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ABSTRACT

In this paper we consider the problem of the transient
signal detection, followed by a virtual characterization
stage. There are two main difficulties which appear in this
field. The first one is due to the noise which actsin a real
environment. Secondly, when we are interested about
signal characterization, it is important to provide a more
complete information about its time-frequency behavior.

Conseguently, we propose an adaptive time-frequency
method based on the over-complete wavelet transform
concept, in which case an irregular sampling procedure
will be involved. This procedure uses a method based on
the fourth order moment, applied for each sub-band, in
order to establish the optimal weight for each sample. The
results obtained for real data prove the capability of the
proposed approach to accurately detect a transient signal,
comparatively with some classical methods (spectrogram
or standard wavelet transform, for example).

1.INTRODUCTION

The problem of detecting transient signal of unknown
waveforms has been widely studied in recent years due to
the numerous applications associated with it. Some
applications field are : medical signal processing, non-
destructive defectoscopy, underwater signal processing,
etc. In these applications we are interested in both the
detection of the wuseful part of signal and its
characterization. In this case, there are two major
problemsthat can be solved. Firstly, the processing system
must to be able to accurately detect the transient parts of
the signal. One of the most performant detection methods
is based on the joint use of the wavelet techniques and the
high order statistical measurement [1]. For the second
problem - signal characterization - it is necessary to use a
method which could be able to extract the useful
information about the processed data, knowing that the
real environments are generally highly non-stationary. In
this context, the use of time-frequency methods [2] can be
a potential solution. This class of methods must be able to
provide a suggestive information about the signal
structure. Currently, this information is provided on the
time-frequency image form and, the quality of this image
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strongly influences the performances of the following
processing stages.

In this work we propose a method based on the Over
Complete Wavelet Transform (OCWT) which leads to
signal processing on interest frequency sub-bands. In each
of them, an irregular sampling procedure will be used, in
order to optimally detect the useful signal features. The
results will be done in a time-frequency image form
corresponding to the frequency content variation over
time,

The organization of this paper is as follows. In section
2 we briefly present the OCWT concept. In section 3 we
propose a new irregular sampling procedure, based on a
split and merge agorithm. As we will see, the kurtosis
will be used as a cost function. In section 4 we will study
the performances of our approach from a theoretical point
of view (with help of the receiver operating characteristic
- ROC ) and using the real underwater mammals signals .
Beside, we will compare the obtained results with the ones
obtained by the classical method (Spectrogram, Discrete
Wavelet Transform). Section 5 - "Conclusion” - highlights
the significance of the results and the redlistic
perspectives.

2.OVERCOMPLETE WAVELET TRANSFORM

In many applications, due to their remarkable
procedures, the discrete wavelet transform (DWT) has
been extensively used [3].

From a mathematical point of view, the DWT is
generated by sampling, in the time-scale plane, of a
corresponding continuous wavelet transform (relation 1).
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where g is the analyzing wavelet, f isagivensignal, t,

is the translation operator ((t, f)(u) = f (u- t)) and Ds

is the scale operator ((D_f)(u) :E fgal;g) Despite the
s S eSg

fact that there is an infinity of possible discretization of

the CWT, the term discrete wavelet transform (DWT) is

commonly used to mean the one associated with the
dyadic sampling | attice.
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for certain analyzing wavelets that give rise to wavelet
orthonormal basis.

In practice, it was observed, that the use of
orthonormal representation is not necessariy well suited
for a given signal processing problem [4]. For example, by
regular sampling, used to compute the MRA, we can |oose
the signal characteristics, represented by its maxima.

Consequently, the orthonormal representation

drawbacks are due to the dyadic grid. In order to diminate
them, the key point is the use of a non-dyadic sampling
structure, which is the case of the OCWT [5]. This method
is composed by two stages :
L. Firstly, we decompose the signal with the linear filter
bank structure. The impulse responses of the filter bank
are determined by the analyzing wavelet g and the scale
samples s,,. The filtering stage result is presented in the
next equation.

