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ABSTRACT

With the advent of wavelets for lossy data compression came the
notion of representing signalsin acertain vector space by their pro-
jections in well chosen subspaces of the original space. In this pa-
per, we consider the subspace of signals generated by an overdec-
imated rational nonuniform filter bank and find the optimal condi-
tions under which the mean-squared error between a given deter-
ministic signal and its representation in this subspace is minimized
for afixed set of synthesisfilters. Under these optimal conditions,
it is shown that choosing the synthesis filters to further minimize
this error is simply an energy compaction problem. With this, we
introduce the notion of deterministic energy compaction filters for
classes of signals. Simulation results are presented showing the
merit of our proposed method for optimizing the synthesis filters.!

1. INTRODUCTION

Along with the introduction of wavelets in the field of signal pro-
cessing came the notion of representing signals in a given vector
space, usualy ¢, by their projections in certain specia types of
subspaces of the original space. The impetus for such arepresen-
tation arises in lossy data compression and multiresolution theory
[3, 4], since the above projections often require less information
to be stored than the original signal itself at the cost of a small
amount of loss of fidelity.

In this paper, we consider the subspace of signals generated by
an overdecimated rational nonuniform synthesis bank as shown in
Figure 1. By overdecimated, we mean that,
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and so the inputs {cx(n)} operate at alower overall rate than the
output y(n). The subspace V' that we will focus on is defined by,
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For afixed set of synthesisfilters { £} (z)}, wewill find the optimal
choice of the driving signals {cx(n)} which minimize the mean-
squared error between y(n) and any given signa z(n) € £2. This
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Fig. 1. Rational nonuniform synthesis filter bank.

is a generalization of the results given in [7] for integer nonuni-
form filter banks. Though rational nonuniform filter banks can be
shown to be transformable to integer nonuniform filter banks, our
approach avoids this complicated transformation and solves the
least squares problem in a more direct way.

In addition to solving this least squares problem, we also con-
sider optimizing the synthesisfiltersto further minimize the mean-
squared error. Thisis shown to be analogous to choosing the op-
timum filter for compacting the energy of a process whose power
spectrum isrelated to the blocked version of the given signal z:(n).
Though for a single deterministic signal, we can trivialy force the
mean-squared error to be zero through proper choice of the synthe-
sisfilters, thefilters here are chosen to minimize the mean-squared
error for aclass of deterministic signals with certain practical con-
straints. With this, we introduce the notion of deterministic energy
compaction filters for classes of signals. Experimental results pro-
vided here show the merit of our proposed method.

1.1. Notations

All notations are asin [6] unless specified otherwise. In particular,
M -fold decimation and expansion will be represented by the sym-
bols | M and 7 M, respectively. Also, the M -fold blocked version
of ascalar signal xz(n) isan M x 1 vector signal x(n) given by,

x(Mn+1)
x(n)

2(Mn + (M — 1))

Finally, the M -fold blocked representation of ascalar transfer func-
tion H(z) isan M x M multiple-input multiple-output (MIMO)
pseudocirculant system H(z) whose 0-th column consists of the
Type 1 polyphase components of H(z).
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2. LEAST SQUARES SIGNAL APPROXIMATION MODEL

Consider the rational nonuniform synthesis filter bank shown in
Figure 1. We will make the following assumptions here.

e ged(mi,ng) =1 VEk (Coprimenessof my and ng)

P—-1
o« > Mk 4 (Overdecimated system)
k=0 'k

There is no loss of generality in making the first assumption, as
common factors between m;, and ny, can be absorbed into thefilter
Fy(z). The second assumption ensures that the subspace V in (1)
isaproper subspace of /2. Let us define the following integers.
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Note that as the system is overdecimated, we have K < N.
The goal hereisto choose the driving signals {cx(n)} to min-
imize the mean-squared error objective,
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where z(n) isany signa in ¢2. If x(n) and y(n) denote, respec-
tively, the V-fold blocked versions of z(n) and y(n), we have,

£=3 lly(n) —x(n)?

Using Parseval’s relation, thisin turn can be expressed as follows.
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where X (z) and Y (z) denote, respectively, the z-transforms of
x(n) andy(n).

