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ABSTRACT that sufficient training data must be available to design the unique

kernel for each time-frequency offset location.

In this paper, we introduce an entropy based detection method.
yi entropy of time-frequency distributions has been shown to
a robust measure of the complexity of the underlying signal
[7, 8]. The detection algorithm is based on the fact thany en-
tropy of a signal plus noise is always less than the entropy of the

A comprehensive theory for time-frequency based signal detection
has been developed during the past decade. The time-frequenc¥€én
detectors proposed in literature are linear structures operating onye
the time-frequency representation of the signals and are equiva-
lent to quadratic receivers that are defined in the time domain. In
]E:]els up:r?:r’ Tgﬁecgliﬁfr%t dﬁt:ee:trlz pgle?:sf d de’tectlonton thhe tlme'noise itself. The detection algorithm we propose is invariant to the

q y P N yearsnﬁ_ entropy nas random time shifts and frequency modulations in the signal, since
been proposeq as an effective measure for qugntlfylng signal Cc.)m'entropy is a robust measure that is invariant to random shifts in the
plexity on the time-frequency plane and some important propertlesSignal 1. We follow a data-driven approach as discussed previ-
of this measure have been proven. In this paper, a new approacfb '

. " ; usly in [3, 4]. Unlike the previous approaches, our test statistic
that_ uses the entropy functlo_na}l as the test statlstlc for 5|gnal qe'cannot be expressed as an inner product of the observation with a
tection is developed. The minimum error detection algorithm is

. . . ; reference, and thus does not belong to the class of quadratic detec-
derived and the performance of this new signal detection method ' 9 q

is demonstrated through examples tors.
! ugh examples. In Section 2, the background oréRyi entropy and its appli-

cation to TFDs will be briefly summarized. Section 3 outlines the

1. INTRODUCTION derivation and the implementation of the minimum probability of

error entropy based detection algorithm. In Section 4, we illus-
The optimum detection of signals in noise is a well-known prob- trate the performance of this detection algorithm and compare it to
lem and has been considered many times in literature [1]. In the classical matched filtering approach for different types of sig-

recent years, there has been approaches to extend signal detegmls. Finally, Section 5 discusses future extensions of the method
tion from the time domain to the time-frequency domain since presented in this paper.

the time-frequency distributions (TFDs) contain more information
about nonstationary signals [2, 3, 4, 5]. Cohen’s class of TFDs
have been extensively used for detection in applications ranging
from radar to machine fault diagnosis, due to the need for deal-
ing with nonstationary signals [6]. Most of the time-frequency
detectors are linear structures operating in the time-frequency do-
main and are equivalent to quadratic receivers usually defined in
the time domain. It is well-known that the optimal detector of a
deterministic signal in white Gaussian noise is the matched filter, s
and the best purely quadratic detector uses squared magnitude o?
the matched filter output which can be implemented in the time- 1
frequency domain as the inner product of the Wigner distribution C(t,w) = — /// B0, T)s(ut = )s* (u——)ed (Pu=0t=7w) gy, dgdr
of the observation with the Wigner distribution of the signal. The dw 2 2 1)
time-frequency formulation for the optimum detection of Gaussian
signals in white Gaussian noise has been proposed by Flandrin [2],,here the functiom (8, 7)
Unfortunately, the design of detectors requires a priori knowl- .
edge of signals whereas in real life applications the signals are too
complicated and no statistical model is available. Since the collec- ,4 Wigner distribution given by:
tion of labelled signals is often feasible, Jones and Sayeed derived
blind time-frequency detectors directly from the training data [3]. W(t,w) = i/s(t n Z)s*(t _ I)efjw-rd,[_ @)
For detection of signals in Gaussian noise, matched filter is ’ 2 2 2
the optimal detector. However, if the time-frequency offset varies
randomly, as for example, in a doppler radar system, a separate 1ye concentrate on the class of time-frequency distributions that are
quadratic functional at each time-frequency location is required time and frequency shift-invariant.
for optimal detection. A significant drawback in the general caseis  2Allintegrals are from—oo to co unless otherwise stated.

2. RENYI ENTROPY FOR TIME-FREQUENCY
DISTRIBUTIONS

The uncertainty of signals are studied indirectly through their time-

frequency distributions, which represent the energy distribution

of a signal as a function of both time and frequency. A time-

frecguency distribution(’' (¢, w) from Cohen’s class can be expressed
[6]:

is the kernel function anslis the signal.
The kernel completely determines the properties of its correspond-
ing TFD. One of the well-known time-frequency distributions is
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Wigner distribution a high resolution TFD and therefore is pre-

ferred in most time-frequency based detection applications. Some Ho
of the most desired properties of TFDs are the energy preserva- Huo(Cy) z v (7)
tion and the marginals. They are given as follows and are satisfied Hy

wheng(6,0) = ¢(0,7) =1 Vr,6.

