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ABSTRACT

We analyze how time-scale and time-frequency methods can
be suited to study unequally spaced astronomical time-series,
in terms of recovering precise spectral contents of a pul-
sating star. In many situations in astronomy, non-uniform
sampling proves to be the natural way in which the signal
is available for investigation and the spectral information of
interest is lost. We propose to study two kinds of meth-
ods which enables us to treat this type of signals: first, an
approach with global wavelet spectra leading to a wavelet
scale that can be compared to the Fourier period. Second, a
time-frequency analysis (matching pursuit) providing a pro-
gressive constructive process allowing us to identify the fine
structure of the driven frequencies and to control the error
propagation. We apply, compare and discuss these methods
for simulations and for luminosity observations of variable
stars. This allows us to conclude that the matching pursuit is
the more efficient method, in particular independent of the
quality of sampling.

1. INTRODUCTION AND ASTROPHYSICAL
CONTEXT

The non-uniform sampling problem arises in many astro-
nomical fields [1,2], particulary in stellar physics when one
observes the luminosity of variable stars (asteroseismology).
The frequencies deduced from these luminosity variations
represent an important source of information. In particular,
they are a constraint for the stellar evolution models because
the fine structure of the vibration modes and their frequency
separations may yield physical parameters, for example the
rotation period of the star or the composition of its layers
[3,4]. Of course, observations have to be long enough to ob-
tain the best possible resolution on the spectra. Astronomers
know the hard cost of obtaining such complete observations:
the lack of information is essentially due to diurnal cuts,
poor weather conditions or equipment malfunctions. This
leads to unobservability of the star under study on some
samples or time intervals.

Generally, the astronomical gapped data are of two types:
first, evenly spaced time series separated by wide gaps [5]

(typically the problem of day/night alternation for observa-
tions during several 24 hours and a sampling rate of about
50 s); many different methods have been proposed to deal
with these problem, and in particular AR models allowing
prediction in the gaps [6] combined with observing cam-
paigns with telescopes distributed over several longitudes.
Second, strongly unequally spaced time-series with samples
missing almost everywhere when the data under study rep-
resent several years of observations with a mean sampling
rate of 1 day (here, telescope failures or weather conditions
are the main cause of the gaps [7]); this second case is the
subject of this paper. Of course, problems of this kind arise
not only in the treatment of astronomical signals, but in that
case it is of capital importance to solve them to be able to
carry out a physical interpretation of the observations, no
other experimental alternative being possible. Moreover,
as we search for oscillations characteristic of the structural
properties of the star (i.e. arising almost everywhere in the
signal), one understands the necessity of getting, at the same
time, information about the lifetime of a given peak of the
spectrum.

In this context, the wavelet analysis [8] and the time-
frequency analysis [9] have the ability to decompose the sig-
nal into contributions localized both in time and in scale (or
frequency), and thus are specially attractive to analyse such
astronomical data [10]. Indeed, on the power spectrum or
on the periodogram, the intervals including low amplitude
peaks are hard to identify by eye because each feature in the
spectrum is accompanied by sidelobes whose nature closely
depends on the noise and on the irregular distribution of the
data. As they can be of substantial amplitude, they can lead
to the confusion of features due to oscillations with those
arising from the segmented nature of the observing window.

We adapt here two types of approach: 1) a global wavelet
transform and the associated wavelet spectrum [11], and 2)
a matching pursuit decomposition [12]. The results are also
compared to those given by a periodogram [13]. As the
intrinsic idea of these methods requires that the signal is
regularly sampled, we deliberately use a simple linear inter-
polation (sampling rate equal to one day) recommended by
De Waele & Broesen [14].
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2. THE PROPOSED APPROACHES

The global wavelet transform used here corresponds to a
continuous wavelet approach [8] allowing us to define a
global wavelet spectrum as the square of the modulus of
the wavelet coefficients for each scale [11]. This leads to
anequivalent Fourier period (which can be derived analyt-
ically for each wavelet function) which can be easily com-
pared to the Fourier power spectrum or to the periodogram
[13].