To simplify Y (z), consider the k-th branch of the system of
Figure 1 reproduced in Figure 2(a). If we implement Fy(z) in an
my, N-fold block form, we obtain the system shown in Figure 2(b),
where A (z) isanm N x my N pseudocirculant matrix [6] with,

[Ar(2),,s = [ Fe(2)] |y

for0 < r,s < myN — 1. By applying the polyphase identity [6],
the expander on theleft (T n) aswell asthe decimator on the right
(] my) can be moved across the network resulting in the system of
Figure 2(c). The N x mypy, transfer matrix F(z) is obtained by
preserving only the NV rows of A(z) which are multiples of my,
and the mxpr. columns which are multiples of . In other words,

. . 2
Y () - X(e]“’)H dw @

[Fi(2)],., = zcmk‘d"ka(z)] = |:z [z‘d”ka(Z)] lmJ
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for0 <c¢c< N—-1land0 < d < mypr — 1. Notethat from Figure
2(c), cx(n) issimply the mypi-fold blocked version of ¢x(n) and
vk (n) isthe N-fold blocked version of y(n). Clearly, we have,

Yi(2) = Fi(2)Cx(2) 4

But note that we have,

yn) = 3 () <= y(m) = 3 ya(n)
Thus, using (4), we get,
Y(z) = Z_ Yi(z) = - Fi(2)Ck(z)
k=0 k=0

This can be expressed as,
C()(Z)
Cl(Z)

Y(2) =[ Fo(z) Fi(2) Fr_i(2) |

F(z) CP_I(Z)
N—

C(z)

©)
whereF(z) isan N x K matrix and C(z) isa K x 1 vector. Note
that even though the fixed matrix F'(z) has arestricted structure as
can be seen from (3), the vector C(z) is completely arbitrary.

Substituting (5) into (2), we have,
_ 1 ST oy |2
Efﬁ/o F(/*)C(e) — X(e )H dw
€(w)

and so we can minimize & by minimizing ||e(w)||® pointwisein w.
The solution to this well known least squares problem is[2],

C(e*) = {F*(eJ“)F(eJ”)]+ F ()X (™)

where AT denotes the M oore-Penrose pseudoinverse of the matrix
A [2]. We will assume here that F(e/“) has afull rank of K and
so the pseudoinverse from above will in fact be atrue inverse. In
the z-domain, the optimum driving signal C(z) isgiven by,

-1

F(z) X(2) (6)

C(z) = [F(z)F(z)}

H(z)

where A(z) 2 AT (1/2*) for any A(z) [6]. Hence, the optimal
C(z) from (6) can be obtained via the system shown in Figure 3.

3. OPTIMIZING THE SYNTHESISFILTERS SUBJECT
TO A PARAUNITARY CONSTRAINT

The optimal driving signal vector C(z) in (6) can be viewed asan
information compacted version of the blocked signal vector X (z).
In this setting, a signal to be approximated, say z(n), will be pro-
cessed through the network of Figure 3 to produce C(z) (or equiv-
aently {ck(n)}). The{cx(n)} arethen stored and used to obtain
y(n), the best approximation to z(n) for the given model.
Typically z(n) will be afinite length signal (i.e. a speech sig-

LN nal or an image) and we want the signals {cx(n)} to be finite in

length themselves. In addition, we also want the synthesis filters
{Fx(2)} to be finite impulse response (FIR) filters. However, in
generadl, if these filters are FIR, then the transfer function H(z)
used to obtain C(z) in (6) will have an infinite impul se response

(IIR). Thisis due to the factor [F(z)F(z)} - present in H(z).
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Fig. 2. (&) The k-th branch of the signal model, (b) With

Fy(z) implemented in an mj; N-fold block form, (c) Re-
sulting structure after applying the polyphase identity.
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Fig. 3. System for obtaining the optimal driving signal C(z).

Fig. 4. Condition for orthonormality of the synthesisfilters.

Oneway to keep H(z) FIR and consequently to keep the driv-
ing signals {cx(n)} finite in length is to impose the paraunitary
condition on F(z) [6]. Namely, we will constrain F(z) to satisfy,

F(z2)F(z) =1 @)

Given the structure inherent in F(z) (see (5) and (3)), it is not
obvious that we can even satisfy (7). However, it turns out that (7)
is satisfied iff the synthesis filters { Fi(z)} form an orthonormal
basis, asshownin Figure4. Thisisstated formally in the following
theorem, the proof of which is omitted for sake of brevity.
Theorem 1 Thetransfer function F(z) given by (5) and (3) satis-
fiesthe paraunitary condition of (7) iff the synthesisfilters { . (2)}
satisfy the orthonormality relation shown in Figure 4. O

From [1], the orthonormality condition given in Figure 4 can
be expressed algebraically as,

Z fr(mgn — ngm) fi(mun — nyi) = 6(k — 1)d(m — 1) (8)
Hence, the paraunitary condition for F(z) in (7) is equivaent to
the orthonormality condition in (8). It should be noted that the
condition given in (8) can often be satisfied in practice and so in-
deed we can usually ensure the paraunitarity of F(z) as desired.

