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ABSTRACT

A comprehensive theory for time-frequency based signal detection
has been developed during the past decade. The time-frequency
detectors proposed in literature are linear structures operating on
the time-frequency representation of the signals and are equiva-
lent to quadratic receivers that are defined in the time domain. In
this paper, the concept of entropy based detection on the time-
frequency plane is introduced. In recent years, Rényi entropy has
been proposed as an effective measure for quantifying signal com-
plexity on the time-frequency plane and some important properties
of this measure have been proven. In this paper, a new approach
that uses the entropy functional as the test statistic for signal de-
tection is developed. The minimum error detection algorithm is
derived and the performance of this new signal detection method
is demonstrated through examples.

1. INTRODUCTION

The optimum detection of signals in noise is a well-known prob-
lem and has been considered many times in literature [1]. In
recent years, there has been approaches to extend signal detec-
tion from the time domain to the time-frequency domain since
the time-frequency distributions (TFDs) contain more information
about nonstationary signals [2, 3, 4, 5]. Cohen’s class of TFDs
have been extensively used for detection in applications ranging
from radar to machine fault diagnosis, due to the need for deal-
ing with nonstationary signals [6]. Most of the time-frequency
detectors are linear structures operating in the time-frequency do-
main and are equivalent to quadratic receivers usually defined in
the time domain. It is well-known that the optimal detector of a
deterministic signal in white Gaussian noise is the matched filter,
and the best purely quadratic detector uses squared magnitude of
the matched filter output which can be implemented in the time-
frequency domain as the inner product of the Wigner distribution
of the observation with the Wigner distribution of the signal. The
time-frequency formulation for the optimum detection of Gaussian
signals in white Gaussian noise has been proposed by Flandrin [2].

Unfortunately, the design of detectors requires a priori knowl-
edge of signals whereas in real life applications the signals are too
complicated and no statistical model is available. Since the collec-
tion of labelled signals is often feasible, Jones and Sayeed derived
blind time-frequency detectors directly from the training data [3].

For detection of signals in Gaussian noise, matched filter is
the optimal detector. However, if the time-frequency offset varies
randomly, as for example, in a doppler radar system, a separate
quadratic functional at each time-frequency location is required
for optimal detection. A significant drawback in the general case is

that sufficient training data must be available to design the unique
kernel for each time-frequency offset location.

In this paper, we introduce an entropy based detection method.
Rényi entropy of time-frequency distributions has been shown to
be a robust measure of the complexity of the underlying signal
[7, 8]. The detection algorithm is based on the fact that Rényi en-
tropy of a signal plus noise is always less than the entropy of the
noise itself. The detection algorithm we propose is invariant to the
random time shifts and frequency modulations in the signal, since
entropy is a robust measure that is invariant to random shifts in the
signal 1. We follow a data-driven approach as discussed previ-
ously in [3, 4]. Unlike the previous approaches, our test statistic
cannot be expressed as an inner product of the observation with a
reference, and thus does not belong to the class of quadratic detec-
tors.

In Section 2, the background on Rényi entropy and its appli-
cation to TFDs will be briefly summarized. Section 3 outlines the
derivation and the implementation of the minimum probability of
error entropy based detection algorithm. In Section 4, we illus-
trate the performance of this detection algorithm and compare it to
the classical matched filtering approach for different types of sig-
nals. Finally, Section 5 discusses future extensions of the method
presented in this paper.

2. RÉNYI ENTROPY FOR TIME-FREQUENCY
DISTRIBUTIONS

The uncertainty of signals are studied indirectly through their time-
frequency distributions, which represent the energy distribution
of a signal as a function of both time and frequency. A time-
frequency distribution,C(t, ω) from Cohen’s class can be expressed
as 2 [6]:

C(t, ω) =
1

4π2

Z Z Z
φ(θ, τ)s(u+

τ

2
)s∗(u− τ

2
)ej(θu−θt−τω)dudθdτ

(1)

where the functionφ(θ, τ) is the kernel function ands is the signal.
The kernel completely determines the properties of its correspond-
ing TFD. One of the well-known time-frequency distributions is
the Wigner distribution given by:

W (t, ω) =
1

2π

Z
s(t +

τ

2
)s∗(t− τ

2
)e−jωτ dτ (2)

1We concentrate on the class of time-frequency distributions that are
time and frequency shift-invariant.

2All integrals are from−∞ to∞ unless otherwise stated.
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Wigner distribution a high resolution TFD and therefore is pre-
ferred in most time-frequency based detection applications. Some
of the most desired properties of TFDs are the energy preserva-
tion and the marginals. They are given as follows and are satisfied
whenφ(θ, 0) = φ(0, τ) = 1 ∀τ, θ.Z Z

C(t, ω) dt dω =

Z
|s(t)|2 dt =

Z
|S(ω)|2 dωZ

C(t, ω) dω = |s(t)|2 ,

Z
C(t, ω) dt = |S(ω)|2 (3)

The formulas given above evoke an analogy between a TFD and
the probability density function (pdf) of a two-dimensional ran-
dom variable. The main tool in measuring the information content
or the uncertainty of a given probability distribution is the entropy
function [9]. Williams et al. have extended measures of informa-
tion from probability theory to the time-frequency plane by treat-
ing the time-frequency distributions (TFDs) as density functions
[10]. In order to have the TFD behave like a pdf, one needs to
normalize it properly, i.e.Cnormalized(t, ω) = C(t,ω)R R

C(t,ω)dtdω
.

