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ABSTRACT
This paper presents constrained �2 norm and L∞ norm optimal
QMF banks designs. Both methods cast the design problems as a
linear objective function minimization problem subject to Linear
Matrix Inequality (LMI) constraints, which are solved by semi-
definite programming. The LMI constraints are shown to be con-
vex. Consequently, the designed QMF banks are globally optimal
with respect to the objective function.

1. INTRODUCTION
A two channel maximally decimated filter bank is shown in Fig.1,
where H0(z), H1(z) and F0(z), F1(z) are the lowpass and high-
pass analysis subband filters, and lowpass and highpass synthesis
subband filters respectively. The reconstructed signal x̂(n) is re-
lated to the input signal x(n) as

X̂(z) = 0.5(H0(z)F0(z) + H1(z)F1(z))X(z)

+0.5(H0(−z)F0(z) + H1(−z)F1(z))X(−z)

= T (z)X(z) + A(z)X(−z), (1)
where T (z) = 0.5(H0(z)F0(z)+H1(z)F1(z)) is the linear trans-
fer function of the filter bank, and A(z) = 0.5(H0(−z)F0(z) +
H1(−z)F1(z)) is the aliasing component of the filter bank. The
filter bank is Perfect Reconstruction (PR) when A(z) = 0, and
T (z) = cz−� for some nonzero c ∈ R and � ∈ Z, such that the
overall filter bank is a scaled delay system.

Traditionally, the analysis and synthesis filters are Quadrature
Mirror (QM) related,
H1(z) = H0(−z), F0(z) = 2H1(−z), and F1(z) = −2H0(−z). (2)

When the subband filters are QM related, the aliasing compo-
nent is structurally nullified, i.e. A(z) = 0. As a result, the PR
Quadrature Mirror Filter (QMF) bank design problem can be for-
mulated as an optimization problem of T (z) towards the desired
transfer function, i.e. a scaled delayed function cz−�, with H0(z)
as variable. Without loss of generality, assume c = 1, therefore,
the PR constraint is expressed as

T (z) = H2
0 (z) − H2

0 (−z) = z−�. (3)
It’s observed that the PR constraint in eq.(3) can be replaced

by the equivalent power complementary constraint as
1/α ≤| H0(ejω) |2 + | H0(e

j(π−ω)) |2≤ α, ω ∈ [0,
π

2
], (4)

where α specifies the biggest allowable ripple size of the recon-
struction error. Consider the PR constraint in eq.(4), the minimiza-
tion objective function achieved by Weighted Least Square (WLS)
optimal QMF banks can be formulated as

min
h0(n)

E =

π
2∑

ω=0

W (ω)(| H0(e
jω) |2 + | H0(ej(ω+π)) |2 −1)2

+

π∑
ω=ωs

W (ω) | H0(ejω) |2, (5)

where W (ω) is the spectral weighting function. The first term
denotes the weighted spectral energy of the reconstruction error,
and the second term denotes the weighted spectral energy of the
subband filter stopband such that the resulting subband filters have
good spectral separations. The L2 optimal WLS QMF banks de-
sign problem in eq.(5) can be recast as a constrained optimization
problem [3, 4]
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min
d

E = dT Rd, Subject to dT Bd = 1, (6)

where d specifies the impulse response of H0(z), R and B are
positive definite matrices. R can be the cosine matrix that com-
putes the spectral energy E in eq.(5). If B is an identity matrix,
the constraint in eq.(6) will simply normalize the power of H0(z)
such as to avoid trivial solution in the minimization problem. The
optimization program in eq.(6) is a generalized eigenfilter design
problem. The minimal value of E equals to the minimal gener-
alized eigenvalue λmin of (R, B) with d being the corresponding
eigenvector [5]. However, R in the generalized eigenfilter problem
is either singular or has small determinant. As a result, it is numer-
ically unstable to determine the generalized eigenvalue of (R, B).
Besides, it is difficult to integrate additional constraints that are
imposed on the QMF banks. An alternative method to solve eq.(5)
is to cast E into quadratic function of the filter coefficients [1],
[2]. However, nonlinear optimization is required, which may lead
to locally optimal solution and slow convergence.

