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ABSTRACT

This paper describes a method for analyzing audio signals
with an adaptive “parametric dictionary”. We use sliding
frames to extract elementary signals or grains from the anal-
ysis signal. We search for similarities amongst the collected
grains to form classes, which we then use to derive a signal
model for each class. These signal models or prototypes, are
used to decompose the audio signal and compute analysis
parameters for each grain. As a preliminary evaluation, we
tested the method with real-life, monophonic and monaural
recordings and obtained encouraging results.

1. INTRODUCTION

In [1], Gabor introduces the concept of atoms , i.e. signals
localized in both the time and frequency domain. He states
that any musical signal could be described as a superimpo-
sition of a large number of such atoms. Techniques such
as Short Time Fourier Transform and Wavelet Analysis [2]
rely on this assumption. Local cosine functions, including
chirps and other variants, are common atom types for au-
dio signal analysis. Noise + transient models can be used
to account for non-pitched components also found in audio
signals.

Drawing upon Gabor’s idea and Wavetable / Granular
synthesis techniques [3], we present a scheme for represent-
ing musical signals with a dictionary of parametric “wave”
(i.e. with no simple analytical expression) atoms in order to
obtain a sparse decomposition. We give the name grain to
such atoms.

The main idea is to find and make use of both short- and
long-term redundancies in the analyzed audio signal. Short-
term redundancy is present in pitched or stationary parts.
For example, a segment associated with a single note of a
pitched instrument exhibits some form of periodicity. We
could extract one cycle of the waveform which we would
repeat to reconstruct this part of the signal, using PSOLA
[4]. Long-term redundancy we associate with one note often
being repeated several times at different places of the song.
As there is no hope to find two exactly identical grains, we

must use a measure of “similarity” between grains, intro-
duced in Sec.2, and a model of the variability to describe
similar grains, which we introduce in Sec.3. We shall dis-
cuss a practical analysis algorithm in Sec.4, while Sec.5 is
devoted to the presentation of our experimental results.

2. FINDING REDUNDANCY

We split the main signal into short-time frames. This pro-
vides us with a number of grain signals localized in time,
which we can compare to one-another. This transformation
is a means to search for redundancy inside the main signal.

2.1. Obtaining the grains from the signal

We define ��� “grain” signals ��� of duration � � (typically ap-
proximately �	� milliseconds) by applying �
� Hanning win-
dows � overlapping by �	��
 :

� ��� ����� � � ��������� ���������
� � is the time-shift of the beginning of the � -th analysis win-
dow. Thanks to the properties of Hanning windows, we can
write:

��� ��� � !#"$ �&%(' � �)� �(*+����� (1)

Eq. 1 yields an exact, albeit trivial decomposition of � into
shifts of vectors taken from a dictionary of �
� vectors. We
aim to obtain a sparser decomposition of the signal, that is
to decompose the signal with a dictionary of ,.- �/� vec-
tors. Therefore, our goal is now to find and model some
form of redundancy amongst the grains. We evaluate sim-
ilarity between grains by means of a similarity measure 0 ,
which is chosen to be invariant to a certain number of trans-
formations of the input vectors. We then assign grains to
classes, in which all grains are similar to each-other, with
respect to 0 .
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Fig. 1. 0768�#�:9;�=<?> for �@� �BA#A�C 9D� � �FE � ms

2.2. A similarity measure

The similarity measure can be seen as a measure of the dis-
tance between two grains. We require 0 to be equal to one
for a pair of identical grains. Below we give two examples
of similarity measures and state the corresponding invari-
ance properties.

0/G�HI6��J9:�LKM> � N ��O � KQPR � RTS�R � K RTS (2)0
UI6��J9:� K > � N O �@6WV@>?OX9�O � K 6YV@>ZO P (3)0 G�H (Eq.2) is the scalar product of the normalized grains,
it is invariant with respect to the amplitude of the grains.0
U (Eq.3) is the scalar product of the normalized ampli-
tude spectra of the grains. 0(U is invariant with respect to
the phase spectrum of the grains. Fig.1(a) shows an exam-
ple computed on all the pairs 6[� � 9;� < > �8\ <^]�_X'X`a` !#"Xb , of grains

extracted from a clarinette signal1[5]. Note the symmet-
ric block structure of the matrix 0 G�H 6[� � 9:� < > . Dark squares
mostly correspond to stationary parts of the signal (i.e. notes
of the melody). But there are some oscillations of the simi-
larity inside those blocks, a problem which we describe be-
low.