Another main difference between TFDs and probability density
functions is the nonpositivity. Most Cohen’s class TFDs are non-
positive and therefore cannot be interpreted strictly as densities of
signal energy. Therefore, one should be careful while interpreting
the results.

The well-known Shannon entropy when applied to TFDs can
be written as:

H(C) = −
Z Z

C(t, ω) log2 C(t, ω)dtdω (4)

Since the TFDs are nonpositive in some regions, this definition
will not give finite entropy results. For this reason, Rényi entropy
has been introduced as a more appropriate way of measuring time-
frequency uncertainty [10]. Theαth order Ŕenyi entropy is de-
fined as:

Hα(C) =
1

1− α
log2

Z Z 0BB@ C(t, ω)Z Z
C(u, v)du dv

1CCA
α

dt dω (5)

whereα > 0, α 6= 1. As α goes to 1 Ŕenyi entropy becomes the
well-known Shannon entropy functional. It can be shown that for
TFDs which are time and frequency shift invariant, Rényi entropy
is also shift invariant. Moreover, for the class of scale invariant
distributions entropy is invariant to scaling of the signal [7].

3. DERIVATION OF THE DETECTION ALGORITHM

The signal detection in noise problem can be expressed as:

H0 : y(n) = v(n)

H1 : y(n) = s(n) + v(n) (6)

wheres(n) is the signal andv(n) is white Gaussian noise. The de-
tection will be based on the Rényi entropy of the TFDs. A high en-
tropy value corresponds to a highly random signal, whereas a low
entropy value corresponds to a more deterministic signal. There-
fore, the decision criterion is:

Hα(Cy)

H0

>
<
H1

γ (7)

whereγ is the threshold value which will be chosen to minimize
the probability of error. This detection criterion is also known as
the minimum error detection. The test statistic can be rewritten as

X
n

X
k

�
Cy(n, k)P

n′
P

k′ Cy(n′, k′)

�α

| {z }
X

H1

>
<
H0

η (8)

whereη = 2(1−α)γ , and as such it cannot be expressed as a linear
functional of the observationCy(n, k). Therefore, the probability
of error is:

Pe = P [D1|H0]P [H0] + P [D0|H1]P [H1]

= PF P [H0] + PMP [H1]

Pe = P [Hα(Cv) < γ]P [H0] + P [Hα(Cs+v) > γ]P [H1] (9)

whereD1 is the decision of choosingH1 as the true hypothesis,
D0 is the decision of choosingH0, PF andPM are the probability
of false alarm and probability of miss respectively.

The detection algorithm will be derived for a general order of
Rényi entropy. The first step in this analysis is to derive the proba-
bility density function of the entropy functional under the two hy-
potheses. For largeN andK, large number of time and frequency
samples,X in equation 8 can be approximated as a Gaussian with
meanm and standard deviationσ by using the central limit theo-
rem argument. Therefore, the pdf for Rényi entropy is derived as
follows:

Y =
1

1− α
log2

KX
k=−K

NX
n=−N

�
C(n, k)P

n′
P

k′ C(n′, k′)

�α

| {z }
X

FY (y) = P [Y ≤ y] = P

�
1

1− α
log2 X ≤ y

�
= P

h
X ≥ 2y(1−α)

i
fY (y) =

d

dy
FY (y) =

d

dy

h
1− FX(2y(1−α))

i
fY (y) = ((α− 1) ln 2)2(1−α)y 1√

2πσ
exp

 
− (2(1−α)y −m)2

2σ2

!
(10)

where the last equality uses the fact thatX is distributed as a Gaus-
sian random variable with meanm and standard deviationσ. The
threshold for detection is chosen by minimizingPe, wherePe can
be written by substituting equation 10 into equation 9.

Pe = P0

Z γ

−∞

(α− 1) ln 2√
2πσ0

exp

 
− (2(1−α)y −m0)2

2σ2
0

!
2(1−α)ydy

+ P1

Z ∞

γ

(α− 1) ln 2√
2πσ1

exp

 
− (2(1−α)y −m1)2

2σ2
1

!
2(1−α)ydy

(11)
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whereP0 andP1 are the priors for the two hypotheses,m0 and
m1 are the means,σ0 andσ1 are the standard deviations of the
random variableX under noise and signal plus noise hypotheses
respectively. To minimize this quantity, we need to solve forγ
such that∂Pe

∂γ
= 0. The general form forγ is:

γ =
log2 e

(1− α)
ln

�
1

σ2
0 − σ2

1

(m1σ2
0 −m0σ2

1 − σ0σ1

√
A)

