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ABSTRACT

In this paper we discuss the design of passband linear phase IR
filter banks composed of allpass sections which are structurally
constrained to have low coefficient sensitivity and low roundoff
noise level. The design problem is formulated as H.. horm mini-
mization which is subsequently converted to a series of LMIsand
solved by semidefinite programming. Simulation results shown
that subband filters with passband linear phase property and high
stopband attenuation are obtained, and the whole filter banks has
small reconstruction error.

1. INTRODUCTION

Consider an analysis subband filter pair with transfer functions as
shown in the block diagram in Figure 1,

Ho(z) = 0.5[Ao(z2)—&—zilAl(z2)]7 Q)
Hi(z) = 0.5[A0(2°) — 2z " A1(z%)], 2

with Ag(z) and A1(z) being stable alpass filters of orders Ko
and K respectively. The parallel connection of the two allpass
filters described in Figure 1 offers one of the best structuresfor IIR
filter implementation. Such filter structures have low coefficient
sensitivity and a low roundoff noise level [1]. Furthermore, they
can be realized efficiently by using first and second-order allpass
sections as the basic building blocks. The resulting filter structures
are highly modular, making them suitable for signal processor and
VLS implementations.

The above filter structure was adopted to design and imple-
ment 2-channel filter banks as shown in Figure 2, where Ey, E1,
Ro and R; are alpass filters. The subband filters of such filter
banks inherit the advantages of low coefficient sensitivity and low
roundoff noise level. However, designing the allpass filters for
such filter banks is not easy. The focus of much research activity
has been on searching for an algorithm to design such filter banks.
The design method in [2] suggested having Ao(z) = Ai(z71),
and the analysis and synthesis subband filters quadrature related
so that they form an orthogonal filter bank, with a structurally per-
fect reconstruction property. However, such structural constraints
have left afew degree of freedom to design filter banks with de-
sired properties, such as high stopband attenuation etc [3]. The
orthogonal structure [2] is relaxed in [4], so that only the quadra-
ture condition is retained. That better filter banks can be obtained
is shown in [4]. However, the design method is complicated and
this results various design approximations being proposed in the
literature. For example, in [5], instead of designing the allpass fil-
ter directly, aFIR filter isfirst designed and this is then converted
to an allpassfilter. A different approximation approach is consid-
ered in [4], where the phase response of the filter is approximated
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using an orthogonal series. A close form expression of the sub-
band filter coefficients is presented in [4]. In a different approach,
[6] considered the case of Ao(z) as a delay function. Only the
phase response of A:(z) needsto be designed. An eigenfilter de-
sign method is used to design A; (z).

In our research, the allpass filter design problem for 2-channel
filter banks is converted into an H., optimization problem. This
was done so that the readily available semidefinite programming
software tool could be used to solve the optimization problem.
The proposed formulation was straight forward and resulted in
good performance filter banks with high stopbband attenuation,
and small spectral overlap subband filters compared to those in
[2, 3, 4, 5, 6]. Furthermore, the proposed design method does
not impose any relationship between the analysis and synthesis
subband filters, nor between the allpass filters that form the sub-
band filters. Design examples are presented when the allpass fil-
ters that result in linear phase analysis subband filters are used.
Linear phase synthesis subband filters with high stopband attenua-
tions are obtained through the use of the proposed design method.
A last note, the subband filters shown in Figure 2 are structurally
imposed as mirror images in the frequency domain. As a result,
the good spectral property of one subband filter, such as high stop-
band attenuation, resultsin filter banks with agood overall spectral
response.

2. TWO CHANNEL FILTER BANKS

The structure shown in Figure 2 has the reconstructed signal z(n).

Thisrelates to the input signal z(n) as

X(z) = 0.5(Ho(2)Fo(z) + Hi(2)F1(2))X (2
+0.5(Ho(—2)Fo(z) + Hi(—2)F1(2)) X (—2)

T(2)X(2) + A(2) X(=2), ®)

whereT'(z) = 0.5(Ho(z) Fo(z)+H1(z)F1(z)) isthelinear trans-
fer function of the filter banks. A(z) = 0.5(Ho(—2)Fo(z) +
Hq(—z)Fi(z)) isthe aliasing component of the filter banks. The
filter banks are perfect reconstructionwhen A(z) = 0,and T'(z) =
cz~* for some nonzero ¢ € R and ¢ € Z, such that the filter banks
form ascaled delay system.