W, f (t,sm):(f* Dsmg*)(t) ©)

Here s is a scaling index which controls the filter
bandwidth and the central frequency of each filter. In
addition, we can control the overlapping between the filter
transfer functions (figure 1.b). For s=2, we obtain the
filter bank structure used for the DWT computation; a
filter bank example is shown in l.a, using the Morlet
wavelet as the analyzing function, which has the following
analytical expression :

' 2
IMorlet(t) = L ei2gct- (7 /an) 4
b

where g, and g are the bandwidth and the frequency
center of the g Fourier transform.
Fi_Iter banl_< (s=2) _

af ]-m_-

= 1 .
al ..lll'.lllilll'lll.' LA "“.-' 5 MR e

] ~a DWTcase b. OCWT case
Figure 1. Comparison between filter banks at different scales

Filter bank (s=1.2)
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1I. In the second stage we will sample the signal issue at
the filter bank output. We take into account the samples at
discrete times given by {tmn}.

Mathematically, OCWT may be interpreted as the
CWT sampled version of the signal by a non-dyadic
structure. Usually, we use the semi-logarithmic regular
sampling, given by the next definition [4].

G(D’ao):D{nD}' {88’},2>a0>1,D>0 (5)

Consequently, the ag parameter controls the filter
overlapping, and, implicitly, the redundancy degree. If ag
is 2, the redundancy will be null : the wavelet basis will
generate an orthonormal reconstruction error null, but the

extraction of the signal characteristicsis not guaranteed. If
ap<2, the wavelet function set will be a frame : the
reconstruction is not perfect but we can adapt our
distribution to the signal time-frequency structure.

3. IRREGULAR SAMPLING PROCEDURE

Generally speaking, there are some advantages to
adopt an irregular sampling strategy in a representation.
Many of these advantages are inherited from the ability of
an irregular sampling to be sensitive to signal time-
frequency behaviors [4]. The theoretical frame of the
irregular sampling strategies is presented in [5] and some
applications (for noise suppression, digital
communication, compression, etc.) are presented in [4].
In this section we introduce a new irregular sampling
technique, well adapted for transient signal detection, in a
noisy environment. This technique will be applied to the
corresponding waveform, provided by OCWT for each
frequency channel.

Observation : SNR=6.02 dB m !
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Figure 2. The Irregular sampling procedure for channel i
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It is well known [6] that the non-gaussian wavelet
coefficients provide alarge value of afourth order statistic
moment (kurtosis). On the other hand, the noise
coefficients, which currently have a gaussian probability
density function, provide a small value of the kurtosis. The
kurtosis allows us to discriminate between the useful
(transitory) and useless (noise) parts of the signal. This
principle will be applied to detect an optimal sampling
grid for each signal's representation, issued from OCWT.

In the above figure we present the principle of the
irregular sampling procedure. The waveform issued from
i-channel of the OCWT filter bank is uniformly
partitioned in equal length intervals. For each of them the
value of kurtosis is estimated, using the following relation

[6]: ; 2 A
)= NGB YRS, @
e=1 ge=1 g

Using these values, we apply an iterative split & merge
algorithmin order to establish the optimal partition.

For each two adjacent intervals Iy et Iy, we test the
following condition :

Ho: if kurt(l J-)E nb&kurt(l j+l)£ng p I'J- =1jEljn
=} kurt(l J): max[kurt(l j), kurt(l j+1)]

Hito s kurt(l j )> mgOr kurt(l j+1) >mg b theintervalswill
be conserved

The Hg hypothesis states that there is no useful partin
the considered intervals, so, these ones will be merged
(fusion). Alternatively, The H; hypothesis states that one
or both intervals are subject to the useful parts of signals
and will be conserved. The algorithm runs until no fusion
ispossible.