4. RELATION TO ENERGY COMPACTION

Using the optimal C(z) of (6), the error £ can be expressed as,

€= e~ [ 1[G )X (@)X (@6 ()] 5

o2

1

where G(z) £ [f‘(z)F(z)] * F(z). Hence, minimizing ¢ is
equivalent to maximizing 0. But maximizing ¢ is equivalent to
compacting the energy of a filtered wide sense stationary (WSS)
process V(z) £ G(z)W(z) where W (z) is WSS with a power
spectral density (psd) of Sww(z) = X(z)f((z). In the single
channel integer case, it was shown [5] that ¢ could be made zero
by trivially adjusting the subspace to accomodate the given deter-
ministic signal z(n). To avoid such trivialities, Unser considered
the energy compaction problem for an ensembl e of signals charac-
terized by a WSS process z(n) with apsd of S (z) subject to the
paraunitary constraint of (7) for the single channel integer case.

In this paper, we consider the energy compaction problem for
acollection or class of deterministic signals. The class may repre-
sent, for example, a set of vowel phonemes uttered by a variety of
speakers, or a set of images with acommon theme. Consider a set
of Lsignals{z;(n)} for0 <! < L—1. Using the optimal driving
signal model from Figure 3, we propose to choose F'(z) subject to
the paraunitary constraint in (7) to minimize the objective,

L—1
JE g where & £ |yi(n) — 2 (n)]? ©
=0 n
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Fig. 5. Collection of images used for simulations.

and y;(n) is the output of z;(n) to the system of Figure 3. Here,
«y isaweighing factor that satisfies,

L—-1
a >0, ZOQZI
=0

With this, it can be shown that choosing F(z) to maximize J is
equivalent to the above energy compaction problem with,

L1
Sww(z) = Z aXi(2)Xi(2)
1=0

5. SSIMULATION RESULTS

To test our proposed design method, we used it for aset of L =
4 images shown in Figure 5. Each image is from a fingerprint
database and the goal is to design an optimal synthesis bank for
the class of such images. The images were converted to one-
dimensional signalsviaaraster scan. Equal weighing was used for
each signa (i.e. oy = % V 1). Minimizing J in (9) subject to (7)
is equivalent to maximizing a quadratic form subject to quadratic
constraints. Assuch, nonlinear optimization techniqueswere used.

In order to see the merit of our approach, we applied a model
signal, shown in Figure 6(a), to avariety of our optimally designed
synthesis banks. We considered the following filter banks.

e (Integer nonuniform) P =2, my =1 Vk,no =2,n1 =4

o (Uniform) P=3,my =1,n, =4 Vk

e (Integer singlechannel) P =1, mo = 1,n0 = 2
For simplicity, we chose the length of all filtersto be 4. Theresults
of applying the model signal to the above optimally designed filter
banks are shown in Figure 6(b), (c), and (d), respectively.

From Figure 6, we can see that all methods yielded outputs
similar in appearance to the given model signal, although thesingle
channel case appears to have Moiré patterns when viewed at full
size [8]. To quantitatively compare the methods, we calculated
the peak signal-to-noise ratio (PSNR) of the output signals, which
can be found in the caption of Figure 6. Here, the uniform case
performed the best, while the single channel case was the worst.
Though the uniform case performed better than the nonuniform
one, thiswas at the expense of having another channel. Thisbrings
to light the tradeoff between signal fidelity and computational load.
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Fig. 6. (@ Origina model signal, (b) Nonuniform case
(PSNR =40.18 dB), (c) Uniform case (PSNR = 47.90 dB),
(d) Single channel case (PSNR = 34.05 dB).

6. CONCLUDING REMARKS

In this paper, we considered the | east squares approximation model
for rational nonuniform synthesis banks and showed the equiva
lence of the paraunitarity of the matrix F'(z) and the orthonormal-
ity of the synthesis filters. We also introduced the notion of deter-
ministic compaction filters for a class or collection of signals and
showed the merit of our method with examples. Future research
includes studying the effects of quantizing the optimal driving sig-
nals {cx(n)} for the purpose of further compression.
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