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ABSTRACT

We present a flexible, efficient design technique for the prototype
filter of an oversampled near perfect reconstruction (NPR) gener-
alized Discrete Fourier Transform (GDFT) filter bank. Such fil-
ter banks have several desirable properties for subband processing
systems that are sensitive to aliasing; e.g., subband adaptive filters.
Our design criteria for the prototype filter are explicit bounds on
the aliased components in the subbands, the aliased components
in the output, and the distortion induced by the filter bank. It is
shown that the design of an optimal prototype filter can be trans-
formed into a convex optimization problem that can be efficiently
solved. Our design technique provides an efficient and effective
tool for exploring many of the inherent trade-offs in the design of
the prototype filter, including the trade-off between aliasing in the
subbands and the distortion induced by the filter bank. In our ex-
amples we calculate several of these trade-offs and demonstrate
that our method can generate filters with significantly better per-
formance than filters obtained using current design methods.

1. INTRODUCTION

The standard design techniques for uniform filter banks are based
on (approximating) the perfect reconstruction condition that in the
absence of any subband processing, the output signal is simply a
scaled and delayed version of the input [1]. While many classes
of perfect reconstruction filter banks are available, it is becoming
apparent that perfect reconstruction filter banks do not necessar-
ily provide optimal performance of the subband signal process-
ing system as a whole; e.g., [2]. Designs based on the perfect re-
construction condition typically allow considerable aliasing in the
subband signals, but structure these aliased components so that in
the absence of any subband processing they are cancelled by the
synthesis filter bank. This characteristic may be undesirable if the
processing applied to the subband signals is sensitive to aliasing,
or if that processing distorts the aliased components in a way that
reduces the effectiveness of alias cancellation.

For applications which are quite sensitive to aliasing, such as
subband adaptive filtering, oversampled near perfect reconstruc-
tion (NPR) filter banks that suppress aliased components, rather
than relying on alias cancellation, offer the potential for improved
performance. In particular, the performance of systems based on
oversampled generalized Discrete Fourier Transform (GDFT) fil-
ter banks is quite encouraging [3–6]. In this paper we provide a
flexible, efficient design technique for the prototype filter of an
oversampled near perfect reconstruction (NPR) GDFT filter bank.
The design criteria are explicit bounds (derived in [7]) on the aliased
components in the subbands, and the reconstruction error. These
bounds rigorously amalgamate several intuitively developed de-
sign criteria in the current literature [3,4], and subsume the criteria

derived in [5, Section IV–B]. Our design criteria generate famil-
iar constraints on the prototype filter: the aliasing criteria result in
bounds on the stop-band energy and the maximum stop-band level,
and the distortion criterion results in a measure of the distance be-
tween the prototype filter and a ‘self-orthogonal’ filter.

In their direct form, these constraints generate a non-convex
feasible set. Therefore, delicate management of locally optimal
solutions may be required in order to obtain a filter whose perfor-
mance is “good enough”. The key step in obtaining our efficient
design technique is to show that the design criteria can be (pre-
cisely) transformed into convex functions of the autocorrelation of
the prototype filter, and hence that a globally optimal prototype
filter can be obtained from the solution of a convex optimization
problem that can be efficiently solved. (Similar transformations
have also led to convex formulations of some other FIR filter de-
sign problems; e.g., [8, 9].) Our convex formulation not only pro-
vides an efficient algorithm for finding an optimal prototype filter,
but by doing so it provides an efficient method for determining
the inherent trade-offs between competing prototype design crite-
ria. Of particular interest is the inherent trade-off between aliasing
in the subbands and the distortion induced by the filter bank. In
our examples we demonstrate the value of these trade-off curves
in filter design, and show that filters designed via our formulation
can provide significantly better performance than filters designed
using current methods.