The involved threshold ps is computed for each
channel using the following formula[1,6] :

s = ———[ag 2 ()
 V1-a VON

where a - is a confidence degree [6], a is the overlapped
degree (see the previous section), N is a sequence length
and sisthe channel index (s=1:Number_of channels).
Finally, we obtain an optimal partition (figure 4) and
the values of the kurtosis for the optimal partition. The
obtained curve weights the samples of the supposed
waveform, ensuring an irregular sampling of this one : the
samples associated to transient parts of signal will be
"highlighted”, whereas the ones associated to noise will be
almost precluded. This effect is illustrated in the figure 3.
We consider two chirps atoms (both on 128 samples),
mixed with real oceanic noise (SNR=6.02 dB). After the
OCWT (the number of the channels is about 128) we
apply the method to the extracted waveform from each
channel. The values of kurtosis for the optimal partition
provide an optimal sampling grid which improves the
representation quality. Repeating the same algorithm for

al OCWT channels, we obtain a two-dimensiona
irregular sampling grid which leads to an optimal time-
frequency regions-of interest (ROIS) detection (figure 3).
On the other hand, by unifying the kurtosis curves of the
all sub-bands and for all temporal position, we obtain the
detection curve in both time and frequency domains,
which provide an information about temporal localization
of the transient parts of the signals. For the considered test
signal, the detection curves are shown in the figure 3.
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Figure 3. Detection of the time-frequency ROIs, using the
OCWT and theirregular sampling procedure

4. RESULTS

Here, we comparatively present the detection results
obtained by our method (OCWT-IS - irregular sampling)
and two classical ones : spectrogram [2] and discrete
wavelet transform [3].

First, as a performance measure the receiver operating
characteristics (ROC) have been measured (figure 4).
Recall that the ROC is a collection of curves describing
the probability of detection as a function of the probability
of fase aarm for a set of different signal to noise ratio
(SNR) [6].

1 SNR = 3dB ! SNR=1dB
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Figure 4. Experimental ROCs for Detection schemes based on
the spectrogram, DWT and OCWT-IS

VI - 451




Clearly, this figure indicates that the OCWT based
method outperforms good detection performancesin every
case. Firstly, we obtain the satisfactory value for the
detection probability, even for a SNR close to 0 dB.
Secondly, the false alarm level is lower than the values
generated by the first two methods. Both of these facts
demonstrate the superiority of the OCWT-IS based
detector.

The detection method based on the OCWT-IS
procedure not only provides nice detection performances
(see figure 4), but also leads to a good resolution time-
frequency image. This alows us the opportunity to
accurately extract the useful information carried by the
detected transient signal. To prove that, we have tested our
approach with real data corresponding to the signal
emitted by a long-finned pilot whale (Globicephala
melas). The sampling frequency is 44.1 kHz and we have
taken into account an observation of 5.92 seconds. The
test signal is presented in thefigure 5.a.
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Figure 5. Comparative results for real analysis data

In the figure 5.b., the spectrogram of this signal is
presented. In this case, there is a trade off between time
and frequency resolutions which affect the signal feature
representation.

Using our method, we obtain the corresponding ROIs
where the transient parts of signal occur (figure 5.c).
Furthermore, we observe that the time-frequency signal
features are energetically stronger than the noise
components. Therefore, the Generalized Matching Pursuit-

based time-frequency representation (GTFR) proposed in
[7], will correctly perform, as it is depicted in the next
figure.

Figure 6. GTFR of thereal signal

The GTFR, applied in each ROIs previously detected,
ensures an analytical representation of the instantaneous
frequency law [8]. On the other hand, the signal partition
in the ROIs, provided by OCWT-IS, alows to a
considerable generalized dictionary reduction ([8]),
bringing the GTFR applicable for the real signals. More
specificaly, the idea is to compute a particular generalized
dictionary for each ROI, reducing aso the number of the
component that will be searched via the algorithm
described in [7].

5.CONCLUSIONS

As it was proved by the experimental results, the ROIs
detected by the proposed method provide a complete and
satisfactory information about time-frequency behaviors
of the considered signals. Consequently, due to its good
readability, it may be successfully used for a further
feature extraction algorithm.

In further works, we intend to use this algorithm as a
feature extraction method in the context of underwater
transient signal classification.
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