A novel method is presented in this paper to design the QMF
banks that is equivalent to the generalization of WLS design method.
The proposed optimal design minimize the �2 norm of the lowpass
analysis subband filter, which is related to the L2 norm of the same
filter by Parseval’s theorem. The L2 norm optimal QMF banks
can be interpreted to be Constrained Least Square (CLS) optimal
[6]. Furthermore, the design problem was cast as the linear objec-
tive minimization with Linear Matrix Inequality (LMI), which are
solved by the readily available semi-definite programming tools
[7]. The LMI constraints are linear and convex, which leads to
global optimality.

In a similar setting, a constrained minimax design method is
presented, which results in subband filters with equi-ripple magni-
tude response. The design of the subband filters with equi-ripple
stopband magnitude response has been formulated as constrained
nonlinear optimization problem in [1], and an iterative unconstrained
nonlinear optimization algorithm is applied. The constrained non-
linear optimization problem is converted to an unconstrained WLS
design problem, which was solved by an iterative algorithm [8].
Both design methods [1],[8] involve nonlinear optimization. The
proposed design method avoided the nonlinear optimization prob-
lem. Via a change of variable, the equi-ripple QMF bank design
problem is recast as linear optimization problem with LMI con-
straints, which are convex.

Linear Optimization subjects to LMI constraints has been ap-
plied to design digital filters in [9], such that the design problem
can be solved by semi-definite programming. However, the design
method presented in [9] cannot be used to design PR QMF bank
due to the fact that PR is a nonlinear constraint with respect to the
spectral response of individual subband filters, and hence to the
filter coefficients. The proposed design method converted the PR
constraint into LMI constraint in terms of the optimization variable
such that semi-definite programming can be employed to optimize
the magnitude response of individual subband filters and that of
the overall QMF banks.

2. DESIGN PROBLEM FORMULATION
The QMF banks design can be formulated as a lowpass filter de-
sign problem subject to the PR constraint as in eq.(4). The design
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problem can be formulated to minimize the maximal stopband rip-

ple size,
√

δ̃, of the filter H0(z).
Minimize δ̃ (7)

Subject to 1/α ≤| H0(ejω) |2 + | H0(e
j(π−ω)) |2≤ α, ω ∈ [0, π

2 ], (8)

| H0(e
jω) |2≤ δ̃, ω ∈ [ωs, π], (9)

| H0(ejω) |2≥ 0, ω ∈ [0, π], (10)

where the constraint in eq.(10) imposes | H0(e
jω) | being a proper

magnitude response of H0(z). ωs is the stopband edge of the low-
pass filter. The above optimization program minimizes the biggest
stopband ripple size within a given allowable maximal ripple size
of the reconstruction error, which is equivalent to a constrained
L∞ optimal design of the stopband attenuation. Minimizing the
biggest ripple size of the stopband results in equi-ripple stopband.
That means, the “worst” energy leakage of the stopband is min-
imized when the input signal is separated by the subband filters
into individual spectral domain. Alternatively, a PR constrained
lowpass filter can be designed by minimizing the biggest allow-
able ripple size of the reconstruction error with a given maximal
stopband ripple size

√
δ. Minimize α̃ (11)

Subject to 1/α̃ ≤| H0(ejω) |2 + | H0(e
j(π−ω)) |2≤ α̃, ω ∈ [0, π

2 ], (12)

| H0(e
jω) |2≤ δ, ω ∈ [ωs, π], (13)

| H0(e
jω) |2≥ 0, ω ∈ [0, π]. (14)

The above optimization is equivalent to constrained L∞ optimal
design, where the biggest ripple size, which appears on the spectral
response of the overall QMF bank, is minimized with the stopband
ripple size of individual subband filters being equal or lower than
the prescribed size

√
δ. The “worst” case gain of the overall filter

banks is minimized such that the system has excellent robustness
with respect to noise disturbance.

