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ABSTRACT

Time-varying short-term spectral estimates have been success-
fully applied in many classification tasks. However, they are still
insufficient for many non-stationary signals where time-varying
information is useful. In this paper, we propose to improve the
deficiencies of current short-term feature analysis by adding
information to describe the time-varying behavior of the signals.
Our proposed method which is motivated by the human auditory
system can be applied to several non-stationary signal types.
Real world communication signals were used for experimental
verification. These experimental results, assessed with a conven-
tional probabilistic classifier, showed significant improvement
when the new features were added to short-term spectral esti-
mates.

1. INTRODUCTION

In automatic classification, the goal is to have a machine
characterize events and make an appropriate decision about the
class of these events. Short-term estimates, for example Fourier
or autocorrelation coefficients, have been widely used for many
signal types (e.g. [1, 2]). Basically, the signal is blocked into
successive frames using a small data analysis window. This
blocking assumes stationarity of the signal within each frame.
The windowed signal is then transformed into a new representa-
tion hopefully giving good discrimination and/or energy compac-
tion. The length of a short-term analysis window can be different
depending on the signal type. For example in tool-wear classifi-
cation [3], stationarity can be assumed within a quarter revolu-
tion of a tool. Since a working tool has different sizes and rota-
tion speeds, a quarter revolution time window results in different
time durations, 20-40 ms. In speech recognition [4], the typical
short-term window used for speech analysis is about 20-30 ms.
In music classification, the length of a short-term window is
influenced by audio coding where typically two processing win-
dows are typically used [5]. With a sampling rate of 48 KHz,
windows of size 256 samples, or about 5 ms, and 2048 samples,
or about 43 ms, are commonly applied. Unless specified other-
wise, we will refer a data window of length less than 50 ms as a
short-term window.

In this paper, we model non-stationary signals, such as
speech, music, or communication signals, as the product of a
narrow bandwidth lowpass process m(f) modulating a higher
bandwidth carrier ¢(¢), as shown in Equation (1). To effectively
use this model, m(¢) is assumed to be nonnegative and its
bandwidth does not overlap with c(z) .

x(t) = m(t)(t) (1)

The above model has been applied to encode x(¢) in speech [6]
and audio [7]. Motivated from the success in coding, this model
can also be useful for non-stationary signal classification. An
important question can be raised whether more traditional feature
extraction such as short-term spectral analysis is adequate for
extracting the pertinent information of this model. Since m(z) is
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a slowly varying signal, using too short of an analysis window
can be insufficient to model m(¢) .

Understanding the human recognition system and integrat-
ing the relevant aspects significantly contributes to the under-
standing of this form of feature extraction. For example in [4], to
estimate energy at the most sensitive modulation frequency of
human audition, about 4 Hz, an analysis window of at least 250
ms is needed. A related concept on a perceptual duration of audi-
tory system is a pre-perceptual auditory image [8]. This concept
refers to the process where an auditory input produces an audi-
tory image containing information about a stimulus. Because of
the continuous change of the auditory input, a pre-perceptual
auditory store is used to hold information of the stimulus and can
be utilized later. Massaro [8] proposed the estimation of this
perceptual unit using a backward masking experiment. Results
suggested that pre-perceptual auditory storage and processing
was over 200 ms which is again longer than a short-term analysis
window. Finally, the sensitivity of short-term features to noise
[9] and unseen testing data [3] is another deficiency.

To improve the deficiencies of short-term feature analysis,
we propose long-term feature analysis called joint frequency
analysis. Joint frequency analysis not only contains short-term
information about the signal, but also contains long-term infor-
mation representing patterns of time variation. We will show that
our proposed feature analysis is complimentary to more tradi-
tional short-term feature analysis. Communication signal classi-
fication is used for experimental verification. Related work [10]
using joint frequency analysis in a communication signal inter-
ception application used a method requiring a priori information
such as a symbol rate. To avoid the assumption of prior informa-
tion, we use time-frequency theory integrated with psychoacous-
tic results on modulation frequency perception to provide a
foundation and subsequent joint frequency representation for a
classification system.

