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ABSTRACT 
 

In this paper we consider the problem of the transient 
signal detection, followed by a virtual characterization 
stage. There are two main difficulties which appear in this 
field. The first one is due to the noise which acts in a real 
environment. Secondly, when we are interested about 
signal characterization, it is important to provide a more 
complete information about its time-frequency behavior. 

Consequently, we propose an adaptive time-frequency 
method based on the over-complete wavelet transform 
concept, in which case an irregular sampling procedure 
will be involved. This procedure uses a method based on 
the fourth order moment, applied for each sub-band, in 
order to establish the optimal weight for each sample. The 
results obtained for real data prove the capability of the 
proposed approach to accurately detect a transient signal, 
comparatively with some classical methods (spectrogram 
or standard wavelet transform, for example).    

     
 

1. INTRODUCTION 
 
 The problem of detecting transient signal of unknown 
waveforms has been  widely studied in recent years due to 
the numerous applications associated with it. Some 
applications field are : medical signal processing, non-
destructive defectoscopy, underwater signal processing, 
etc. In these applications we are interested in both the 
detection of the useful part of signal and its 
characterization. In this case, there are two major 
problems that can be solved. Firstly, the processing system 
must to be able to accurately detect the transient parts of 
the signal. One of the most performant detection methods 
is based on the joint use of the wavelet techniques and the 
high order statistical measurement [1]. For the second 
problem - signal characterization - it is necessary to use a 
method which could be able to extract the useful 
information about the processed data, knowing that the 
real environments are generally highly non-stationary. In 
this context, the use of time-frequency methods [2] can be 
a potential solution. This class of methods must be able to 
provide a suggestive information about the signal 
structure. Currently, this information is provided on the 
time-frequency image form  and, the quality of this image 

strongly influences the performances of the following 
processing stages.    

In this work we propose a method based on the Over 
Complete Wavelet Transform (OCWT) which leads to 
signal processing on interest frequency sub-bands. In each 
of them, an irregular sampling procedure will be used, in 
order to optimally detect the useful signal features. The 
results will be done in a time-frequency image form 
corresponding to the frequency content variation over 
time.   

The organization of this paper is as follows. In section 
2 we briefly present the OCWT concept. In section 3 we 
propose a new irregular sampling procedure, based on a 
split and merge algorithm. As we will see, the kurtosis 
will be used as a cost function. In section 4 we will study 
the performances of our approach from a theoretical point 
of view (with help of the receiver operating characteristic 
- ROC ) and using the real underwater mammals signals . 
Beside, we will compare the obtained results with the ones 
obtained by the classical method (Spectrogram, Discrete 
Wavelet Transform). Section 5 - "Conclusion" - highlights 
the significance of the results and the realistic 
perspectives.   
    

2. OVERCOMPLETE WAVELET TRANSFORM 
 

In many applications, due to their remarkable 
procedures, the discrete wavelet transform (DWT) has 
been extensively used [3].  

  From a mathematical point of view, the DWT is 
generated by sampling, in the time-scale plane, of a 
corresponding continuous wavelet transform (relation 1). 
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fact that there is an infinity of possible discretization of 
the CWT, the  term discrete wavelet transform (DWT)  is 
commonly used to mean the one associated with the 
dyadic sampling lattice.  
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for certain analyzing wavelets that give rise to wavelet 
orthonormal basis. 

In practice, it was observed, that the use of 
orthonormal representation is not necessariy well suited 
for a given signal processing problem [4]. For example, by 
regular sampling, used to compute the MRA, we can loose 
the signal characteristics, represented by its maxima.  

Consequently, the orthonormal representation 
drawbacks are due to the dyadic grid. In order to eliminate 
them, the key  point is the use of a non-dyadic sampling 
structure, which is the case of the OCWT [5]. This method 
is composed by two stages : 
I. Firstly, we decompose the signal with the linear filter 
bank structure. The impulse responses of the filter bank 
are determined by the analyzing wavelet g and the scale 
samples sm. The filtering stage result is presented in the 
next equation.     