//C’(t,w)dtdw =

where~ is the threshold value which will be chosen to minimize
the probability of error. This detection criterion is also known as
the minimum error detection. The test statistic can be rewritten as

[1sora= [ 15 a

[etwas = swP  [cewi=IswE @ Gk \e D
: 8
2.2 (zn/ i cy<nck/>> o
The formulas given above evoke an analogy between a TFD and pe 0

the probability density function (pdf) of a two-dimensional ran-
dom variable. The main tool in measuring the information content wheren = 2: =% and as such it cannot be expressed as a linear
or the uncertainty of a given probability distribution is the entropy functional of the observatio@', (n, k). Therefore, the probability
function [9]. Williams et al. have extended measures of informa- of error is:

tion from probability theory to the time-frequency plane by treat-

ing the time-frequency distributions (TFDs) as density functions P. = P[Di|Ho|P[Ho] + P[Do|H1]P[H:]
[10]. In order to have the TFD behave like a pdf, one needs to —  PpP[Ho] + Py PlH)
. . . ) _ C(t,w)
normalize it properly, i.e.Crormatized(t,w) = TGl dids P, P[Ha(Cy) < Y|P[Ho] + P[Ha(Cssv) > 7| P[H1] (9)

Another main difference between TFDs and probability density
functions is the nonpositivity. Most Cohen'’s class TFDs are non- . . ) )
positive and therefore cannot be interpreted strictly as densities ofWhere D is the decision of choosing/; as the true hypothesis,
signal energy. Therefore, one should be careful while interpreting Lo IS the decision of choosing, Pr and Par are the probability
the results. of false alarm and probability of miss respectively.

The well-known Shannon entropy when applied to TFDs can The detection algorithm will be derived for a general order of
be written as: Rényi entropy. The first step in this analysis is to derive the proba-
bility density function of the entropy functional under the two hy-
potheses. For larg’ and K, large number of time and frequency
samples X in equation 8 can be approximated as a Gaussian with
meanm and standard deviation by using the central limit theo-
Since the TFDs are nonpositive in some regions, this definition rem argument. Therefore, the pdf fo'eﬁ§/| entropy is derived as
will not give finite entropy results. For this reasorgyi entropy follows:
has been introduced as a more appropriate way of measuring time-
frequency uncertainty [10]. Theth order Renyi entropy is de-

H(C) = —//C(t,w) logy C (¢, w)dtdw 4

K N
: . 1 C(n, k) «
fined as: y = log <—7>
11—« Qk;Kn:Z—N S e Cn/ K
a X
1 C(t, w) 1
Ha(C):71082// | dtdw (5) Fy(y) = PY<y:P{ log X<y}
l-a //C’(u,v)dudv v(®) Y<dl l—a 27 -
= P[x >0
wherea > 0, # 1. As a goes to 1 Rnyi entropy becomes the d d v(lea)
well-known Shannon entropy functional. It can be shown that for frly) = @FY (v) = dy [1 —Fx(2 )]
TFDs which are time and frequency shift invariangriyi entropy
. e . . . _ 1 2=y _m)2
is also shift invariant. Moreover, for the class of scale invariant ¢, () = ((a@—1)In2)20~ Y~ _exp (- ——
distributions entropy is invariant to scaling of the signal [7]. V2ro 202

(10)

3. DERIVATION OF THE DETECTION ALGORITHM

where the last equality uses the fact thats distributed as a Gaus-
sian random variable with mean and standard deviation. The
threshold for detection is chosen by minimizifg, whereP. can
be written by substituting equation 10 into equation 9.

The signal detection in noise problem can be expressed as:

Ho:y(n) =
Hy:y(n) =

v(n)

s(n) +v(n) ©) r o _ B /’Y (a—1)In2 _ (2(1*04)9 —mg)? y—a)yy
wheres(n) is the signal and(n) is white Gaussian noise. Thede- "¢~ "°/__ "~ Varoo P 202 v

tection will be based on thedRyi entropy of the TFDs. A high en- B
' . (20=2)y _p,)2 B
tropy value corresponds to a highly random signal, whereas a low pl— 21—y gy,
entropy value corresponds to a more deterministic signal. There- 207

fore, the decision criterion is:

+

> —1)In2
P1/ 7((1 )In ex
¥

2moq
(11)
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where P, and P; are the priors for the two hypotheses, and

m, are the meansyo ando, are the standard deviations of the
random variableX under noise and signal plus noise hypotheses
respectively. To minimize this quantity, we need to solve for
such that%’;e = 0. The general form fofy is:

logy e
N 82 5 5 (mlo'g - moo% — anlvA)}
1-a) o — o3
P P
A = m%—l—m% — 2moma +20(2)1n<00 1) —2021n (UO 1)
o1 Py o1 Py
(12)