�
A = m2

0 + m2
1 − 2m0m1 + 2σ2

0 ln

�
σ0P1

σ1P0

�
− 2σ2

1 ln

�
σ0P1

σ1P0

�
(12)

The implementation of this detection algorithm uses a training set
to estimate the parametersm andσ. The training set consists of an
equal number of realizations ofH0 andH1. From the training set,
the mean and the standard deviation ofX under the two hypothe-
ses are estimated and used in computingγ. The corresponding
probability of error is:

Pe = P0Q

�
η −m0

σ0

�
+ P1

�
1−Q

�
η −m1

σ1

��
(13)

whereQ(x) =
R∞

x
1√
2π

exp(−x2

2
) dx, andη = 2(1−α)γ where

γ, the threshold that yields minimum probability of error, is given
by equation 12.

4. SIMULATION RESULTS

In this section, two examples of signal detection will be given us-
ing the detection algorithm proposed above. For both examples,
a training set consisting of white Gaussian noise and signal plus
noise are formed. The mean and the standard deviation of the
random variable,X, are estimated from this training set. These
parameters are used to evaluate the detection threshold given by
equation 12. The derived threshold is used in detecting whether a
signal is present or not and a probability of error is computed based
on the simulation results. For the purposes of the simulation, order
of Rényi entropy,α, will be set to3 since for that order, the Ŕenyi
entropy is well-defined for a large class of signals [7].

Example 1: In this first example, the performances of matched fil-
tering in the time-frequency plane and the entropy based detection
method will be compared. Both of the detectors are implemented
using a data-driven approach. We consider a randomly shifted ga-
bor logon 3 in white Gaussian noise at SNR=−6dB. The training
part of the algorithm is done on a set of randomly shifted gabor
logons in noise.

For implementing the matched filter, the algorithm derives a
reference time-frequency surface such that the discrimination be-
tween the two hypotheses,H0 andH1, is maximized. When the
training is done on a set of gabor logons shifted in time, the refer-
ence time-frequency surface comes out to be the average Wigner
distribution over all time shifts,

Cref (t, ω) =
1

T

Z T

0

Ws(t− t0, ω) dt0 (14)

3A gabor logon is a gaussian envelope shifted in time and frequency

x(t) = 1√
2πσ

e
− (t−t0)2

2σ2 ejω0t.

wheret0 is uniformly distributed between0 andT .
In the case of the entropy based detection, the location of the

gabor logon is not important, since Rényi entropy is invariant to
shifts in time and frequency. Therefore, the detector only uses the
difference between the entropies of the two hypotheses.

The receiver operating characteristics (ROC) for the two de-
tection algorithms are compared in Figure 1 and it is clear that the
entropy based detector performs better than the classical matched
filtering. This validates the robustness of our detection algorithm
to random shifts. We can quantify the differences in the perfor-
mances of the matched filter and the entropy based detector by
computing the probability of error at the equal error threshold, i.e.
PF = 1 − PD. At this threshold, the probability of error for
matched filter is0.2024 and the probability of error for entropy
based detection is0.078.
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Fig. 1. Comparison of the performances of the matched filter and
entropy based detection

Example 2: In this example, we consider the radar backscatter
signal. This signal is derived from the Doppler signal produced
by a two bladed rotor illuminated by radar [11, 12]. A typical
backscatter signal and its Wigner distribution is shown in Figure
2.
We consider a training set consisting of randomly scaled back-
scatter signals in noise. The threshold for detection is derived us-
ing equation 12 and the algorithm is tested on a set of randomly
scaled radar backscatter signals in noise. The performance of the
algorithm at different SNRs is illustrated in Figure 3. It can be
seen that the probability of error is around0.18 for signal-to-noise
ratios as low as−3dB.

This example illustrates the fact that the algorithm performs
well for real life signals. It also shows that the detection criterion is
robust under a random scaling parameter. This is true since Wigner
distribution is scale invariant and for scale invariant distributions
Rényi entropy is a scale invariant measure of complexity.

5. CONCLUSIONS

In this paper, we introduced an entropy based detection method on
the time-frequency plane. The performance of the entropy based
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Fig. 2. Radar backscatter signal and its Wigner distribution

detection algorithm depends on the difference of the complexities
of the signals under the two hypotheses. Therefore, the algorithm
works best for the detection of a gabor logon in white noise since
it is the most concentrated signal on the time-frequency plane and
has the smallest entropy value. The entropy based detection al-
gorithm was tested on signals other than the gabor logon such as
the radar backscatter signal in Example 2. The algorithm performs
consistently well with other signal types and is superior to classi-
cal matched filtering in cases where the signal is randomly shifted
in time and frequency. It is possible to extend the algorithm for
signals with random parameters other than the time and frequency
shift parameters by adding a simple parameter estimation step very
much like the standard detection algorithms.

Another important issue for further research is determining the
optimal value ofα, order of Ŕenyi entropy, to minimize the proba-
bility of error. Preliminary results suggest that it is a signal depen-
dent quantity.
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