2. GDFT FILTER BANKS AND DESIGN CRITERIA

The generalized Discrete Fourier Transform (GDFT) filter bank
we will consider has M subbands, each of which is downsampled
by K < M . The analysis and synthesis filters for the mth sub-
band, fm[n] and gm[n] respectively, are exponentially modulated
versions of a single real-valued FIR prototype filter p[n]:

fm[n] = p[n]ej2π(m+m0)(n+n0)/M , 0 ≤ m ≤M − 1, (1)

and gm[n] = fm[−n]∗. This modulated structure facilitates ef-
ficient implementation. Since we employ the same prototype fil-
ter in the analysis and synthesis banks, our NPR filter banks have
polyphase matrices [1] which are nearly paraunitary, and hence
have favourable noise robustness and numerical properties.

To describe the operation of the filter bank we let X(z) =�
n x[n]z−n denote the z-transform of x[n], the input signal. The

m-th subband signal has a z-transform

Sm(z) =
1

K

K−1�
k=0

Fm(z1/KW k
K)X(z1/KW k

K), (2)

where WK = e−j2π/K . The k = 0 term on the right hand side of
(2) represents the desired component of the subband signal, while
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the remaining terms represent the aliased components. In subband
adaptive filtering applications, the subband signals are typically
filtered individually. If the filter in themth subband has converged
and is denoted by Hm(z), then the output of the whole subband
adaptive filtering system is

Y (z) =
1

K

K−1�
k=0

M−1�
m=0

Gm(z)Hm(zK)Fm(zW k
K)X(zW k

K).

(3)
If there is no subband processing, then Hm(z) = 1 and (3) sim-
plifies to the standard expression for the output of a filter bank [1].
The transfer function

�M−1
m=0 Gm(z)Hm(zK)Fm(z) in (3) dis-

torts the input signal X(z), while the remaining terms represent
the aliased components which appear at the output.

In the full version of this paper [7], we showed that the aliased
components in (2) and (3) and the undesired distortion induced by
the filter bank, can be bounded by natural properties of the proto-
type filter. To state those bounds succinctly, let Ex =

�
n |x[n]|2

denote the energy of a signal x[n], and define

J(µ) �
1

2π

� π

−π

��X(ejω)X∗(ej(ω+µ))
�� dω,

J̃(µ1, µ2, α) �
1

2π

� π/K+α

−π/K+α

��X(ej(ω−µ1))X∗(ej(ω−µ2))
�� dω.

Let UX � maxω |X(ejω)| denote the maximal spectral com-
ponent x[n]. Let UP,sb � maxω∈[π/K,π] |P (ejω)| denote the
maximum stop-band level of the prototype filter, and let EP,sb =
(1/π)

� π

π/K
|P (ejθ)|2 dθ denote its stop-band energy. Finally, let

αm = 2π(m+m0)/M and ψk = 2πk/K. Using various forms
of the Hölder inequality, the energy of the aliased components in
(2), denoted by EAm , can be bounded by [7]

EAm ≤ EP,sb
U2

X

K2
+
U2

P,sb

K2

K−1�
k=1

K−1�
�=1
��=k

J̃(ψk, ψ�, αm).

The energy of the aliased components in the output, EAout , can
also be bounded by simple functions of the stop-band energy and
the maximum stop-band level [7]. If the subband adaptive filters
are scaled so that maxω

��Hm(ejω)| ≤ 1, then [7]

EAout ≤ U2
PM

K2

�
EP,sbKU

2
X+U2

P,sb(M−1)

K−1�
k=1

K−1�
�=1
��=k

J(ψk−�)
�
.

In order to isolate the (undesirable) distortion induced by the
filter bank from the (desired) processing performed by the subband
processing system, we will analyze the distortion in the absence of
any subband processing. That is, with Hm(z) = 1 in (3). If we
normalize the energy of the prototype filter so that

�
� p[�]

2 =
K/M , then the energy of the distortion induced by the filter bank,
ED, can be bounded by [7]

ED ≤ γ2
p
MU2

X

K
, (4)

where γ2
p =

�
n�=0

���
� p[�]p[� − nM ]

��2, measures the distance
from the prototype filter to the nearest “self-orthogonal” filter.