2.3. Overcoming frame-related problems

One disadvantage of frame-based methods is that the bounds
of the sonic events we want to identify may not be syn-
chronized with those of the frames. This limitation might
explain why we observe oscillations on Fig.1(a). Increas-
ing the overlap between adjacent frames makes little sense,
as this would substantially increase the number of required
computations and eventually we would be comparing sig-
nals only differing by two sample values. Our proposed
solution (Eq.4) is based on an extrapolation of the signal

1The soundfile is available at http://www.irisa.fr/metiss/lmcdonag

segment ��� � 9 �c� � � � using bi-directional Linear Predic-
tion [6]. When the extrapolated segment is windowed with� � �
� � � , it results in the extrapolated grain dYe � ! . We com-
pute the similarity measure with all extrapolated grains dYe � !
and retain the value of the optimal time-shift �(fhg^i that leads
to maximum similarity:

0
j H 6��J9:�LKM> �lknm	o! � 0 G�H 6�dYe � ! 9:�LKM> � (4)

Fig.1(b) shows the values of 0(j H for the clarinet signal
used previously. The oscillations are heavily reduced as ex-
pected.

3. A GRANULAR MODEL

Using the similarity measure 076[� � 9;� < > that we have pre-
sented, we can cluster the grains � � into , classes prq (see
Sec. 4). In essence, our approach relies on the assump-
tion that all grains inside one class of similarity are approxi-
mate versions of a unique root grain s/q , the prototype of all
these versions. The following section presents a mathemat-
ical formalization of this idea.

3.1. General Granular Model

We define the following model of a grain:

� �/�Ftvu s q 9:w �Wxy�{z=� (5)| s@q is the prototype of the } th class, chosen from prq ;| t is a function verifying: 076 t 68�J9�w�> 9;�3> �BA 9h~�6M�J9�w�> ;| w is the parameter vector of t ;|��� �
�Ft u�s@q�9�w � x is an approximation of � � ;| z � � �#� * ��#� is the approximation-error for grain ��� .t should be set by the user to reflect some invariance prop-
erties of 0 .We will now discuss some methods to compute
the prototypes s q and the parameters w � .
3.2. Signal decomposition

Eq.5 shows that every grain shall be represented with only
a single prototype, which is moreover a grain chosen inside
the corresponding class. This is for the sake of simplic-
ity, and we are aware that this choice is not suitable when
dealing with polyphonic signals (i.e. several sounds over-
lapping in time, prominent echo or reverberation). The sum
of all the approximate grains �� � gives an approximate recon-
struction � ����� ! "�&%(' �� � of the main signal � . Let us define

VI - 470

➡ ➡



� ��� w �h� �M%/'X`a` ! " and � ��� s�q3� q %/'X`a` � .We search to min-
imize the norm of the global reconstruction-error

R ��* � � R ,
which is equivalent to solving the optimization problem:

k��M�H�\ �
����� ��*

!#"$ �M%/' t u s q 9:w � x �����
Unfortunately, solving this problem does not guarantee a
sparse decomposition. For example, Eq.1 is a solution but
is not sparse at all ( , � ��� ). We must introduce some
more constraints, explicitely by arbitrarily fixing the num-
ber of classes , , or not. As the global minimization over all
possible combinations of � and

�
is computationally pro-

hibitive, we use algorithms where the minimization is done
partially, in two successive stages.

4. LEARNING OF THE PROTOTYPES

The learning algorithm performs a classification of the grains
according to the values of the similarity measure and finds a
set of prototypes for the classes. Finally the signal is recon-
structed approximately using the prototypes and optimized
parameter values. Note that grains with norm below the
noise floor are removed prior to classification. The perfor-
mance of the algorithm and its variants will be assessed with
their corresponding Signal-to-Noise Ratios (SNR).

4.1. EM Classification procedure

Given a grain � and a measure 0 , the closest neighbours q 6��D> of � amongst a collection of prototypes � is defined
as:

s q 6[�3> �lm#����knm	o� ]#H � k�m	o� 0768�J9 t 6[s�9:w�>�>��
Algorithm 1 EM-like Classification [7]

Randomly choose � � ' 9?�&�M9:� ��� different indexes. Initialize
the prototypes � with the set � ���[��9Z�M�&9:�#�M� � . Iterate steps A
& � over � .

1. For every � , find its closest neighbor s q 6[�3> amongst� . Assign � to class prq .
2. For each p q , find �	¡ having greatest average similar-

ity with all �£¢¤p q . Replace s�q with �	¡ .
Remark: the number of classes , must be set by the user
before runtime, results are dependent upon initialization.

