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ABSTRACT

In this paper we discuss the design of passband linear phase IIR
filter banks composed of allpass sections which are structurally
constrained to have low coefficient sensitivity and low roundoff
noise level. The design problem is formulated as H∞ norm mini-
mization which is subsequently converted to a series of LMIs and
solved by semidefinite programming. Simulation results shown
that subband filters with passband linear phase property and high
stopband attenuation are obtained, and the whole filter banks has
small reconstruction error.

1. INTRODUCTION

Consider an analysis subband filter pair with transfer functions as
shown in the block diagram in Figure 1,

H0(z) = 0.5[A0(z
2) + z−1A1(z

2)], (1)

H1(z) = 0.5[A0(z
2) − z−1A1(z

2)], (2)

with A0(z) and A1(z) being stable allpass filters of orders K0

and K1 respectively. The parallel connection of the two allpass
filters described in Figure 1 offers one of the best structures for IIR
filter implementation. Such filter structures have low coefficient
sensitivity and a low roundoff noise level [1]. Furthermore, they
can be realized efficiently by using first and second-order allpass
sections as the basic building blocks. The resulting filter structures
are highly modular, making them suitable for signal processor and
VLSI implementations.

The above filter structure was adopted to design and imple-
ment 2-channel filter banks as shown in Figure 2, where E0, E1,
R0 and R1 are allpass filters. The subband filters of such filter
banks inherit the advantages of low coefficient sensitivity and low
roundoff noise level. However, designing the allpass filters for
such filter banks is not easy. The focus of much research activity
has been on searching for an algorithm to design such filter banks.
The design method in [2] suggested having A0(z) = A1(z

−1),
and the analysis and synthesis subband filters quadrature related
so that they form an orthogonal filter bank, with a structurally per-
fect reconstruction property. However, such structural constraints
have left a few degree of freedom to design filter banks with de-
sired properties, such as high stopband attenuation etc [3]. The
orthogonal structure [2] is relaxed in [4], so that only the quadra-
ture condition is retained. That better filter banks can be obtained
is shown in [4]. However, the design method is complicated and
this results various design approximations being proposed in the
literature. For example, in [5], instead of designing the allpass fil-
ter directly, a FIR filter is first designed and this is then converted
to an allpass filter. A different approximation approach is consid-
ered in [4], where the phase response of the filter is approximated
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using an orthogonal series. A close form expression of the sub-
band filter coefficients is presented in [4]. In a different approach,
[6] considered the case of A0(z) as a delay function. Only the
phase response of A1(z) needs to be designed. An eigenfilter de-
sign method is used to design A1(z).

In our research, the allpass filter design problem for 2-channel
filter banks is converted into an H∞ optimization problem. This
was done so that the readily available semidefinite programming
software tool could be used to solve the optimization problem.
The proposed formulation was straight forward and resulted in
good performance filter banks with high stopbband attenuation,
and small spectral overlap subband filters compared to those in
[2, 3, 4, 5, 6]. Furthermore, the proposed design method does
not impose any relationship between the analysis and synthesis
subband filters, nor between the allpass filters that form the sub-
band filters. Design examples are presented when the allpass fil-
ters that result in linear phase analysis subband filters are used.
Linear phase synthesis subband filters with high stopband attenua-
tions are obtained through the use of the proposed design method.
A last note, the subband filters shown in Figure 2 are structurally
imposed as mirror images in the frequency domain. As a result,
the good spectral property of one subband filter, such as high stop-
band attenuation, results in filter banks with a good overall spectral
response.

2. TWO CHANNEL FILTER BANKS

The structure shown in Figure 2 has the reconstructed signal x̂(n).
This relates to the input signal x(n) as

X̂(z) = 0.5(H0(z)F0(z) + H1(z)F1(z))X(z)

+0.5(H0(−z)F0(z) + H1(−z)F1(z))X(−z)

= T (z)X(z) + A(z)X(−z), (3)

where T (z) = 0.5(H0(z)F0(z)+H1(z)F1(z)) is the linear trans-
fer function of the filter banks. A(z) = 0.5(H0(−z)F0(z) +
H1(−z)F1(z)) is the aliasing component of the filter banks. The
filter banks are perfect reconstruction when A(z) = 0, and T (z) =
cz−� for some nonzero c ∈ R and � ∈ Z, such that the filter banks
form a scaled delay system.

