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ABSTRACT

The reassignment procedure has been often employed to
improve readability of some Time-Frequency Representa-
tions (TFRs). When processing noisy signals, the problem
of sensitivity of the technique to noise is encountered. In
this paper, a simple modification of reassignment method is
proposed, based on thresholding operation. Specifically, by
preventing the reassignment of the distribution coefficients
below the noise dependent threshold and replacing them
with zeros, the enhanced signatures on the time-frequency
plane are obtained. This method is compared with other
techniques, such as the Reassigned Spectrogram (RSP) and
the Supervised Reassigned Spectrogram (SRSP). An exper-
imental test of these algorithms as the Instantaneous Fre-
quency (IF) estimators for a chirp signal have shown that
our method improves the accuracy of the estimation for heavy
noise.

1. INTRODUCTION

In practical Time-Frequency (T-F) analysis, signals corrupted
by noise are commonly encountered, with the additive Gaus-
sian White Noise (GWN) as one possible model of distor-
tion. In such cases, the problem of the TFR’s sensitivity to
the presence of noise arise. Previous studies on TFRs of
noisy signals considered the kernels for minimum variance
representations [1], [2], the robust versions of the Wigner
Ville distribution (WV) [3], [4], and the Short Time Fourier
Transform (STFT) [4]. In [4], realization of T-F distribu-
tions based on the mean and median is presented, with the
first solution shown to be suitable for GWN, and the latter
for impulse noise. An example of the analysis of the TFRs
as IF estimators of noisy signals is presented in [5].

Few publications address the problem of reassigned rep-
resentations of noisy signals. Reassignment, first introduced
in [6], is a non-linear technique which aims to improve res-
olution in the T-F or Time-Scale (T-S) domain [7]. Al-
though for signal-only sequences the benefits of this method
are clear, this technique appears to be highly sensitive to
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noise and yields sharp peaks in regions where conventional
smoothing would flatten the distribution. In [8], a robust
technique, the SRSP is proposed: an improvement to the
original method, introduced by a multi-window extension
of the procedure.

The methods mentioned so far usually required some
modifications of the kernel or the use of several kernels dur-
ing the smoothing process. These modifications may limit
the use of ”signal matched” kernels designed for extraction
of particular features of a signal. The use of more than one
smoothing window increases the computational load of the
procedure. Also, the choice of an appropriate window com-
bination for a signal with unknown characteristics, or con-
taining components other than FM signals (e.g. T-F atoms,
transients), is not trivial.

In some applications the reassignment technique is used
to modify the TFR, to improve performance of a feature
extraction or classification system. In such cases, the re-
moval of the noise and the reduction of the dimensionality
of a problem is desirable. As mentioned before, conven-
tional reassignment is sensitive to noise and thus additional
refinement technique is required. In this paper, we propose
a simple modification of the reassignment procedure by in-
troducing a thresholding operation to the reassignment al-
gorithm itself. This prevents the procedure from reassign-
ing noisy regions of the T-F plane into sharp ridges, while
still performing reallocation of the signal component coef-
ficients. This modification can be easily extended to other
transforms for which a reassignment procedure exists. The
method improves the accuracy of the IF estimation for a
noisy signal and has potentially lower computational com-
plexity than other approaches.

2. METHOD DESCRIPTION

2.1. The SPWV and its reassigned version

All Cohen Class distributions can be written as the double
convolution of the WV of the signal and a two dimensional
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T-F smoothing functionL [9]:

TFRx(t, ω;L) = WVx(t, ω) ∗ ∗L(t, ω) =∫∫
WVx(t′, ω′)L(t− t′, ω − ω′)dt′

dω′

2π
, (1)

whereWVx, is defined as

WVx(t, ω) =
∫

x

(
t +

t′

2

)
x∗

(
t− t′

2

)
e−iωt′dt′.

Different TFRs can be obtained from the fundamental WV
distribution by applying a different smoothing functionL.
In our experiments a Gaussian separable 2-D function has
been used, with the time and frequency widths as parame-
ters. A Gaussian function is used for its optimum T-F lo-
calisation property [9]. Here, instead of defining each width
separately, we first choose one of the lengths,α0, and adjust
the volume of the kernel with parameterv, in the spirit of
coupled smoothing:

L(t, ω) = g(t)H(ω) =
1
v2

e−t2/α2−ω2/β2
, (2)

where

α = vα0, β =
v

α0
. (3)

The positive distributions are obtained forv ≥ 1 [9]. Through-
out this paperv = 1 is used, so that the smoothed distribu-
tion is equivalent to the Spectrogram (SP). In such cases,
L is the WV distribution of the SP smoothing window of
width

√
2α0.