4.2. A direct procedure: Row Scanning

A property of the similarity measures is a form of pseudo-
transitivity:

O 0£6[� 9;�DK&>ZO^9�O 076[�DKW9;�DK KQ>ZO3¥{¦ e O 0£6[� 9;�DK K[>ZOD¥¨§ � ¦ (6)

We can only give a theoretical lower bound for § , which
is ©© 076[� 9;� K K >�¦Lª ' ©© . In practice though, we observed that §
is often close to A .This means that when one finds three
grains, two pairs of which have a high 0 value, the remain-
ing pair roughly have the same (high) 0 . This observation
lead us to write and experiment another classification algo-
rithm (Alg.2), which scans the rows of 0£6[���;9:�=<Z> to form
classes amongst which all grain verify Eq.6. Two threshold
values § ¡ and ¦ ¡ must be provided before execution.

Algorithm 2 Row Scanning

Set « �c� � �h� �&%('T`a` ! " . Until « � Ø, do:

1. Pick a � g from « . Remove it from « . Create a new
class p g and initialize it with � g .

2. Scan all ��¢¬« . If 0­6[� 9;� g >®¥�¦ , put � into p g .
3. For every �¯¢cp g , check that every other � K ¢�p g

satisfies 0�6[� 9;� K >�¥°§ � ¦ , otherwise remove � fromp g .

4. Substract p g from « - Go to step 1.

Remarks the number of classes is computed by the al-
gorithm, only § and ¦ need to be chosen in advance by the
user. Judging by our tests, the value of ¦ does not seem
critical provided �3�a�¬±²¦I³ A . The degree of homogeneity
inside classes is controlled by § . A high § imposes low dis-
persion of 0 -values inside one class, ultimately leading to,µ´ �@� when § � ¦ �BA . An iterative procedure may also
be used to automatically adjust § and ¦ for attaining a spec-
ified reconstruction-error value. Although we have not fully
tested this, we believe the low complexity of the algorithm
permits repeated execution in reasonable time.

5. EXPERIMENTS

Tests were performed on recorded and synthetized mono-
phonic audio signals, using Matlab software. We used the
Signal-to-Noise Ratio to measure and compare the perfor-
mance of algorithms 1 and 2:

SNR ¶T· �B* �	�¹¸&º � ' ¡ R �»* � � RR � R
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Fig. 2. SNR vs. dictionary size

Table 1. Dependency of , to ¦¦ � ¼ �¾½ � C � ¿ � ¿ E � ¿�� � ¿ C � ¿�¿#¿3�M�, A � A#A A � A?C � E E � À C �@�
The following results were obtained with the aforementioned
clarinet signal, which consists of 11 notes played succes-
sively. Nine grains having norms

R ��� R ³ A � ªJÁ were re-
moved prior to classification. Fig.2 summarizes the SNR
figures obtained with both algorithms and various dictionary
sizes , . For Alg.1, SNR is averaged over A � trials to mini-
mize the influence of initialization. With Alg.2, the number
of prototypes , is dependent on ¦ (cf. Tab.1). Overall, the
SNR is increasing with , , but with Alg.2 it may decrease
locally, which happens with this particular signal when ,
is equal to the number of different notes in the melody.

5.1. Segmentation based on musical content

The classification process provides us with data readily use-
able for segmentation purposes. The proposed method may
be used for analyzing musical signals and derive a repre-
sentation similar to ’piano-roll’ editors commonly found in
MIDI sequencer software, as can be seen on Fig. 3. The
figure displays the assignment of each grain �L� to a classp q�Â �MÃ , obtained using Alg.2 with ¦ � �)�a½ and § � �3� C , with� on the horizontal axis and } on the vertical axis. The class} � � represents the grains with norm below the noise-floor
which were removed prior to running the algorithm. Time-
locations of the prototypes are depicted with grey vertical
lines. The analyzed signal is shown at the bottom.

6. CONCLUSIONS

Although the method has not been tested extensively with a
large corpus of audio signals, the results we have obtained
with the method encourage us to develop it and test it fur-

Fig. 3. Grain affectations to classes

ther.We shall conclude by listing the work in progress and
the planned future developments:| Currently the reconstruction-error is minimized on a

per-grain basis, which is not optimal because of the
overlap between adjacent grains. We are investigating
ways to remedy this in order to achieve a better re-
construction. The prototype model and learning must
also be improved.| An extension of the approach to signals with poly-
phonic and multi-timbral content is being considered.| An on-line version of the algorithm is in develop-
ment, with streaming-media applications in mind.| Use mp3 compression as a pre-analysis tool. Working
directly on mp3-quantized DCT frames would be a
simple and efficient way to implement some form of
psycho-acoustic invariance criterion in the similarity
measure.| Investigate a musical granular re-synthesis method.
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