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ABSTRACT

This paper develops nonnegative, high-resolution time-frequency
representations (TFRs) that correspond with intuitive notions of
energy distribution. These so-called consistent TFRs require the
desired representation to be consistent with a set of spectrogram-
based energy measurements. By formulating the desired repre-
sentation as the solution to a constrained optimization problem, it
can be solved using a gradient-projection technique. The consis-
tent TFR demonstrates superior performance compared to existing
techniques on a variety of test signals and biological data. The
result is a high-resolution, nonnegative, intuitively-satisfying TFR
that should prove to be an excellent tool for exploratory data anal-
ysis.

1. INTRODUCTION

One of the primary goals of time-frequency analysis is to obtain
a joint representation of the signal that shows how energy is dis-
tributed in the time-frequency plane. The Wigner-Ville distribution
(WVD) is one of the most fundamental time frequency represen-
tations.
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The WVD provides an ideal TFR for monocomponent Gaussian
signals of the form:

s(t) = 67%(at2+2bt+c) @)

where a,b € C with Re[a] > 0 and ¢ € R. The resulting TFR
has high resolution, is everywhere nonnegative, and has an energy
distribution that corresponds well with intuitive notions for such
a signal. Unfortunately, this is the only such signal for which the
WYVD is everywhere nonnegative [1]. Other monocomponent sig-
nals have a WVD that has negative values, and signals with mul-
tiple components exhibit cross-terms. Figure 1 shows a WVD of
two closely-spaced parallel windowed chirp signals. The represen-
tation still has the desired behavior in the autocomponent regions,
but now has a large cross-term at the mid-time, mid-frequency
points of the autoterms. The cross-term is oscillatory in nature
and takes on negative values.

Much of the early work in time-frequency dealt with the sup-
pression of cross-terms. Many approaches result in the smoothing
of the WVD to filter out the oscillatory cross-terms. This is seen
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Fig. 1. WVD of windowed chirps

by looking at Cohen’s class for bilinear TFRs as a WVD convolved
with a two-dimensional filter.

cwn)= [ [ [ote~i s wvpe frata o

where the filter ¢(0, ) is called the kernel of the representation.
Different kernels result in different representations. Looking at
Cohen’s class in the correlative domain is useful for understanding
the effect of the filter.

C(1,0) = &(r,0)AF(T,0) 4
where
AF(1,0) = /s(t + %)s*(t - %)e*ﬂﬂgtdt 5)

is the ambiguity function (AF).

Ideally, an exploratory TFR would be nonnegative everywhere
and retain the high-resolution autoterm behavior of the WVD au-
toterm regions without exhibiting cross-terms. Essentially, an ex-
ploratory TFR should have a quasi-linear behavior; a multicompo-
nent signal should have a TFR that is similar to the superposition
of the individual TFRs. Figure 2 shows the consistent TFR, which
is developed in this paper, of the parallel chirp signals. The consis-
tent TFR has excellent resolution, is nonnegative, and has energy
placement exactly corresponding to intuitive notions. A variety of
approaches to the problem of finding an “ideal” TFR exist, and are
mentioned next.
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Fig. 2. Consistent TFR of windowed chirps

2. PREVIOUS APPROACHES

There have been many attempts to obtain an “ideal” TFR. While
there is certainly some disagreement by what is meant by ideal,
most of the approaches strive for nonnegativity, high-resolution of
the autoterms, and suppression of cross-terms.