2. JOINT ACOUSTIC AND MODULATION
FREQUENCY ANALYSIS

2.1 Theory

One possible joint frequency representation, P(77,®) , is a trans-
form in time of a demodulated short-time spectral estimate. For
the purpose of this paper, @ and 7 are “acoustic frequency”
and “modulation frequency,” respectively. A spectrogram, or
other joint time-frequency representations [11], can be used as
the starting point of this analysis. In this paper, we first use a
spectrogram with an appropriately chosen window length to
estimate a joint time-frequency representation of the sig-
nal, P" (¢,w) . Second, another transform (e.g. Fourier) is applied
along the time dimension of the spectrogram to estimate
P¥(57,w) . Another way of viewing P*(5,0), as shown in
Equation (2), is the convolution in @ and multiplication in 7 of
the correlation function of a Fourier transform of the signal x()
and the underlying data analysis window A(%) :
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PY(0) = (H'(a) e+ E)) (X'(a) DX+ E))- )
2 2 2 2

To illustrate the behavior of P*(57,w), an AM signal is used.
Equation (3) describes a spectrogram of the AM signal, where
w, and @, are the modulation and carrier frequencies, respec-
tively.

PP(tw) = (l+cosot) d@*a,) 3)
Applying a Fourier transform along the time dimension of
P¥(t,0) :

P’ (o) =[P (t.w)e "t 4

= 271'(%5(7])+ (n ia)m)+i5(77 + an,)jﬁ(a}i ).

P¥(57,0) results in the compaction of non-zero values occur-
ring at low 77, 77‘ < 2w, , which can be advantageous for coding
and classification. When using a joint frequency representation
as features in non-stationary signal classification, only positive
and low modulation frequencies are needed for estimating the
low-dimensional features because of the symmetric property in
frequency and small non-zero support region of P*(17,) . The
modulation frequency range of interest in P*(,@) can be de-
termined by the assumed highest modulation frequency in the
signal or the bandwidth of the chosen spectrogram window.

2.2 Interpretation

In Equation (2), P*(n,w) values along 77 =0 are the convolu-
tion of the spectra of the spectrogram window and the signal.

2

PY(0.0) = |H(o) *

X(w)

©)

The values lying along 7 =0 are an averaged short-term spec-
tral estimate of the signal. The length of the spectrogram window
and the amount of overlap between data analysis windows de-
termine the trade-offs between the bias and variance of the short-
term spectral estimate. P (77,0) at 7 =0 is an estimate of the
stationary information while the P*(;7,0) at n#0 is an esti-
mate of the non-stationary information about the signal. This
non-stationary information can represent various quantities (e.g.
a symbol rate of a communication signal).

In this paper, joint frequency analysis is applied to the
automatic classification of unknown communication signals. For
digital communication signals such as frequency shift keying
(FSK) or phase shift keying (PSK), the message is encoded as
the change of frequency or phase of the carrier, respectively. For
the spectrogram of FSK as shown in Figure 1a, the transmitted
signal is sent by switching between two frequencies, 1200 Hz
and 1500 Hz. Since filterbank analysis is effected via a spectro-
gram, the change of frequency is transformed into a change of
magnitude in each subband of the joint time-frequency
representation. The non-zero terms in P> (77,w) as shown in
Figure 1b reveal how fast the instantaneous frequency of this
signal pass through the subband filters. The non-zero terms
occurring at harmonics of approximately 30 Hz in the 7
dimension of P (,w) reflect the symbol rate of this FSK
signal. For the PSK signal, the phase change of the carrier also
contributes to the change of the instantaneous amplitude. The
spectrogram of PSK as illustrated in Figure 2a shows the signal
having high bandwidth in ® and random behavior in time.
P*(n,w) of this PSK signal, as shown in Figure 2b, exhibits a
more compact energy representation. There are non-zero terms

o

energy representation. There are non-zero terms occurring at
harmonics of approximately 15 Hz in the 7 dimension. For a
multilevel modulation signal such as multilevel FSK (MFSK),
the non-zero terms will appear in more acoustic frequency sub-
bands than an FSK signal.

As demonstrated with real-world signals, joint frequency
analysis has the potential to extract time-varying information via
the non-zero terms in the representation. These non-zero terms
are possibly useful for discriminating signal types, thus they
should be considered as useful features. However, using
P (n,w) directly for classification has an important disadvan-
tage. P (17,w) , as well as other two-dimensional analysis, is a
long-term analysis, therefore it provides an extremely large di-
mension compared to traditional short-term spectral estimate.
Even though we can reduce the feature dimension due to the
symmetry in frequency and small non-zero support region of
P¥(17,m) , the resulting dimensions are still too large for typical
classifiers. Past research has addressed the method of reducing
feature dimension of a two dimensional representation in various
ways. For example, many methods view a two-dimensional sig-
nal representation as an image. The non-zero terms lying in the
representation then can be viewed as the lines or objects and the
small set of descriptors being invariant to translation, rotation, or
scaling can be extracted. Since we are interested in tasks where
human auditory signal classification is largely successful, inte-
grating psychoacoustic results into the analysis can possibly
provide added advantages in feature design and selection.