3. LMI CONSTRAINTS FORMULATION
The constraints in the optimization problems of eq.(7) and eq.(11)
are nonlinear with respect to | H(ejω) |, which requires the appli-
cation of nonlinear optimization. If the linear phase constraint is
imposed on the FIR filter H0(z), the constraints in eq.(8-10) can
be converted into nonlinear convex constraints [10], which can be
solved by general convex optimization methods, such as, ellipsoid
methods or bundle methods. A different approach to solve the op-
timization problems in eq.(7) and eq.(11) is considered. The con-
straints in eq.(8-10) are first converted to linear convex constraints,
which can be expressed as LMIs. Such that readily available op-
timization tools can be used. [12] presented a variable change
scheme through which the magnitude constraints are posed as lin-
ear convex constraints. The same scheme can be applied to eq.(7)
and in eq.(11). Let h0 = [h0(0), h0(1), · · · , h0(N − 1)]T ∈
R

N be the lowpass analysis FIR filter coefficient vector such that
h0(n) = 0 for n < 0, n ≥ N . The autocorrelation sequence

r(i) =
N−1∑

n=−N+1

h0(n)h0(n + i), i ∈ Z, (15)

has the properties that r(n) = r(−n) and r(n) = 0 for n ≥ N .
Therefore, it suffices to specify the autocorrelation coefficients for
0 ≤ n ≤ N − 1. Furthermore, r(0) is given by

r(0) =
N−1∑
n=0

h2
0(n) = ‖h0‖2

2 (16)

Define the autocorrelation sequence vector r = [r(0), r(1), · · · , r(N−
1)]T . The Fourier transform of the autocorrelation sequence is

R(ω) =
∑
i∈Z

r(i)e−jωi = r(0) +

N−1∑
i=1

2r(i) cos ωi =| H0(ejω) |2, (17)

which equals to the squared magnitude of the filter’s spectral re-
sponse. The autocorrelation sequence vector r can be used as the

optimization variable. As the filter coefficient vector h0 can be
derived from r ∈ R

N via spectral factorization [13]. The opti-
mization problem in eq.(7) can be written in terms of r

Minimize δ̃ (18)

Subject to

(
α − [R(ω) + R(π − ω)] 0 0

0 R(ω) + R(π − ω) 1
0 1 α

)
� 0,

ω ∈ [0,
π

2
], (19)

R(ω) ≤ δ̃, ω ∈ [ωs, π], (20)

R(ω) ≥ 0, ω ∈ [0, π]. (21)

According to the definition of positive definite matrix, the con-
straint in eq.(19) is equivalent to

R(ω) + R(π − ω) ≤ α
α[R(ω) + R(π − ω)] ≥ 1

}
−→ 1

α
≤ R(ω) + R(π − ω) ≤ α, (22)

which is actually the constraint eq.(8), since R(ω) =| H(ejω) |2.
The constraints in eq.(20) and eq.(21) are gotten by directly sub-
stituting | H(ejω) |2 with R(ω). Note that R(ω) can be expressed
in terms of the optimization variables as

R(ω) = [0, 1, 2 cos ω, · · · , 2 cos ω(N − 1)] ×




δ̃
r(0)
r(1)

.

.

