1.6 dB improvement over the case without feedback. 

 
     a) Adaptive bit allocation            b) Fixed bit allocation 
Fig 2. Coding gain Vs probability α1. KLT(solid), Transform 
without feedback(dotted), transform with feedback(dash-dotted). 
 

 
      a) Adaptive bit allocation               b) Fixed bit allocation 
Fig 3. Coding gain Vs transform order. KLT(solid), Transform 
without feedback(dotted), transform with feedback(dash-dotted). 
 
Fig. 3(a) and 3(b) show the variation of the coding gain with the 
transform order. Here we have considered the point α1 =0.5 on 
the coding gain versus α1 curves as the operating point and 
varied the transform order. In both cases we see considerable 
improvement in the coding gain over that of KLT. 
 
3.3. Speech 
 
Speech is known to be a quasi-stationary signal i.e. it is 
comprised of various small stationary segments. This fits 
approximately in our assumed model of a quasi-stationary 
source. Hence the above concept can be applied to speech. The 
TIMIT database was used in all the simulations presented in this 
section. All the speech signals used were 16 KHz sampled with 
16 bits/sample representation. AR modeling was used to 
estimate a model for a general speech signal. A twelfth order AR 
model was used to get the spectral envelope of the phonemes. 
The lpc vectors so obtained were clustered using the k-means 
method using simple Euclidean distance as the distance measure. 
The number of processes constituting the speech signal is taken 
to be equal to the number of clusters into which the speech units, 
the phonemes, are segregated. The phonetic transcription 
available in the TIMIT database was used to identify and 
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segregate the phonemes to be used for clustering. Different 
number of clusters were considered starting from two to twelve.  

 
          a) order 2, clusters 3  b) order 4, clusters 5 
 

 
          c) order 5, clusters 5  d) order 7, clusters 5 
                    
 Fig 4 SNR Vs bit rate for single speaker (a,b) and multiple 
speakers (c,d). KLT (solid), non-orthogonal transform (dashed) 
 
The probabilities of occurrence of the representative processes 
are obtained during the clustering, as the size of each cluster 
divided by the total size of all clusters. Uniform quantization 
was used in all the channels. We have also used the numerically 
obtained optimum values for the overload points, assuming the 
Laplacian pdf for the speech signal. The SNR versus bit rate 
curves are compared with those of the KLT designed for the 
average statistics of the signal. All simulations were carried out 
only for female speakers. For the case of a single speaker eight 
spoken sentences of the speaker were taken as the training data 
and two as test data. The performance in all the cases is better 
than the KLT. We have next considered the across speaker 
variability. Six spoken sentences from each of the five different 
speakers were used as training data and four sentences from each 
speaker were used as the test data. In this case it was found that 
the best performance is obtained for the transform designed with 
five clusters. Better performance is obtained for lower transform 
orders as seen from table 1 because the optimization converges 
to the optimum solution when the number of free variables is 
less. The proposed transform consistently performs better than 
the KLT at all rates. An average improvement in SNR of about 
1.5 dB over the KLT at all bit rates from 1 to 10 bits/sample is 
observed in the best case and a peak improvement of around 4.5 
dB at higher bit rates. Figure 4 shows the performance 
comparison for the test data. 
 
 

 
 
 
 
 
 
 

TABLE I 
Average  Improvement  in  SNR 

 

 Transform 
order M 

2 3 4 5 6 7 

SNR (dB)  
improvement 

1.1 1.5 1.3 0.4 0.1 0.4 Single 
Speaker 

Number of 
clusters N 

2 3 5 5 6 5 

SNR (dB) 
improvement 

1.2 1.3 1.0 1.0 0.3 0.9 Multiple 
Speakers 

Number of 
clusters N 

5 5 5 5 5 5 

 
4. CONCLUSION 

 
To minimize the quantization noise amplification occurring due 
to non-orthogonal transforms, a noise feedback structure has 
been found. The feedback matrix is obtainable from the QR 
factorization of the transform matrix and is unique for a given 
invertible transform matrix. It always reduces the reconstruction 
error variance for a non-orthogonal transform. Next we have 
considered the coding of quasi-stationary signals with an 
assumed model. Transforms have been found, by numerical 
optimization, which outperform the KLT designed for the 
average signal statistics. The two cases of fixed and adaptive bit 
allocation have been considered. Results on AR signals and 
speech show that in both cases the transform gives a higher 
coding gain than the average KLT.  The transforms obtained 
were highly non-orthogonal, and the feedback structure gave a 
further increase in the coding gain. 
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