( ) ( )( )W f t s f D g tg m sm
, *= ∗    (3) 

 

 Here s is a scaling index which controls the filter 
bandwidth and the central frequency of each filter. In 
addition, we can control the overlapping between the filter 
transfer functions (figure 1.b). For s=2, we obtain the 
filter bank structure used for the DWT computation; a 
filter bank example is shown in 1.a., using the Morlet 
wavelet as the analyzing function, which has the following 
analytical expression : 
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where γb and γc are the bandwidth and the frequency 
center of the g Fourier transform.   
    
 
 
 
 

 
 

Figure 1. Comparison between filt er banks at different scales  
 
II. In the second stage we will sample the signal issue at 
the filter bank output. We take into account the samples at 
discrete times given by {tm,n}.  

Mathematically, OCWT may be interpreted as the 
CWT sampled version of the signal by a non-dyadic 
structure. Usually, we use the semi-logarithmic regular 
sampling, given by the next definition [4]. 
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Consequently, the a0 parameter controls the filter 
overlapping, and, implicitly, the redundancy degree. If a0 
is 2, the redundancy will be null : the wavelet basis will 
generate an orthonormal reconstruction error null, but the 

extraction of the signal characteristics is not guaranteed. If 
a0<2, the wavelet function set will be a frame : the 
reconstruction is not perfect but we can adapt our 
distribution to the signal time-frequency structure. 
 

3. IRREGULAR SAMPLING PROCEDURE 
 
 Generally speaking, there are some advantages to 
adopt an irregular sampling strategy in a representation. 
Many of these advantages are inherited from the ability of 
an irregular sampling to be sensitive to signal time-
frequency behaviors [4]. The theoretical frame of the 
irregular sampling strategies is presented in [5] and some 
applications (for noise suppression, digital 
communication, compression, etc.) are presented in [4].  
In this section we introduce a new irregular sampling 
technique, well adapted for transient signal detection, in a 
noisy environment. This technique will be applied to the 
corresponding waveform, provided by OCWT for each 
frequency channel.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
    

  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. The Irregular sampling procedure for channel i  
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It is well known [6] that the non-gaussian wavelet 
coefficients provide a large value of a fourth order statistic 
moment (kurtosis). On the other hand, the noise 
coefficients, which currently have a gaussian probability 
density function, provide a small value of the kurtosis. The 
kurtosis allows us to discriminate between the useful 
(transitory) and useless (noise) parts of the signal. This 
principle will be applied to detect an optimal sampling 
grid for each signal's representation, issued from OCWT.  
 In the above figure we present the principle of the 
irregular sampling procedure. The waveform issued from 
i-channel of the OCWT filter bank is uniformly 
partitioned in equal length intervals. For each of them the 
value of kurtosis is estimated, using the following relation 
[6]: 

 (6) 
  

Using these values, we apply an iterative split & merge 
algorithm in order to establish the optimal partition.   

For each two adjacent intervals Ik et Ik+1, we test the 
following condition : 
 
 
 
 
 
 
 
 The H0 hypothesis states that there is no useful part in 
the considered intervals, so, these ones will be merged 
(fusion). Alternatively, The H1 hypothesis states that one 
or both intervals are subject to the useful parts of signals 
and will be conserved. The algorithm runs until no fusion 
is possible.   
 The involved threshold µs is computed for each 
channel using the following formula [1,6] : 
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where α - is a confidence degree [6], a0 is the overlapped 
degree (see the previous section), N is a sequence length 
and s is the channel index (s=1:Number_of_channels). 
 Finally, we obtain an optimal partition (figure 4) and 
the values of the kurtosis for the optimal partition. The 
obtained curve weights the samples of the supposed 
waveform, ensuring an irregular sampling of this one : the 
samples associated to transient parts of signal will be 
"highlighted", whereas the ones associated to noise will be 
almost precluded. This effect is illustrated in the figure 3. 
We consider two chirps atoms (both on 128 samples), 
mixed with real oceanic noise (SNR=6.02 dB). After the 
OCWT (the number of the channels is about 128) we 
apply the method to the extracted waveform from each 
channel. The values of kurtosis for the optimal partition 
provide an optimal sampling grid which improves the 
representation quality. Repeating the same algorithm for 