.
r(N − 1)


 . (23)

Thus, the constraints in eq.(20-22) are all linear functions of the
optimization variable while the linear functions are always convex.
As a result, the LMI constraints of the optimization problems in
eq.(18) are convex, since sampling preserves convexity. With con-
vexity guaranteed, the semi-definite program for LMI constraints
will converge to the global optimal solution. The constraint in
eq.(21) is a necessary and sufficient condition for the existence of
the solution h0 ∈ R

N . It is stated in [13] that there exists h0 ∈ R
N

whose autocorrelation sequence vector is r ∈ R
N if and only if

R(ω) ≥ 0, ω ∈ [0, π]. (24)

As a result, not all r ∈ R
N is a valid autocorrelation sequence

vector of FIR filters. A variation of eq.(11) can be obtained,
Minimize α̃ (25)

Subject to

(
α̃ − [R(ω) + R(π − ω)] 0 0

0 R(ω) + R(π − ω) 1
0 1 α̃

)
� 0,

ω ∈ [0,
π

2
], (26)

R(ω) ≤ δ, ω ∈ [ωs, π], (27)

R(ω) ≥ 0, ω ∈ [0, π]. (28)

The equivalence of the optimization problems in eq.(11), and
that in eq.(25) can be proved in a manner similar to that proofing
the equivalence of the optimization problems in eq.(7) and eq.(18).
Note that the term α̃[R(ω)+R(π−ω)] in the constraint in eq.(26)
is not a linear function of the optimization variable [α̃, rT ]T . How-
ever it is still convex with respect to the optimization variable. The
LMI constraints in eq.(26-28) are all convex. As a result, globally
optimal solution can be obtained. Alternatively, we can choose to
minimize the autocorrrelation coefficient r(0). Since r(0) equals
to the �2 norm of the FIR lowpass filter H0(z). As a result, the
designed QMF banks will be �2 optimal, such that the subband
filter has the smallest total spectral energy with a constrained re-
construction error. This is equivalent to design subband filters with
least square optimal stopband energy.

Minimize r(0) (29)

Subject to

(
α − [R(ω) + R(π − ω)] 0 0

0 R(ω) + R(π − ω) 1
0 1 α

)
� 0,

ω ∈ [0,
π

2
], (30)

R(ω) ≤ δ, ω ∈ [ωs, π], (31)

R(ω) ≥ 0, ω ∈ [0, π]. (32)

The convexity of the constraints in eq.(30-32) can be proved
in a similar way as that in eq.(18).
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Table 1. Design results for Example 1
minimization variable specified parameters√

δ N α ωp ωs

0.0027(−51.4538dB) 30 1.001 0.5π 0.6π

Table 2. Design results for Example 2
minimization variable specified parameters

α N
√

δ ωp ωs

1.001054 24 0.01(−40dB) 0.5π 0.604π

4. SIMULATION RESULTS
Three design examples are presented, which correspond to the
three optimization formulations described in Section 3. Semi-
definite programming solver mincx in the LMI Control Toolbox of
Matlab [7] is employed to solve the linear objective optimization
problem with LMI constraints described by eq.(18,25,29).

Example 1: The QMF bank is designed according to eq.(18).
The lowpass analysis filter length N = 30, and the biggest recon-
struction error ripple α is chosen to be 0.001(-60dB) with α =
1.001. The passband and the stopband edges of the lowpass anal-
ysis filter are ωp = 0.5π and ωs = 0.6π respectively. The opti-
mization result gives lowpass filter with maximum stopband ripple
size

√
δ = 0.0027(−51.4538dB) as observed in Fig.2(a). Since

the L∞ norm of the stopband ripple size is minimized, the low-
pass filter has equi-ripple stopband. The magnitude response of the
overall QMF bank is shown in Fig.2(b), where equi-ripple property
is observed. For clarity, the parameters and minimizing variable of
the lowpass analysis subband filter are tabulated in Table 1.

Example 2: The QMF bank specification is given in Table
2. The optimization problem is formulated as eq.(25) with maxi-
mal stopband ripple size

√
δ being 0.01(−40dB). The resulting

biggest reconstruction error ripple is−59.5dB with α = 1.001054.
The magnitude response of the lowpass analysis filter is shown in
Fig.3(a) while that of the overall QMF bank is shown in Fig.3(b),
where the actual biggest reconstruction error ripple has been con-
strained to an acceptable level and is less than 0.00424dB.