Reassignment consists of shifting coefficients of a repre-
sentation in the T-F plane using an appropriate prescription
for the displacements [7]:

RTFRx(t′, ω′; L) =
∫∫

TFRx(t, ω)

δ(t′ − t̂x(t, ω))δ(ω′ − ω̂x(t, ω))dt
dω

2π
. (4)

Coordinates of the reassignment for the Smooth Pseudo
Wigner-Ville distribution (SPWV) are computed with two
additional TFRs. Since the WV distribution is smoothed
directly in (1), we can ‘reuse’ the WV and together with
two additional smoothing functions,

Lt̂(t, ω) = tL(t, ω)
Lω̂(t, ω) = ωL(t, ω),

substitute them back into (1):

TFRx(t, ω; Lt̂) = WVx(t, ω) ∗ ∗Lt̂(t, ω) (5)

TFRx(t, ω; Lω̂) = WVx(t, ω) ∗ ∗Lω̂(t, ω). (6)

The ratio of resulting distributions is then used to compute
the reallocations [7]:

t̂(t, ω) = t − TFRx(t, ω; Lt̂)
TFRx(t, ω; L)

(7)

ω̂(t, ω) = ω + j
TFRx(t, ω; Lω̂)
TFRx(t, ω; L)

. (8)

2.2. Noise rejection procedure

We consider the signal model

x(tk) = f(tk) + w(tk),

where both components, a deterministic signalf(tk), and
the noisew(tk), are analytic. The analytic noise can be writ-
ten asw(tk) = wr(tk) + jwH(tk), wherewr(tk) is a real
GWN noise with varianceσ2

w/2 andwH(tk) is the Hilbert
transform ofwr(tk) [2]. Throughout this paper,tk andωl

will stand for appropriately discretised time and frequency
coordinates.

The noise rejection procedure consists of preventing the
noisy parts of the distribution from being reassigned and
possibly modifying them. Following the discrete algorithm
derived in [7], we replace negligible energy thresholding
with a decision step. Specifically, having computed T-F dis-
tribution TFRx(tk, ωl), we construct the rejection areaB,
basing on a thresholdε(tk, ωl):

B = {(tk, ωl) : |TFRx(tk, ωl)| < ε(tk, ωl)} ,

and then, at every point on the T-F plane(tk, ωl), we per-
form one of the two operations on a coefficientTFR(tk, ωl)
depending on the pre-defined constraints:

RTFR(tk, ωl) = RTFR(tk, ωl)
+a(tk, ωl)TFR(tk, ωl)
if (tk, ωl) ∈ B,

RTFR(t̂k, ω̂l) = RTFR(t̂k, ω̂l)
+a(tk, ωl)TFR(tk, ωl)
otherwise.

The second operation is a reassignment step. The first oper-
ation depends on pre-defined values ofRTFR(tk, ωk) and
a(tk, ωl). Here, we initialize theRTFR(tk, ωk) to zeros as
in [7], and replace the rejected noise coefficients with zeros,
i.e. a(tk, ωl) = 0 for (tk, ωl) ∈ B, anda(tk, ωl) = 1 oth-
erwise. As a result, only coefficientsTFR(tk, ωk) above
the thresholdε(tk, ωl) will be reassigned, as opposed to the
conventional method that reassigns all the coefficients. The
areaB may be thought of as a decision map analogous to
that of [8], but computed using different criteria and derived
from only one realisation of the distribution. Depending
on the nature of signal, different estimates of a thresholdε
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are possible. Here, we assume unknown noise level, and
a deterministic nature for the signal. For the purpose of
enhancement of the output reassignment representation, a
global threshold valueε(tk, ωl) = ε = mean{TFR(tk, ωl)}
was chosen. Since the representations we have considered
are energy distributions and the signals have zero mean, we
can expectε = var{x(t)} = mean{|s(t)|2}+ σ2

w. It should
be noted that this approach does not preserve the energy
of the noisy signal since some of the samples are set to
zero. The potential of a two-dimensional local threshold
mask and different values ofa(tk, ωk) will be a subject of
further investigation.