Traditionally, the analysis and synthesis subband filters are
QM (quadrature mirror) related. This is because the mirror fil-
ter bank has a lower implementation complexity compared to sys-
tems with unrelated lowpass and highpass filters [8]. Secondly,
the aliasing component, A(z), is structurally eliminated when the
analysis and synthesis filter banks are quadraturally related. In-
stead of following the QMF design, we considered the filter banks
shown in Figure 2, where the subband filters are pairwise mirror
related with H1(z) = H0(−z) and F1(z) = −F0(−z). The
polyphase realization of the analysis and synthesis subband filters
are given by

H0(z) = E0(z
2) + z−1E1(z2), H1(z) = E0(z

2) − z−1E1(z2), (4)

F0(z) = R1(z2) + z−1R0(z
2), F1(z) = −R1(z

2) + z−1R0(z2). (5)
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The linear term T (z), and aliasing term A(z) are given by

T (z) = z−1(E0(z
2)R0(z

2) + E1(z
2)R1(z

2)), (6)

and A(z) = z−1(E0(z
2)R0(z

2) − E1(z
2)R1(z

2)). (7)

It is observed from eq.(6) and eq.(7) that if

Ei(z)Ri(z) ≈ z−K , i = 0, 1, (8)

is satisfied, we will obtain

T (z) ≈ z−(2K+1), (9)

A(z) ≈ 0. (10)

As a result, a perfect reconstruction system is realized.

3. H∞ MODEL-MATCHING DESIGN

If Ei(z) and Ri(z), i = 0, 1 are imposed as the allpass functions.
The filter banks described by eq.(4) and eq.(5) will inherit all the
nice implementation properties described in the Introduction. As-
sume that the allpass filters Ei(z) and Ri(z), i = 0, 1, have a
representation as

Ei(z) =
NEi(z)

DEi(z)
=

NEi(z)

z−LEi NEi(z
−1)

, i = 0, 1, (11)

Ri(z) =
NRi(z)

DRi(z)
=

Ai(z)
Bi(z)

z
−LAi Ai(z

−1)

z
−LBi Bi(z

−1)

, i = 0, 1. (12)

where LEi , LAi and LBi are the orders of polynomials NEi(z),
Ai(z) and Bi(z) respectively. From eq.(12), if LAi = LBi , then
the polyphase components Ri(z), i = 0, 1, can be written as

Ri(z) =
Ai(z)Bi(z

−1)

Bi(z)Ai(z−1)
, i = 0, 1, (13)

which are allpass functions. As a result, with specified polyphase
components NEi(z), i = 0, 1, the polyphase components Ri(z),
i = 0, 1 can be achieved by

NEi(z)
Ai(z)

Bi(z)
≈ z−m, i = 0, 1, (14)

with m =
K−LEi

2
, i = 0, 1. Note that eq.(8) is satisfied when

eq.(14) is fullfilled. As a result, the perfect reconstruction property
of the filter banks system is realized. Eq.(14) can be viewed as a
traditional equalization problem between NEi(z) and NRi(z) =
Ai(z)
Bi(z)

. The equalization problem can be formulated as a H∞
model matching problem,

minγi : γi = ‖0.5z−m − NEi
(z)NRi

(z)‖∞ ∀ i = 0, 1. (15)

The above model-matching problem can be transformed to the
standard controller design problem [9] as shown in Figure 3. The
transfer function of the plant is given by

Gi(z) =

(
W (z) −I

NEi(z) 0

)
, ∀ i = 0, 1, (16)

with W (z) = 0.5z−m being the ideal response of the equalized
system in eq.(15). The solution of the full-order H∞ model match-
ing problem can be obtained by solving a Riccati equation. How-
ever, the standard H∞ approaches result in filters of order equal

to the order of the system. However, reduced-order filters, i.e.,
filters of order lower than the order of the system, are often de-
sirable to reduce the complexity and computational burden of the
real-time processing. Reduced-order H∞ model-matching prob-
lem have been considered in [15] but the general problem has
not been addressed. Reduced order H∞ model-matching prob-
lem results in nonconvex problems that can be solved with linear
matrix inequalities (LMI) [17][16]. The LMI can be solved effi-
ciently and exactly by using semidefinite programmings [10]. Let