3. DESIGN METHOD

Using the bounds in Section 2, it is clear that:

1. For a given normalization, small values of the maximum
stop-band level, UP,sb, the stop-band energy, EP,sb, and the
maximum spectral component, UP , of the prototype filter
will guarantee that the energy of the aliased components in
the subbands and the output are small.

2. A small value of γp will guarantee that the energy of the
(amplitude and phase) distortion in the output is small.

Although various combinations of some of these criteria have been
employed by other authors (on a somewhat ad-hoc basis), we have
shown (in [7]) how they explicitly bound the energy of the aliased
components in the subbands and the output, and the energy of the
distortion in the output. Natural design criteria for the prototype
can be obtained by minimizing a (linear) combination of UP,sb,
EP,sb, UP and γp, subject to bounds on their individual values.
For example, we might wish to find the length L prototype filter
which minimizes the stop-band energy, subject to fixed bounds on
the maximum stop-band level, the distortion coefficient, and the
maximum spectral component of the filter, and subject to the fil-
ter being normalized. That is, we might seek the solution of the
following optimization problem:

min
p[�]

1

π

� π

π/K

��P (ejω)
��2 dω (5a)

subject to
��P (ejω)

�� ≤ εsb ∀ω ∈ [π/K, π], (5b)
�
n�=0

����
�

p[�]p[�−Mn]
���2 ≤ ε2γ , (5c)

��P (ejω)
�� ≤ B ∀ω, (5d)�

�

p[�]2 = K/M, (5e)

where εsb, B and ε2γ are fixed constants. Although (5a), (5b) and
(5d) can be expressed as convex functions of p[�], the distortion
constraint in (5c) is a non-convex quadratic function of p[�]. Hence,
the problem in (5) is a non-convex optimization problem which
may require careful (and computationally expensive) management
of locally optimal solutions. This is important because the objec-
tive and the constraints in (5) are competing criteria. The non-
convexity of (5) can make it quite awkward to get an accurate de-
scription of the trade-offs between these criteria, and to determine
when the constraints in (5) conflict so that there is no filter of the
given length which satisfies all the constraints.

The key observation in the development of our efficient de-
sign method is that the objective and the constraints in (5) are all
convex functions of the autocorrelation of the filter coefficients,
rp[n] =

�
� p[�]p[� − n]. Using the fact that rp[−n] = rp[n]

and Rp(e
jω) = |P (ejω)|2 = rp[0] + 2

�
n≥1 rp[n] cos(ωn),

the integral in (5a) can be analytically evaluated. It is equal to�
n≥0 b[n]rp[n], where b[0] = 1 − 1/K, and for n ≥ 1, b[n] =

−2 sin(πn/K)/(πn). Therefore, the design problem in (5) can
be transformed into the following optimization problem in rp[n]:

min
rp[n]

�
n≥0

b[n]rp[n] (6a)

subject to Rp(ejω) ≤ ε2sb ∀ω ∈ [π/K, π], (6b)
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�
i≥1

rp[Mi]2 ≤ ε2γ/2, (6c)

Rp(e
jω) ≤ B2 ∀ω, (6d)

rp[0] = K/M, (6e)

Rp(e
jω) ≥ 0 ∀ω. (6f)

The additional constraint in (6f) is a necessary and sufficient con-
dition for rp[n] to correspond to the autocorrelation coefficients of
a filter. Given a sequence rp[n] which solves (6), a correspond-
ing filter p[�] can be found using standard spectral factorization
techniques; e.g., [8]. The objective in (6a) and the constraints in
(6b), (6d), (6e), (6f) are linear, and hence convex, in rp[n], and
(6c) is a convex quadratic constraint. Therefore, the trade-offs be-
tween these competing prototype design criteria can be efficiently
evaluated and an optimal autocorrelation efficiently found using
convex optimization techniques. Furthermore, infeasibility of (6)
can be reliably detected. However, the constraints in (6b), (6d)
and (6f) each generate an infinite number of linear constraints on
rp[n], one for each relevant frequency, and it may appear that these
could be awkward to handle in practice. These constraints can be
approximated by discretization, but a precise alternative is to trans-
form them [9] into linear matrix inequalities (LMIs), which can be
efficiently enforced using semidefinite programming (SDP) tech-
niques. We will use the latter technique in our designs.