The implementation of this detection algorithm uses a training set
to estimate the parametersando. The training set consists of an
equal number of realizations éf, and H;. From the training set,
the mean and the standard deviationdfunder the two hypothe-
ses are estimated and used in computingThe corresponding
probability of error is:

whereQ(z) = [ L exp(~ %) dr, andy = 207 where
v, the threshold that yields minimum probability of error, is given
by equation 12.

n—

) (o

g

n—m

o1

P

PQ (
(13)

4. SIMULATION RESULTS

In this section, two examples of signal detection will be given us-
ing the detection algorithm proposed above. For both examples,
a training set consisting of white Gaussian noise and signal plus
noise are formed. The mean and the standard deviation of the
random variable X, are estimated from this training set. These

wheret, is uniformly distributed betweedandT'.

In the case of the entropy based detection, the location of the
gabor logon is not important, sinceRyi entropy is invariant to
shifts in time and frequency. Therefore, the detector only uses the
difference between the entropies of the two hypotheses.

The receiver operating characteristics (ROC) for the two de-
tection algorithms are compared in Figure 1 and itis clear that the
entropy based detector performs better than the classical matched
filtering. This validates the robustness of our detection algorithm
to random shifts. We can quantify the differences in the perfor-
mances of the matched filter and the entropy based detector by
computing the probability of error at the equal error threshold, i.e.
Pr 1 — Pp. At this threshold, the probability of error for
matched filter is0.2024 and the probability of error for entropy
based detection i3.078.
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parameters are used to evaluate the detection threshold given byg. 1. Comparison of the performances of the matched filter and
equation 12. The derived threshold is used in detecting whether agntropy based detection

signal is present or not and a probability of error is computed based
on the simulation results. For the purposes of the simulation, order
of Rényi entropyy, will be set to3 since for that order, the&yi
entropy is well-defined for a large class of signals [7].

Example 1: In this first example, the performances of matched fil-

tering in the time-frequency plane and the entropy based detectionv\'/

method will be compared. Both of the detectors are implemented
using a data-driven approach. We consider a randomly shifted ga
bor logon 2 in white Gaussian noise at SNR-6dB. The training
part of the algorithm is done on a set of randomly shifted gabor
logons in noise.

For implementing the matched filter, the algorithm derives a
reference time-frequency surface such that the discrimination be-
tween the two hypothesesl, and H1, is maximized. When the
training is done on a set of gabor logons shifted in time, the refer-
ence time-frequency surface comes out to be the average Wigne
distribution over all time shifts,

T
Cref(t,w) = % /O W (t — to,w) dto (14)

3A gabor logon is a gaussian envelope shifted in time and frequency
2
"0
202

z(t) = - eJwot,
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Example 2: In this example, we consider the radar backscatter
signal. This signal is derived from the Doppler signal produced
by a two bladed rotor illuminated by radar [11, 12]. A typical

backscatter signal and its Wigner distribution is shown in Figure

e consider a training set consisting of randomly scaled back-
scatter signals in noise. The threshold for detection is derived us-
ing equation 12 and the algorithm is tested on a set of randomly
scaled radar backscatter signals in noise. The performance of the
algorithm at different SNRs is illustrated in Figure 3. It can be
seen that the probability of error is around 8 for signal-to-noise
ratios as low as-3dB.

This example illustrates the fact that the algorithm performs
well for real life signals. It also shows that the detection criterion is
robust under arandom scaling parameter. This is true since Wigner
distribution is scale invariant and for scale invariant distributions
Rényi entropy is a scale invariant measure of complexity.

5. CONCLUSIONS

In this paper, we introduced an entropy based detection method on
the time-frequency plane. The performance of the entropy based

3
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Fig. 2. Radar backscatter signal and its Wigner distribution

detection algorithm depends on the difference of the complexities
of the signals under the two hypotheses. Therefore, the algorithm
works best for the detection of a gabor logon in white noise since
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Fig. 3. Probability of error versus SNR for the radar backscatter
signal in noise

Trans. on Signal Processingol. 43, no. 12, pp. 2872-2883,
Dec. 1995.

6] L. Cohen, Time-Frequency AnalysisPrentice Hall, New

it is the most concentrated signal on the time-frequency plane and [7]
has the smallest entropy value. The entropy based detection al-
gorithm was tested on signals other than the gabor logon such as

the radar backscatter signal in Example 2. The algorithm performs
consistently well with other signal types and is superior to classi-
cal matched filtering in cases where the signal is randomly shifted
in time and frequency. It is possible to extend the algorithm for

(8]

signals with random parameters other than the time and frequency
shift parameters by adding a simple parameter estimation step very
much like the standard detection algorithms.

opti

bility of error. Preliminary results suggest that it is a signal depen-

Another important issue for further research is determining the

mal value of, order of Renyi entropy, to minimize the proba-

dent quantity.
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