The matching pursuit algorithm [12] allows us to choose,
in a redundant dictionary of time-frequency waveforms, a
set of vectors that match the signal as well as possible, thanks
to iterated one-dimensional projections. The dictionary is
defined as a family of time-frequency functions obtained by
dilating, modulating and translating a single real even func-
tion����� � �����. Theatoms (elements) of the dictionary
are defined like a wavelet, but all the parameters (dilation
scale, translation and frequency modulation), indexed by�,
can vary at the same time.

The light curve���� is approximated with a single vec-
tor ��� chosen in the dictionary such that������� ��� ����� is
as large as possible. The light curve is then decomposed into
the form���� � ������ ��� ������� ��������� where�����
is the residual vector after approximating���� in the “direc-
tion” ������. The main idea is to sub-decompose the residue
�����, by finding a vector������ that matches it as well as
possible, as it was done for����. Each time, the procedure
is repeated on the residue that is obtained, and a conver-
gence criterion exists. Finally, the signal is decomposed into�
�

���
�������� ���������� ��� where the atoms������ are the

ones that match the signal structures as well as possible. We
can then build a hierarchy of coherent structures�� ������
yielding a time-frequency energy distribution of the signal,
that will be represented in the further diagrams.

3. APPLICATION EXAMPLES

The study is conducted on several astronomical data. Only
one will be represented on the figures: S Persei [15]. S Per-
sei is a pulsating semi-regular variable star of “type C”: its
light curve is characterized by a simple wave and is some-
times interrupted by various irregularities. Its known period
is ��� days. The S Persei light curve is irregulary sampled
and the same sampling has been used to build a simulated
signal. The signals and their periodograms are presented in
Figs. 1, 2 & 5. Note that the sampling of this star observa-
tion presents large gaps at the beginning of the run. We also
define a “sampling” signal for which each value is equal to
the time step of the S Persei data (the wider is the gap the
larger is the value). It is normalized so that its variance is
the same as the relevant simulated signal.
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Fig. 1. Periodograms of the simulated signal (left) and of S
Persei light curve (right) in a logarithmic scale.

Simulated Data: The simulated signal is the sum of two
cosines of periods 100 and 33.3 days. No noise has been
added, the aim being to analyze the effect of the non-uniform
sampling and how the methods answer this question. In Fig.
1 (left) the two frequencies are visible and the harmonics es-
sentially correspond to the annual cycle of the observations
at 365 days.

In Figure 2, we present the Wavelet Power Spectrum
(WPS) and the Global Wavelet Spectrum (GWS) obtained
for the simulation. In the GWS, the 95% confidence level
that could be obtained for a white noise is quasi superposed
with the X axis (the linear interpolation induces errors com-
parable to noise). In the WPS the continuous white line
indicates the cone of influence (important edge effects).
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Fig. 2. Simulated signal (top), Wavelet Power Spectrum
(left) and Global Wavelet Spectrum of the simulated signal
(right) with a Morlet wavelet.

In the WPS, one can identify the two periods. A large
zone due to the bad sampling around t=40000modified Ju-
lian days (MJD) appears in the low frequencies and the 100
days period does not appear clearly at this time. The GWS,
highlights the same problem. Fig. 3 presents the GWS of
the simulated signal compared with that of the sampling sig-
nal: the irregular sampling is responsible only for the peak
at 256 days.
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Fig. 3. Global Wavelet Spectrum of the simulated signal
(continuous line) compared to the one of the sampling sig-
nal (dashed line).

The Matching Pursuit results presented here use the free
graphical interface developed in our Institute [16]. The lin-
early interpolated simulated signal is decomposed on 100
atoms with a Spline 0 window (Fig. 4). The long atoms rep-
resent the most coherent structures of the signal. The peaks
which do not correspond to star oscillations but are artifacts
due to the sampling appear localized on a short time or in a
large frequency range (vertical atoms). We can clearly iden-
tify a long atom at���� day�� and several shorter atoms at
���� day�� (the harmonic frequencies correspond to the an-
nual cycle). As these atoms are among the most energetic in
the decomposition, the simulated frequencies are thus per-
fectly highlighted.