AM BM

CM DM
denotes the system matrix of M(z) = CM (zI −

AM )−1BM + DM . The state descriptions of the matrix compo-
nents in the plant Gi(z) are given by

W (z) =
AW BW

CW DW
, (17)

NEi(z) =
ANEi

BNEi

CNEi
DNEi

, ∀ i = 0, 1. (18)

The system matrix of the plant Gi(z) in Figure 3 is given by

Gi(z) =
AG BG

CG DG
=

AW 0 BW 0
0 ANEi

BNEi
0

CW 0 DW −I
0 CNEi

DNEi
0

=
A B1 B2

C1 D11 D12

C2 D21 D22

, ∀ i = 0, 1. (19)

The H∞ norm γi in eq.(15) can be minimized over R = RT and
S = ST , while R and S satisfy [11, 12],

(
N12 0
0 I

)T


 AR + RAT RCT

1 B1
C1R −γiI D11

BT
1 DT

11 −γiI


 (

N12 0
0 I

)
< 0,

(20)(
N21 0
0 I

)T


 AT S + SA SB1 CT

1
BT

1 S −γiI DT
11

C1 D11 −γiI


 (

N21 0
0 I

)
< 0,

(21)(
R I
I S

)
≥ 0, (22)

with N12 and N21 denotes the bases of the null spaces of (BT
2 , DT

12)
and (C2, D21), respectively. LMIs (20), (21) and (22) are con-
vex constraints on R, S and X, and can be solved using con-
vex programming [10]. The state space parameters of the opti-
mal controller NRi(z) can be derived from the optimization result
(R, S, γi) [13]. Existing H∞ optimization tools, such as dhinflmi
in the Matlab LMI toolbox [11], can be used to solve the above
LMI optimization problem. This method gives the IIR solution
NRi(z) = Ai(z)

Bi(z)
with order LAi equal to LBi , i = 0, 1. Given

system delay KD = 2K + 1 and order LEi , the order of the syn-

thesis polyphase components are both equal to
K+LEi

2
.

4. NEAR PHASE-ERROR-FREE PROPERTY

Although the optimization problem in eq.(14) deals with the poly-
phase components of the subband filters, it can be shown that
the obtained synthesis filter bank has linear phase property with a
given linear phase analysis filter bank. As derived in [14], the prod-
uct of the polyphase components E0(z)E1(z) of a linear phase
FIR or IIR filter H(z) = E0(z

2) + z−1E1(z
2) is either sym-

metric or antisymmetric. Assume the H∞ optimization problem
in eq.(14) has achieved a reasonably good solution. As a result,
eq.(8) is satisfied. Substituting eq.(8) into eq.(5) yields a pair of
synthesis subband filters,
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F0(z) ≈ z−2K E0(z2) + z−1E1(z2)

E0(z2)E1(z2)
= z−2K H0(z)

E0(z2)E1(z2)
,

F1(z) ≈ −z−2K E0(z2) − z−1E1(z2)

E0(z2)E1(z2)
= −z−2K H1(z)

E0(z2)E1(z2)
.

Since H0(z) and H1(z) are linear phase filters and the product
of the polyphase components E0(z)E1(z) is either symmetric or
antisymmetric, the synthesis subband filters have linear phase re-
sponses. In practice, the H∞ optimization problem will achieve
good approximation in the passband region of the subband filter.
As a result, the design examples presented in Section V have good
passband linear phase properties. The passband linear phase prop-
erty effectively supports the linear phase property of the overall
filter banks.

5. DESIGN EXAMPLES
Two examples are presented in this section to demonstrate the ef-
fectiveness of the proposed design method.