2.3 Modulation scale

Using Fourier analysis for the modulation frequency transform in
the above analysis results in a uniform frequency bandwidth in
modulation frequency; however this approach for modulation
decomposition can be inefficient for auditory classification due
to the resulting high dimensionality. Furthermore, the uniform
bandwidth in modulation frequency does not mimic the human
auditory system. Recent psychoacoustic results [12] suggest that
a log frequency scale, with a constant-Q over the entire fre-
quency range, best mimics human perception of modulation fre-
quency. Our approach uses a continuous wavelet transform
(CWT) to efficiently approximate this constant-Q effect. Our
method, called modulation scale analysis, starts with a standard
spectrogram of x(¢) :

P¥(t,w) = i“x(u)h*(u—t)e’j @ dy (6)

‘ 2

For discrete scales s, the wavelet filter w(¢) is applied along
each temporal row of the spectrogram output:

Prsgo) = [P Cow . ™

The energy across the wavelet translation axis ¢ is integrated:

P(s0) = [|PV(s.¢ 0 . ®)

The above equation yields a joint frequency representation with
non-uniform resolution in the modulation frequency dimension,
as indexed by the discrete scale s . Our past work [9] showed the
advantage of using wavelet over Fourier bases for discriminating
two distinct modulation frequencies when the dimension of their
representations is the same.
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2.4 Time and frequency translation

A practical classification system needs to be robust to changes in
the signal. In this paper, we address the robustness of our analy-
sis to time and frequency translation. If the signal is shifted in
time, ¢, , and in acoustic frequency, @,, i.e. y(t)=e"'x(t-1t,),
then the joint frequency representation of the shifted signal can
be expressed as

Pr(me) = e™P(n0-ao,). 9
The effect of a time shift results in a phase shift in the 7 dimen-
sion of P¥(,®) . By using the absolute value of P (17,®) , the
estimate is invariant to the time shift. For the modulation scale
representation P (s,®) , if the time shift is relatively small
compared to the integration time in Equation (8), then the esti-
mate is approximately invariant to the effect:

P’(s,0) = P’(s,0-@,). (10)
An acoustic frequency shift causes a shift in the @ dimension
for both P (17,0) and P (s,w) . We will discuss the approach
for estimating features which are insensitive to this frequency
shift in Section 3.3.

3. EXPERIMENTS

3.1 Signal Interception

There are many modulation types used to transmit digital mes-
sages over analog channels. In many applications such as inter-
ception of battlefield communications, modulation type is un-
known, and identification of the type is a critical first step in
monitoring of the communication channel. Current systems rely
on the accuracy of a human listener. An operator manually de-
modulates an intercepted signal to the audible frequency range at
which point an expert listener then identifies the modulation
type. Past research into automatic identification of modulation
type has used a combination of short-term spectral features, i.c.
[2]. A weakness of features of this type is that they are sensitive
to frequency translations which may be induced during the initial
demodulation of the signal into the audible range by the human
operator. Although it is possible to align the center frequencies
of signals to eliminate this drawback, doing so requires a rather
exact estimate of the carrier frequency [13]. We will show that
our features derived from joint frequency analysis not only pro-
vide high discrimination but also low sensitivity to frequency
shift.

3.2 Data Collection
The real communication signals used in the experiments were

collected from http://rover.vistecprivat.de/~signals. The audio
data was labeled by an expert listener afterward. There were a
total 216 files including four different modulation classes, FSK,
MEFSK, PSK (phase shift keying and multilevel PSK), and
MCVEFT (multichannel FSK and PSK). Each file had different
length and sampling rate. The number of files for each signal
class is shown in Table 1.

Table 1: The number of communication signal files used in
the experiments.