Cross-term energy lies away from the 7,6 axis [2]. A ker-
nel with low-pass properties can be utilized to suppress the cross-
terms. If the autoterms and cross-terms are not easily separable,
the filter either passes some cross-term energy or filters out some
of the autoterm energy, which results in a loss of autoterm reso-
lution. More advanced techniques, such as the adaptive optimal-
kernel (AOK) method of Jones and Baraniuk [3], adaptively design
the kernel for each signal. This method works well on a wider va-
riety of signals, but it is still a low-pass filtering operation and has
limitations.

o Filtering Approaches. Filtered versions of Cohen’s class
were mentioned previously including more advanced meth-
ods such as AOK [3].

e Cohen-Posch positive distributions. Cohen and Posch [4]
provided an early example that demonstrates the existence
of a family of nonnegative, marginal-satisfying TFRs.

e Minimum cross-entropy representations. Loughlin, Pit-
ton, and Atlas proposed an information-theoretic citerion
for choosing a specific TFR from the class of Cohen-Posch
positive distributions.

o Positive RIDs. Sang, Williams, and O’Neill [5] propose
a method to develop positive, marginal-satisfying quadratic
distributions with reduced cross-terms.

Many of these approaches are strongly based on satisfying
marginals. Marginals are certainly an important mathematical prop-
erty, but enforcing them along with nonnegativity can obscure the
form of the autocomponents. If the time domain signal has very
small amplitude at a certain instant, the marginal-satisfying, non-
negative representation must be near zero across all frequencies.
This results in autoterms with a segmented structure that counter-
act the notion of quasi-linearity. Since the goal of quasi-linearity
conflicts with that of marginals, the following TFR does not en-
force marginal properties.

3. CONSISTENT TFRS

The WVD has high-resolution autoterm behavior that is excellent
for an exploratory representation. The negative values of the WVD

and excessive cross-terms limit the usefulness of the WVD for
real data. The ideal TFR would mimic the autoterm behavior of
the WVD and eliminate the cross-terms in some way other than a
smoothing operation. The spectrogram is nonnegative and has an
energy distribution that is very intuitive. Unfortunately, the spec-
trogram has poor concentration due to the inherent windowing op-
eration [6]. The spectrogram and WVD are related via Moyal’s
formula:

2
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or expressed as an inner product,
< Ca1,Coy >=| < 1,22 > | )

This relationship holds for all C'(¢, f, IT) that have |II(, §)| =
1. The WVD is the only member of Cohen’s class that satisfies this
relationship. If x is chosen as the signal and x2 as the time-shifted
and frequency-shifted window of the spectrogram,

<WVDe,WVDu, , >=| < s,ws>| ®)

This relationship states that the inner-product of the WVDs of the
signal and the window is equal to the value of the spectrogram at
that ¢, f location. In other words, the energy overlap of the signal’s
WYVD and the window’s WVD is consistent with the energy mea-
surement defined by the spectrogram. This is a desirable property,
since it implies that intuitive notions of energy distribution are pre-
served. Unfortunately, the WVD satisfies this relationship for all
windows because it is allowed to take on negative values. If the
window is chosen so that it does not encompass both autoterms
and cross-terms simultaneously in the time-frequency plane, then
Moyal’s formula will be valid in autoterm regions without utiliz-
ing negative values of the WVD. An ideal TFR that behaves like
the WVD in autoterm regions can be developed. Additionally, if
the TFR is constrained to be nonnegative, cross-term regions will
be removed since they require the negative values of the WVD to
satisfy Moyal.

The consistent TFR, X, is developed as the solution of a con-
strained optimization problem that attempts to minimize the devi-
ation from Moyal’s formula according to

Cost =N |< X, Wiy > | <zywees >0 )
k t,f

such that X > 0 V¢, f. In this expression, X is the desired TFR of
the signal, and W s is the TFR of window £ that has been shifted
by ¢, f. In the time domain, wg,, s is the ¢, f shifted window k,
and zx is the signal. The cost function can be minimized more
easily be expressing it in the 7, 6 domain.

Cost =Y > [FIX|F[W (~t, — )] = AF.(—0,7) AF, (0, 7)|*
k 7,0

(10)
F represents a Fourier transform. W is the WVD of the window.
This is plausible since our windows are Gaussian functions and the
WVD of a Gaussian exactly corresponds to intuition. After some
manipulation, the cost function is

Cost = (Z |AFWk|2) [F[X] — AFx(—6,7)]*> (11)
k

7,0
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Now the cost function is in a form where a derivative with respect
to the unknown distribution can easily be taken.