Example 3: The parameters of the lowpass analysis subband
filter are shown in Table 3. The design is carried out according
to the optimization program in eq.(29). As observed from the
magnitude response of the lowpass analysis subband filter and the
magnitude response of the overall QMF bank as shown in Fig.4(a)
and (b) respectively, the stopband attenuation level of individual
subband filters has been constrained to less than -40dB and the
biggest allowable ripple size of the reconstruction error has been
constrained to less than −3.5 × 10−4dB.

The subband filters should have narrow transition band and
large stopband attenuation. These characteristics are important to
achieve of good spectral separation between subband signals. The
better the spectral separation, the better the filter bank performance
is expected. However, the narrow transition band characteristic,
the large stopband attenuation and small reconstruction error rip-
ples are conflicting objectives. Actually, to widen the transition
region has been a common tradeoff trick to get a smaller recon-
struction error ripple size. In the above three design examples, the
transition band width is specified as ωs − ωp = 0.1, or, 0.104π,
which is much narrower than that presented in literatures, such
as [11], while the ripple size of the reconstruction error and the
stopband ripple size have been constrained to an acceptable level.
The tolerable level of the stopband attenuation depends on applica-
tions. Typically, the analysis subband filters must have a stopbband
attenuation larger than 40dB to reduce the energy leakage between
the subbands in subband coding of speech signals. In the above
three design examples, the maximal stopband ripple size

√
δ has

Table 3. Design results for Example 3
variable parameters
r(0) N

√
δ α ωp ωs

0.499962 30 0.01(40dB) 1.0001 0.5π 0.6π

been specified or designed to be less than -40dB. α is responsible
for the ripple size of the reconstruction magnitude error, which has
been specified or designed to a tolerable level. The designed filter
banks in Example 1 has stopband equi-ripple property while the
one in Example 2 has the smallest allowable maximal ripple size
of the reconstruction error with a specified stopband ripple level.
The �2 optimal filter bank in Example 3 has subband filters with the
smallest stopband energy with a constrained reconstruction error.

5. CONCLUSIONS
Three QMF banks design methods are presented. Two are con-
strained L∞ norm optimal design and one is constrained �2 norm
optimal design. Both methods cast the design problems as a lin-
ear objective function minimization problem with Linear Matrix
Inequality (LMI) constraints, which can be solved by the readily
available semi-definite programming tools. The LMI constraints
have been shown to be convex and globally optimal solutions are
achieved. The constrained L∞ norm optimal design minimizes the
maximal stopband ripple size given an allowable maximal ripple
size of the reconstruction error, or minimizes the allowable maxi-
mal ripple size of the reconstruction error with a specified maximal
stopband ripple size. Constrained �2 norm optimal design results
in QMF banks with subband filters that have least square total en-
ergy with a given reconstruction error constraint. Under the recon-
struction error constraint and the symmetrical property of the spec-
tral response of QMF banks, the stopband energy of the subband
filters are therefore least square optimal. Optimal design solutions
can be obtained by the presented methods. Furthermore, the de-
sign methods are very flexible in integrating extra constraints. De-
sign examples are presented to demonstrate the effectiveness of the
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Fig. 1. A two-channel maximally decimated filter banks.
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Fig. 2. (a) The magnitude response of stopband equi-ripple lowpass analysis filter; (b) The magnitude response of the overall QMF bank.
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Fig. 3. (a) The magnitude response of lowpass analysis filter; (b) The magnitude response of the overall QMF bank with optimal allowable maximal ripple
size.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Normalized  Frequency

M
ag

ni
tu

de
(d

B
)

( a ) 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−3.5

−3.4

−3.3

−3.2

−3.1

−3

−2.9

−2.8

−2.7
x 10

−4

Normalized Frequency

M
ag

ni
tu

de
 (

dB
)

( b ) 

Fig. 4. (a) The magnitude response of �2 norm optimal lowpass analysis filter; (b) The magnitude response of �2 optimal QMF bank.
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