4. PERFORMANCE COMPARISON

We compare our design method with a method recently proposed
by Harteneck et al. [3]; see also [5]. This method is of interest
because, like our method, it generates filter banks with nearly pa-
raunitary polyphase matrices, and it tackles the distortion induced
by the filter bank directly. In the notation of the present paper,
Harteneck’s formulation can be written as

min
p[�]

λEP,sb + γ2
p +

��
� p[�]

2 −K/M
�

(7a)

subject to P (ejω) having linear phase, (7b)

where λ ≥ 0 is a chosen weighting. For odd length symmetric
filters, imposing phase linearity is equivalent to requiring p[�] =
p[L − 1 − �]. The problem in (7) is not convex, but local minima
can be found quite efficiently using an iterative least-squares tech-
nique. In the following example, we demonstrate how our formu-
lations can provide prototype filters with significantly better design
trade-offs than those generated by Harteneck’s method.

Example 1 In this example we design length 49 prototype fil-
ters for a GDFT filter bank with M = 8 subbands and a down-
sampling factor of K = 6. In Fig. 1 we provide the tradeoffs
between the normalized distortion coefficient, γ2

p/Ep, and the nor-
malized stop-band energy, EP,sb/Ep, achieved by different design
methods. Here, Ep =

�
� p[�]

2 is the energy of the filter. The
dashed curve in Fig. 1 is the trade-off achieved by Harteneck’s
method [3]. We have indicated the points achieved for specific
values of λ by the symbols on that curve. The solid curve in Fig. 1
is the inherent tradeoff between the distortion coefficient and the
stop-band energy, in the sense that no length 49 filter can achieve
any point below the curve. Filters achieving this trade-off can be
efficiently obtained by solving (6) in the absence of the spectral
mask imposed by (6b) and (6d). The dotted curves in Fig. 1 are
the inherent trade-off curves for filters which must also satisfy a
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Fig. 1. Trade-offs between the stop-band energy and the distortion
coefficient for Ex. 1. Solid: the inherent trade-off [our method,
no mask]; Dashed: Harteneck’s method [3]; Dotted: our method
with additional spectral mask constraints; Dotted with �,�: rel-
ative stop-band level is -30 dB; Dotted with �,�: relative stop-
band level is -33 dB. The symbols �, �, �, � indicate the trade-
offs achieved by Harteneck’s method with λ = 6.75 × 10−3,
4.34 × 10−2, 1.19, and 2.40, respectively.

spectral mask. For both dotted curves we chose B2 = 100.1K
so that the maximal spectral component was at most 1 dB above
the natural pass-band level induced by the energy normalization
in (6e). The maximum stop-band levels were chosen to be 30 dB
(the “taut” mask) and 33 dB (the “tighter” mask) below B2, re-
spectively. Despite having to satisfy these additional mask con-
straints, our method still generates a better distortion/stop-band en-
ergy trade-off than Harteneck’s method. The power spectra of rep-
resentative filters from the trade-off curves are provided in Fig. 2.
Each filter was found in under 5 s by solving an LMI version of
(6) using SeDuMi [10] on a 1.6 GHz Pentium IV workstation. �

Example 2 To verify that the improved trade-offs achieved by our
method (see Fig. 1) can generate significant performance gains
for the subband signal processing system as a whole, we exam-
ined the performance of a simple subband adaptive filtering system
equipped with the GDFT filter banks designed in Ex. 1 in a syn-
thetic acoustic echo cancellation (AEC) environment. In synthe-
sizing the filter banks from the prototype filter using (1), we chose
m0 = 1/2, and n0 = −(L − 1)/2. The latter choice ensures that
if p[n] has linear phase (as it does in Harteneck’s designs) then all
the filters in the filter bank also have linear phase.