all OCWT channels, we obtain a two-dimensional 
irregular sampling grid which leads to an optimal time-
frequency regions-of interest (ROIs) detection (figure 3).  
On the other hand, by unifying the kurtosis curves of the 
all sub-bands and for all temporal position, we obtain the 
detection curve in both time and frequency domains, 
which provide an information about temporal localization 
of the transient parts of the signals. For the considered test 
signal, the detection curves are shown in the figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Detection of the time-frequency ROIs, using the 
OCWT and the irregular sampling procedure  

 
4. RESULTS 

 
Here, we comparatively present the detection results 

obtained by our method (OCWT-IS - irregular sampling) 
and two classical ones : spectrogram [2] and discrete 
wavelet transform [3].  
 First, as a performance measure the receiver operating 
characteristics (ROC) have been measured (figure 4). 
Recall that the ROC is a collection of curves describing 
the probability of detection as a function of the probability 
of fals e alarm for a set of different signal to noise ratio 
(SNR) [6]. 

 
 
 
 
 
 
 
 

 
 

Figure 4. Experimental ROCs for Detection schemes based on 
the spectrogram, DWT and OCWT-IS 
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 Clearly, this figure indicates that the OCWT based 
method outperforms good detection performances in every 
case. Firstly, we obtain the satisfactory value for the 
detection probability, even for a SNR close to 0 dB. 
Secondly, the false alarm level is lower than the values 
generated by the first two methods. Both of these facts 
demonstrate the superiority of the OCWT-IS based 
detector. 

The detection method based on the OCWT-IS 
procedure not only provides nice detection performances 
(see figure 4), but also leads to a good resolution time-
frequency image. This allows us the opportunity to 
accurately extract the useful information carried by the 
detected transient signal. To prove that, we have tested our 
approach with real data corresponding to the signal 
emitted by a long-finned pilot whale (Globicephala 
melas). The sampling frequency is 44.1 kHz and we have 
taken into account an observation of 5.92 seconds.   The 
test signal is presented in the figure 5.a. 

 
 
 
 
 
     
 
 
 
 
 
  
     

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Comparative results for real analysis data 
 
 In the figure 5.b., the spectrogram of this signal is 
presented. In this case, there is a trade off between time 
and frequency resolutions which affect the signal feature 
representation.  
    Using our method, we obtain the corresponding  ROIs 
where the transient parts of signal occur (figure 5.c). 
Furthermore, we observe that the time-frequency signal 
features are energetically stronger than the noise 
components. Therefore, the Generalized Matching Pursuit- 

based time-frequency representation (GTFR) proposed in 
[7], will correctly perform, as it is depicted in the next 
figure.  
 
 
 
 
 
 

Figure 6. GTFR of the real signal 
 
 The GTFR, applied in each ROIs previously detected, 
ensures an analytical representation of the instantaneous 
frequency law [8]. On the other hand, the signal partition 
in the ROIs, provided by OCWT-IS, allows to a 
considerable generalized dictionary reduction ([8]), 
bringing the GTFR applicable for the real signals.  More 
specifically, the idea is to compute a particular generalized 
dictionary for each ROI, reducing also the number of the 
component that will be searched via the algorithm 
described in [7].       

 
5. CONCLUSIONS 

 
As it was proved by the experimental results, the ROIs 

detected by the proposed method provide a complete and 
satisfactory information about time-frequency behaviors 
of the considered signals. Consequently, due to its good 
readability, it may be successfully used for a further 
feature extraction algorithm.  

 In  further works, we intend to use this algorithm as a 
feature extraction method in the context  of  underwater 
transient signal classification.  
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