Fig. 4. Time-frequency decomposition of the simulated sig-
nal. Each stain represents the energy density of each atom.
X axis: time; Y axis: frequency.

Real data: We analyze the real light curve of the variable
star S Persei with the same methods (see Fig. 5). The pe-
riodogram (Fig. 1) presents a noisy behaviour, a large peak
centered on the frequency������	 day�� (��
�	 days) and
two other important ones at������	 day�� (�	
�� days)
and at������
 day�� (�	��	 days). There is also a fourth
at������ day�� (��
� days). The known period of S Persei
(822 days) is thus not correctly identified.

Fig. 5 presents the WPS and the GWS of S Persei ob-
tained with the same wavelet (Morlet) as for the simulated
signal. In the WPS, one can clearly identify a period at��

days at the end and at the beginning of the time interval. In
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Fig. 5. S Persei light curve (top), Wavelet Power Spectrum
(left) and Global Wavelet Spectrum (right) with a Morlet
wavelet. The 95% confidence level is not visible.
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Fig. 6. Global Wavelet Spectrum of S Persei signal (con-
tinuous line) compared to the one of the sampling signal
(dashed line).

the GWS, this period is also observable, together with some
other ones after 3000 days, but the highest one is outside the
cone of influence. The GWS of the corresponding “sam-
pling” signal is presented Fig. 6. The superposition with
that of S Persei explains its peak centered at 3000 days, due
to the sampling, which is thus not relevant.

The Matching Pursuit analysis of S Persei is performed
on 100 atoms with a Spline 0 window. No long lifetime fre-
quency can be identified by eye in the diagram (see Fig. 7),
but the first atom of the decomposition at 0.001221 day��

(819 days), representing the most energetic structure of the
signal, approaches at best the known oscillating period of
this star (822 days).

4. DISCUSSION AND CONCLUSION

The periodogram provides well resolved spectra but is very
sensitive to the uneven sampling; here in particular, peaks
due to the annual cycle of observation appear large for the
simulated signal. The S Persei periodogram presents a noisy
behaviour and a central lobe perturbated by harmonic fre-
quencies.

The 95% confidence level associated to the WPS and
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Fig. 7. Time-frequency decomposition of S Persei signal. X
axis: time; Y axis: frequency.

the cone of influence are efficient tools to check if the high-
lighted frequency is meaningful. But this method reveals
problems in the field of low frequencies: in the GWS, peaks
of high amplitude are not always explained by those of the
sampling signal. This restriction prevents from carrying out
an associated error analysis.

As for the periodogram, the Matching Pursuit analysis
is sensitive to the annual cycle of observation, but the atoms
hierarchy provides information on the dominating frequen-
cies of the signal if they are not easily indentifiable on the
diagram. Let us define an associated error as the quadratic
reconstruction error after decomposition on 400 atoms. Ta-
ble 1 presents an error analysis for simulated signals built
according to several variable stars data with samplings of
different quality (column 1 of Table 1). Here, the stan-
dard deviation of the corresponding sampling signal is used
to measure this quality. One can note that the reconstruc-
tion error is small and in particular not correlated with the
quality of sampling. This can be explained by the choice
of atoms of different lifetime and frequency offered by the
large dictionary, which can solve the problem of a very la-
cunar sampling (see for example the error reconstruction for
T Camelopardis compared to its sampling).

In conclusion, let us recall that the known period of S
Persei at 822 days is found at 806 days by the periodogram,
at 826 days by the Global Wavelet Spectrum and at 819 days
by the Matching Pursuit. This last method also permits to
conduct an error analysis. The Matching Pursuit algorithm
is thus well suited for spectral investigation of irregularly
sampled variable stars signals. Finally, let us specify that
we plan to investigate a comparison with the results that
can be obtained by the interpolation technique proposed by
Strohmer [17] in a forthcoming work.
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