Traditionally, the analysis and synthesis subband filters are
QM (quadrature mirror) related. This is because the mirror fil-
ter bank has alower implementation complexity compared to sys-
tems with unrelated lowpass and highpass filters [8]. Secondly,
the aliasing component, A(z), is structurally eliminated when the
analysis and synthesis filter banks are quadraturally related. In-
stead of following the QMF design, we considered the filter banks
shown in Figure 2, where the subband filters are pairwise mirror
related with H1(z) = Ho(—z2) and Fi(z) = —Fo(—z). The
polyphase realization of the analysis and synthesis subband filters
are given by

Ho(z) = Eo(22) + 27 E1(22), Hi(z) = Eo(2%) — 27 1E1(2?),
Fo(z) = R1(2%) + 27 Ro(2?), F1(2) = —R1(2?) + 27T Ro(2?).
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Thelinear term T'(z), and aliasing term A(z) are given by

(ZQ)R()(ZQ) + EI(ZQ)RI(ZQ)), (6)
(2*)Ro(2*) = E1(2*)Ra(2%)). (7)

It is observed from eq.(6) and eq.(7) that if

T(Z) = Z_I(Eo
and A(z) = z YEo

Ei(2)Ri(z) =~z %, i=0,1, 8)

is satisfied, we will obtain
T(z) ~ 2 D, ©
Alz) ~ 0. (10)

As aresult, a perfect reconstruction system isrealized.
3. Hoo MODEL-MATCHING DESIGN

If E;(z) and R;(z),i = 0,1 areimposed as the allpass functions.
The filter banks described by eq.(4) and eq.(5) will inherit al the
nice implementation properties described in the Introduction. As-
sume that the allpass filters E;(z) and Ri(z), ¢ = 0,1, have a
representation as

NE. (Z) NE(Z) .
E; = - = - s =0,1, (11
(Z) DE,Lv (z) z_LEi Np (2*1) 7 ( )
Ai(z)
Nr,(2) Bi(2) .
i(z) = R D , i=0,1. (12
R (Z) Dr, (Z) LA, A1) 1 =0 (12)

where Lg,, La, and Lp, are the orders of polynomials Ng, (z),
A;(z) and B;(z) respectively. From eq.(12), if L4, = Lp,, then
the polyphase components R;(z), ¢ = 0, 1, can be written as

Al(z)Bz(z_l)

B B @AGT)

1=0,1, (13)
which are allpass functions. As aresult, with specified polyphase
components Ng, (z), i = 0, 1, the polyphase components R;(z),
1 = 0,1 can be achieved by

1=0,1, (14)

K—Lg,

with m = >—, 4 = 0,1. Note that eq.(8) is satisfied when
eq.(14) isfullfilled. Asaresult, the perfect reconstruction property
of the filter banks system is redlized. Eq.(14) can be viewed as a
traditional equalization problem between Ng, (z) and Ng, (z) =
5. The equalization problem can be formulated as a Ho.
model matching problem,

miny; : v =[|0.527" — N, (2)Nr; (2)|leo Vi=0,1. (15
The above model-matching problem can be transformed to the
standard controller design problem [9] as shown in Figure 3. The
transfer function of the plant is given by

Gi(z):(]\‘?;((zg) ‘0[), Vi=01, (16)

with W (z) = 0.5z~™ being the ideal response of the equalized
systemin eg.(15). The solution of thefull-order H., model match-
ing problem can be obtained by solving a Riccati equation. How-
ever, the standard H, approaches result in filters of order equal

to the order of the system. However, reduced-order filters, i.e.,
filters of order lower than the order of the system, are often de-
sirable to reduce the complexity and computational burden of the
real-time processing. Reduced-order H., model-matching prob-
lem have been considered in [15] but the general problem has
not been addressed. Reduced order H., model-matching prob-
lem results in nonconvex problems that can be solved with linear
matrix inequalities (LMI) [17][16]. The LMI can be solved effi-
ciently and exactly by using semidefinite programmings [10]. Let

ég Do = Cum(zl -
An) "B + Day. The state descriptions of the matrix compo-
nentsin the plant G;(z) are given by

Aw | Bw
e (w
Ne(s) = —ptpte

The system matrix of the plant G; (=) in Figure 3isgiven by

denotes the system matrix of M(z)

Vi=0,1. (18)

Aw 0 ‘ By 0
G(z) _ Ag | Bg _ 0 ANE. BNE. 0
v - Ca | Da ~— Cw 0 Dw —I

0 CNEi‘DNE,; 0

A| Bi B
C1 | D1 D12
C2 | D21 Da2
The H.. norm ~; in eq.(15) can be minimized over R = R” and
S = ST, while R and S satisfy [11, 12],

v [ AR+ RAT RCT B
(NO” ?) ( CiR -yl Du (NO” ?)<07

Vi=0,1. (19)

BT D, -l
(20)
ATsS+sA sB; coFf
Noy 0 T 2 Noy 0
( 0 1) Bf'S  -wI D ( 0 I><0’
& D11 =il
(21)
R I
(F §)=0 @

with N2 and N»; denotes the bases of the null spaces of (BT, DT,)
and (Ca, D21), respectively. LMIs (20), (21) and (22) are con-
vex constraints on R,.S and X, and can be solved using con-
vex programming [10]. The state space parameters of the opti-
mal controller Ng, (z) can be derived from the optimization result
(R, S,v:) [13]. Existing H optimization tools, such as dhinflmi
in the Matlab LMI toolbox [11], can be used to solve the above
LMI optimization problem. This method gives the IIR solution
Nr,(2) = 5-& with order L4, equal to L, , i = 0,1. Given

B;(z)
system delay KD = 2K + 1 and order Lg,, the order of the syn-

thesis polyphase components are both equal to ﬂ .