We evaluated the average performance of the subband adaptive
filter over a class of randomly generated echo paths of length 60
with impulse response c[n] ∼ N (0, e−n/10). This class of echo
paths shares many of the characteristics of the acoustic impulse
response encountered in practical AEC applications. The adap-
tive filters had length 10 and were adapted using the normalized
least-mean square (NLMS) algorithm, with step-size coefficient
µ̃ = 0.8. The input signal was a (real) zero-mean white Gaussian
signal of unit variance, and in order to isolate the performance of
the filter bank, no noise was injected into the measured signal. To
illustrate the influence of the properties of the prototype on the
performance of the subband adaptive filter, we have provided in
Table 1 the steady-state mean square residual echo (averaged over
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(a) �: Harteneck’s method [3]
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(b) �: Harteneck’s method [3]
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(c) ◦: Our method, no mask
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(d) •: Our method, no mask
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(e) �: Our method, tighter mask
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Fig. 2. Power spectra of filters which achieve the stop-band energy
versus distortion coefficient trade-offs indicated by the symbols in
Fig. 1. The dotted and dashed lines indicate the stop-band edge and
spectral mask, respectively. In the left column γ2

p/Ep = 10−6,
whereas in the right column γ2

p/Ep = 10−4.

1000 realizations of the unknown system and the input signal) for
systems based on filters which achieve the marked trade-offs in
Fig. 1. For convenience we have listed in that table, the distortion
coefficient, the relative stop-band level (below B2 = 100.1K),
and the stop-band energy of each filter. From Table 1 it is clear
that for a given distortion coefficient, the lower stop-band energies
achieved by our formulations result in a significant improvement
in the steady-state error over that achieved by the corresponding
filter designed by Harteneck’s method. Table 1 also shows that the
presence of a taut spectral mask results in improved performance,
but that if this mask is too tight, then the performance degrades.
Furthermore, it can be seen that as the distortion constraint is re-
laxed from 10−8Ep, the performance of the filters from each de-
sign method improves, but as this constraint becomes rather loose,
the performance begins to degrade. �

While the performance differences in the simple setting in
Ex. 2 are rather subtle, this example has validated the major prin-
ciples of our design approach. First, the performance of a GDFT-
filter-bank-based subband adaptive filtering system depends on the
stop-band energy, the maximum stop-band level, and the distortion
coefficient; and second, to obtain optimized performance from the
subband adaptive filter in a particular application, we should ex-
plore the trade-offs between these three quantities. Our convex

Table 1. Steady-state mean square error (SS-MSE) for the adap-
tive filtering system in Ex. 2 equipped with prototype filters from
Fig. 1. Also included are the distortion coefficient, the maximum
relative stop-band level, and the stop-band energy.

Design Method Symbol γ2
p/Ep rel. SBL, EP,sb/Ep, SS-MSE,

in Fig. 1 dB ×10−4 dB

Harteneck [3] � 10−8 -18.7 17.6 -19.93

Ours, no mask ⊕ 10−8 -24.2 2.04 -23.27

Ours, taut mask � 10−8 -30.0 2.99 -23.61

Ours, tighter mask � 10−8 -33.0 6.36 -22.98

Harteneck [3] � 10−6 -20.3 5.78 -21.98

Ours, no mask ◦ 10−6 -24.5 1.93 -23.35

Ours, taut mask � 10−6 -30.0 2.59 -23.69

Ours, tighter mask � 10−6 -33.0 3.85 -23.62

Harteneck [3] � 10−4 -21.8 3.80 -22.43

Ours, no mask • 10−4 -25.7 1.09 -23.77

Ours, taut mask � 10−4 -30.0 1.41 -24.00

Ours, tighter mask 	 10−4 -33.0 2.02 -24.07

Harteneck [3] 
 10−3 -23.3 2.44 -22.01

Ours, no mask ⊗ 10−3 -30.0 0.50 -23.21

Ours, tighter mask 10−3 -33.0 0.53 -23.35

formulation in (6) provides an efficient method for evaluating these
trade-offs and should be a convenient tool for system designers.
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