It is clear that, apart from noise removal, this technique
is expected to reduce the number of required operations and
computing time, depending on the signal, the extent of the
noise regions and the threshold. The number of operations
is reduced by the number of coefficients below the thresh-
old. If the threshold is set to zero the complexity of the al-
gorithm is comparable to that of the conventional technique.
Moreover, depending on the implementation, the use of the
same WV matrix to compute reassignment coordinates as in
(5)–(6), may result in a further reduction of computational
load.

3. PERFORMANCE TESTS

3.1. IF estimation

For analysis of the developed method as an IF estimator,
we have chosen a chirp signal corrupted by additive GWN
noise as described in Section 2.2:

x(t) = Aej(ct2) + w(t).

In this simulationt = [0, 1], with sampling periodT =
1/N . The number of samples used wasN = 256. The
input SNR is defined as SNRin = 10 log10 A2/σ2. To avoid
discretisation error, the value ofc = Nπ/2 was chosen so
that the IF,ω(t) = 2ct, lies on points of the discrete T-F
grid.

The performance was assessed in terms of the mean
squared error of the IF estimation,E{(ω(t)− ω̂(t))2}, with
the IF estimator

ω̂(t) = arg{max
ω
{TFR(t, ω)}}.

The TFRs used in the comparison were: the WV, the RSP,
the SRSP [8], and the developed method implemented as
the SPWV with the kernel defined in (2)–(3) (see Fig. 1 for
examples of the distributions). Smoothing windows were
chosen to give equivalent non-reassigned distributions. The
noise sequences with SNRin = [−10...10] dB with 1.25
dB step were added to the test signal and 50 simulations
were performed using the TFRs from the set above. The
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Fig. 1. Examples of TFRs of noisy signal (top figure, only real
part shown) computed used in the simulation (SNRin = 0 dB): (a)
WV, (b) RSP, (c) SRSP, (d) developed method;k andl are time and
frequency coordinates, respectively. For the sake of visualisation,
the dynamic range of the images was limited to 20 dB from peak
value and the central part of the image (N

2
× N

2
) was displayed.

estimation error is shown in Fig. 2. It can be observed
that the thresholded reassignment outperforms the conven-
tional RSP and supervised reassignment (SRSP) for the sig-
nal with SNRin = −10...6.25 dB. For signals with small
amount of noise (i.e. SNRin > 6.25 dB) the threshold-
ing will cause distortion, which contributes to the error. It
should be noted, that the WV is the best estimator, as ex-
pected for the isolated linear chirp case. It is however known
that for other multicomponent signals like, for example, two
parallel chirps of finite length, located sufficiently close to
each other, the level of cross-components would rule out
the WV as the IF estimator using peak value. For exam-
ple, the estimation error for the signal (mean squared error
for the first of the two components):x(t) = ej(c(t)2) +
ej(c(t+0.125)2) + w(t) and SNRin = 0 dB is 0.069 for the
WV, whereas for the modified reassignment the error is 0.058.
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Fig. 2. MSE of IF estimation for a chirp signal corrupted by
analytic noise. The developed method has been labelled as
RSPWVTHR

3.2. Noisy radar signal example

Benefits of the thresholding procedure can be more obvi-
ous in the case of signals with unknown characteristic. Our
aim here was to pre-process automatically representations
for subsequent feature extraction. Fig. 3 compares the con-
ventional RSP and modified reassignment representation of
a simulated radar return from an unknown object. The SNR
for the signal is 7 dB, Peak-SNR is 13.6 dB. The RSP dis-
tribution was then thresholded to achieve similar shape of
the main lobe of the signal (expected in this radar system
in the intervalk = [97, 160]) and the modified representa-
tion was left intact. The developed procedure outputs clear
image, whereas conventional reassignment contains reas-
signed noise above the threshold and thus it would require
further processing.
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Fig. 3. The reassignment comparison for a noisy signal with un-
known characteristic: (a) the conventional method, (b) the devel-
oped technique.

4. CONCLUSIONS

We have proposed a modification of the reassignment
method for noisy signals which leads to the enhancement of
the output distribution. It has been shown that introducing a
thresholding procedure, with the threshold based on a vari-
ance of the noisy signal is sufficient to improve the IF es-
timation for the chirp signal over the conventional method.
Further experiments confirmed usefulness of the method for
the automated enhancement of T-F images of noisy radar re-
turns. The method is expected to have lower computational
complexity than other known reassignment techniques due
to re-using the WV matrix and reduction of the number of
reallocations in the reassignment procedure.
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the minimum variance time-frequency distribution kernels,”
IEEE Transactions on Signal Processing, vol. 45, no. 6, pp.
1650–1655, June 1997.
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