4. NEAR PHASE-ERROR-FREE PROPERTY

Although the optimization problem in eg.(14) deals with the poly-
phase components of the subband filters, it can be shown that
the obtained synthesis filter bank has linear phase property with a
given linear phase analysisfilter bank. Asderivedin[14], the prod-
uct of the polyphase components Eo(z)E1(z) of alinear phase
FIR or IIR filter H(z) = Eo(2%) + 2~ 'F1(2?) is either sym-
metric or antisymmetric. Assume the H, optimization problem
in eg.(14) has achieved a reasonably good solution. As a result,
eq.(8) is satisfied. Substituting eq.(8) into eq.(5) yields a pair of
synthesis subband filters,
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Fo(z) = 272K Eo(2%) + 2 ' E1(2%) _ 2K Ho(z)
Eo(22)E1 (22) Eo(22)E1(22)’
Fi(z) ~ —z72K Bo(z?) =2 'Ei(2®) ok Hi(2)
Eo(22)E1(22) Eo(22)E1(2%)

Since Ho(z) and H,(z) are linear phase filters and the product
of the polyphase components Ey(z) E1(z) is either symmetric or
antisymmetric, the synthesis subband filters have linear phase re-
sponses. In practice, the H., optimization problem will achieve
good approximation in the passband region of the subband filter.
Asaresult, the design examples presented in Section V have good
passhand linear phase properties. The passhand linear phase prop-
erty effectively supports the linear phase property of the overall
filter banks.
5. DESIGN EXAMPLES

Two examples are presented in this section to demonstrate the ef-
fectiveness of the proposed design method.

Example 1: The lIR analysisfilter bank considered in [3] with

linear phase analysislowpassfilter Ho(z) = 2~ *(A(2*)+27 1 A(z7?)),

where A(z) = Ltez_tbs 2 with o = 5.50430940744155 and
b = 2.07205705612382, is applied. The magnitude response of
the allpass analysis filters is shown in Figure 4(a). The synthe-
sisfilter bank isdesigned in such away that the overall filter banks
system has asystem delay equalsto 2K + 1 = 29. The magnitude,
and phase response of the designed synthesis filter bank are shown
in Figures 4(b) and (c), respectively. The stopband attenuation of
the designed synthesis subband filter is larger than 45.7dB and the
phase response is passband linear across the spectrum. The mag-
nitude response of the overall filter banks system, shown in Figure
4(e), hasaripple size smaller than 8 x 10~° dB . Furthermore, the
synthesis filters have linear phase properties, as can be observed in
Figure 4(f). The aliasing error of the overall filter banks system is
less than -40dB, as shown in Figure 4(d).

Example 2: The IIR lowpass filter considered in [7] is ap-
plied to construct the analysis lowpass subband filter Hyo(z) =

m% + 271%. The magnitude and phase
responses of the analysis filter bank are shown in Figures 5(a) and
(b) respectively. The synthesisfilter bank is designed to achieve an
overal filter banks system delay equalsto 2K +1 = 31. Themag-
nitude response of the designed synthesis filter banks, shown in
Figure 5(c), has approximately 40dB stopband attenuation. More-
over, the synthesis subband filters have linear phase responses in
the passband, as can be observed in Figure 5(d). The passband
linear phase property effectively supports the overal filter banks
system to has a linear phase response as shown in Figure 5(g).
The magnitude response of the overall filter banks system achieves
amaximal ripple size smaller than 3.5 x 10~* dB, as shown in
Figure 5(f). The dliasing error of the overall filter banks system,
shown in Figure 5(¢), is smaller than -33dB.

6. CONCLUSIONS

A method for designing IIR filter banks with a passband linear
phase properties was presented. The designed subband filterswere
composed with allpass sections which were structurally constrained
to have low coefficient sensitivity and low roundoff noise level.
The design problem was formulated as H., minimization of a
model matching problem. The H., optimization problem was sub-
sequently converted to a series of LMIs and solved using semidef-
inite programming. Two design examples were presented, where
the analysis filter banks were formed by linear phase and pass-
band linear phase filters in the literature. The designed synthesis

filter banks have high stopband attenuation, good spectral separa-
tion and linear phase responses. Small reconstruction errors and
linear phase properties are observed from the overall filter banks
response in both examples. Both examples have shown to achieve
better synthesis filter banks compared to those discussed in the
literature. The proposed design method can be extended to multi-
channel filter banks using the method suggested in [7].
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Fig. 1. Lowpass and highpass filter pairs composed using parallel
allpass sections.
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Fig. 2. 2 channel filter banks composed by parallel allpass sections.
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Fig. 3. The synthesis filter polyphase component design formulated as model-matching problem, and its equivalent controller design
problem
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Fig. 4. The magnitude response of (a) the linear phase IR analysis filter bank and (b) the synthesis filter bank. (c) The phase response of
the synthesis filter bank. (d) the aliasing error and (€) The magnitude response, and (f) the phase response of the filter banks.
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