Example 1: The IIR analysis filter bank considered in [3] with
linear phase analysis lowpass filter H0(z) = z−4(A(z2)+z−1A(z−2)),

where A(z) = 1+az−1+bz−2

b+az−1+z−2 with a = 5.50439940744155 and
b = 2.07205705612382, is applied. The magnitude response of
the allpass analysis filters is shown in Figure 4(a). The synthe-
sis filter bank is designed in such a way that the overall filter banks
system has a system delay equals to 2K+1 = 29. The magnitude,
and phase response of the designed synthesis filter bank are shown
in Figures 4(b) and (c), respectively. The stopband attenuation of
the designed synthesis subband filter is larger than 45.7dB and the
phase response is passband linear across the spectrum. The mag-
nitude response of the overall filter banks system, shown in Figure
4(e), has a ripple size smaller than 8× 10−5 dB . Furthermore, the
synthesis filters have linear phase properties, as can be observed in
Figure 4(f). The aliasing error of the overall filter banks system is
less than -40dB, as shown in Figure 4(d).

Example 2: The IIR lowpass filter considered in [7] is ap-
plied to construct the analysis lowpass subband filter H0(z) =
0.105573+z−1

1+0.105573z−1 + z−1 0.527864+z−1

1+0.527864z−1 . The magnitude and phase
responses of the analysis filter bank are shown in Figures 5(a) and
(b) respectively. The synthesis filter bank is designed to achieve an
overall filter banks system delay equals to 2K+1 = 31. The mag-
nitude response of the designed synthesis filter banks, shown in
Figure 5(c), has approximately 40dB stopband attenuation. More-
over, the synthesis subband filters have linear phase responses in
the passband, as can be observed in Figure 5(d). The passband
linear phase property effectively supports the overall filter banks
system to has a linear phase response as shown in Figure 5(g).
The magnitude response of the overall filter banks system achieves
a maximal ripple size smaller than 3.5 × 10−4 dB, as shown in
Figure 5(f). The aliasing error of the overall filter banks system,
shown in Figure 5(e), is smaller than -33dB.

6. CONCLUSIONS

A method for designing IIR filter banks with a passband linear
phase properties was presented. The designed subband filters were
composed with allpass sections which were structurally constrained
to have low coefficient sensitivity and low roundoff noise level.
The design problem was formulated as H∞ minimization of a
model matching problem. The H∞ optimization problem was sub-
sequently converted to a series of LMIs and solved using semidef-
inite programming. Two design examples were presented, where
the analysis filter banks were formed by linear phase and pass-
band linear phase filters in the literature. The designed synthesis

filter banks have high stopband attenuation, good spectral separa-
tion and linear phase responses. Small reconstruction errors and
linear phase properties are observed from the overall filter banks’
response in both examples. Both examples have shown to achieve
better synthesis filter banks compared to those discussed in the
literature. The proposed design method can be extended to multi-
channel filter banks using the method suggested in [7].
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Fig. 1. Lowpass and highpass filter pairs composed using parallel
allpass sections.

VI - 487

➡ ➡



E (z )0

2

E (z )1

2z
-1

-1

2

2

R (z )1

2z
-1

R (z )1

2

-1

2

2

X(z) X(z)
^

Fig. 2. 2 channel filter banks composed by parallel allpass sections.
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Fig. 3. The synthesis filter polyphase component design formulated as model-matching problem, and its equivalent controller design
problem
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Fig. 4. The magnitude response of (a) the linear phase IIR analysis filter bank and (b) the synthesis filter bank. (c) The phase response of
the synthesis filter bank. (d) the aliasing error and (e) The magnitude response, and (f) the phase response of the filter banks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

Normalized Frequency  (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

( a ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−500

−400

−300

−200

−100

0

100

Normalized Frequency  (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

( b ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−80

−60

−40

−20

0

Normalized Frequency  (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

( c ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4000

−3000

−2000

−1000

0

1000

Normalized Frequency  (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

( d ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−80

−60

−40

−20

0

Normalized Frequency  (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

( e ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4
x 10

−4

Normalized Frequency  (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

( f ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5000

−4000

−3000

−2000

−1000

0

Normalized Frequency  (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

( g ) 

Fig. 5. The magnitude response of (a) the linear phase IIR analysis filter bank and (c) the synthesis filter bank. The phase response of (b)
the analysis filter bank and (d) the synthesis filter bank. (e) The aliasing error, (f) the magnitude response and (g) the phase response of the
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