FSK MFSK PSK MCVFT

Number of files 77 41 72 26

3.3 Feature Extraction

Each file was resampled to 11025 Hz. After removing silences,
the resampled audio was then windowed into 3-second blocks
which overlapped by 2.75 seconds. A spectrogram was computed
for each block using a Hanning window of length 128 samples
and a window shift of 21 samples thereby reducing the subband
sampling rate to about 512 Hz before the modulation transform.
Biorthogonal wavelet filters, with 8 different dyadic scales, were
used to produce one modulation frequency vector for each acous-
tic subband. The output features included modulation scale
P, ,ls,k] , and spectral estimate P, [k] features.

As previously discussed, the nature of the initial demodula-
tion process may induce an acoustic frequency shift in P, , and
P,,. - Due to this frequency translation, we cannot directly apply
P, and P, to typical classifiers. To remove the frequency
sensitivity in P, ,, a singular value decomposition (SVD) was
considered. Using the SVD, we can estimate the acoustic fre-
quency vector, P, and modulation scale vector, P", given
P, ., the feature matrix with rank  , by Equation (11) (where o
is a nonnegative weight).

o,P'[KIP"[s] (11)

j=1

Rnad [Sﬁk] =

Using Equation (10), the modulation scale features of the shifted
signal can be approximated as P, ,[s,k—k,] where k, is
amount of frequency translation. Due to the sparseness of the
joint frequency representation, P, ,[s,k —k,] could be viewed as
a vertical shift of the non-zero support region of Figure 1b and
Figure 2b while the structure in the modulation frequency di-
mension, or horizontal axis in the plots, remains the same. This is
equivalent to a row permutation of the P, , matrix. It can be
shown that a row-permutation in this matrix results in a row per-
mutation of the left matrix in the SVD which implies that the
frequency shift affects only P“. Since P" and o were insensi-
tive to acoustic frequency shift, they were chosen for our fea-
tures. Because P, , can be mostly represented using only one
basis vector, we derived our new 8 dimensional modulation fea-
tures as

modulation features = sign(Zle[s]j\/;]E’”[s] (12)

For the P, vector, four scalar features which were also insensi-
tive to frequency shift were extracted including entropy and
bandwidth of P, , and the mean and standard deviation of the
demodulated spectrum estimate. The normalized central second
moment of the analytic signal [2] was also used for our features.
We refer to these five features collectively as "spectral estimate"
features. To reduce the dynamic range of the estimation, all fea-
tures were normalized by the standard deviation estimated from

all signal classes before classification.

3.4 Results

A probabilistic classifier, Gaussian mixture model (GMM), was
used for our experiments. Due to the limited number of examples
in each signal class, the method of withholding each example in
turn for testing while training on all the rest ("leave-one-out"
approach), was employed to evaluate the performance for the
classifier. For a given multi-frame test file, each frame was as-
signed to one of the four modulation classes having the highest
likelihood score. The modulation class winning the largest num-
ber of frame assignments was chosen as the class for that exam-
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ple. Table 2 shows the accuracy results with different feature
types and number of mixtures. The results show the improved
performance when the number of mixtures is increased. Using
short-term spectral estimate features exclusively provides per-
formance comparable to using only modulation features. How-
ever, adding modulation features to spectral estimate features
yielded markedly improved performance for all numbers of mix-
tures. The improved performance of adding modulation features
also was seen for a k-nearest neighbor classifier.

Table 2: Percentage accuracy results using Gaussian mixture
models

Number of mixtures

2 4 6 8 10

Features

modulation 51.9% 58.3% 62.0% 61.6% 65.7%
spectral 61.6%  60.7%  62.5%  66.2%  66.2%
combined 66.2% 69.9% 71.8% 78.2% 75.5%

4. CONCLUSIONS

This paper discussed joint frequency analysis for non-stationary
signal classification. Our joint frequency representation has pro-
vided not only short-term information but also long-term infor-
mation about the signal. Since it was designed using time-
frequency theory and psychoacoustic results, the resulting ap-
proach has potential for a wide range of non-stationary signal
types. Communication signal type classification was used for
experimental verification. The experimental results using the
probabilistic classifier showed that adding modulation features to
spectral estimate features significantly improved the overall sys-
tem performance. For the best performance, the relative im-
provement was 18% for a GMM classifier with 8 mixtures.
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Figure 1: A spectrogram representation of FSK signal
shows the change of two frequencies in (a) where the joint
frequency representation of this signal exhibits a more
compact representation in (b). More details are in Section
2.2,
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Figure 2: A spectrogram representation of PSK signal
shows varying content in a wide range of frequency and
time in (a) where the joint frequency representation of this
signal exhibits a more compact representation in (b). More
details are in Section 2.2.
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