0Cost
OF[X] —

> (|AFw,|?) 2(F[X] — AFx(—0,7))  (12)
k

The set of nonnegative TFRs is a convex set. It is also rela-
tively straightforward to show that the cost function is a convex
function. Weierstrass’ theorem ensures the existence of a global
minimum for a convex function over a convex set. In addition, the
cost function is strictly convex over the set of nonnegative repre-
sentations, the set of interest, which implies that the global min-
imum is unique. A method for obtaining the solution is imple-
mented next.

This problem can be solved using a gradient-project algorithm
as follows. The gradient-project technique is well suited to this
problem, since the nonnegativity constraint can easily be imposed
with a simple projection operation.

e Start with some initial representation for X

e Update X using the gradient as in Eq. 12

Transform back into ¢, f domain
e Remove any negative values

e Transform back to 7, # domain and iterate

4. CHOICE OF WINDOWS

The remaining issue to be dealt with is the choice of the window
constraints with which to be consistent. In the required simplifi-
cation of the cost function, the Fourier transform of the window
representation is taken to be the AF. This implies that the ideal
TFR of the window is the WVD. Since only Gaussian signals have
a WVD that is nonnegative and corresponds to intuitive notions
of energy distribution, the windows must be Gaussian. Gaussian
windows also have a minimum time-bandwidth product, which is
a useful attribute since the role of the window is to isolate a region
in the time-frequency plane.

Selecting individual windows can be done by examining the
cross-term behavior of the spectrogram and WVD. This issue is
dealt with in great detail in [7]. The WVD of a multi-component
signal will exhibit cross-terms at the mid-time and mid-frequency
points of the autocomponent pairs. The amplitudes of the cross-
terms can be twice as large as the product of the peak amplitude of
each autocomponent. The spectrogram, however, exhibits cross-
terms at the intersection of two autocomponents. The amplitude
can be as large as twice the product of the two autocomponent am-
plitudes at the intersection. It is easy to see why cross-terms affect
the WVD so severely, because they can have very large ampli-
tudes even for components with minimal overlap. This is not the
case with the spectrogram. If constraint windows are chosen such
that the resulting spectrogram does not have common cross-term
regions with the WVD of the signal, the autoterm behavior of the
WYVD will be retained. The window does not have to be perfectly
matched to the signal; it just needs to not be so poorly matched as
to smear the autoterms together. The windows can be chosen by
hand with a priori signal information. They can also be selected
automatically by using the radially-Gaussian kernel (RGK) design
procedure that is part of the Jones and Baraniuk AOK [8] proce-
dure as described in [9]. The RGK method works well in practice.

5. RESULTS: “CQ” SPEECH SEGMENT

This signal consists of a male speaker uttering the sound “CQ.”
Speech is one of the more challengin signals for time-frequency
representations because it has time-varying, spectrally diverse com-
ponents with wide dynamic ranges. Figure 3 shows the results for
the consistent TFR and several other commonly used TFRs for
comparison. The consistent TFR does an excellent job of showing
both wideband and narrow-band information, providing excellent
resolution of the formants and good time localization that clearly
gives excellent pitch-period information. None of the other rep-
resentations perform as well on the complex speech signal. More
detailed results and other examples can be found in [9].

6. CONCLUSION

Consistent nonnegative TFRs demonstrate very high concentration
and resolution of all signal components, superior cross-term sup-
pression, and quasi-linear behavior. The performance as an ex-
ploratory visual analysis tool equals or exceeds that of any other
TFR for all signals we have examined, including challenging real
signals such as speech and multicomponent signals of biological
origin.
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Fig. 3. Comparison of techniques for “CQ” speech segment
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