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ABSTRACT

A novel high-resolution time-frequency representation
method is proposed for source detection and classifi-
cation in over-the-horizon radar (OTHR) systems. A
data-dependent kernel is applied in the ambiguity do-
main to capture the target signal components, which
are then resolved using the root-MUSIC based coherent
spectrum estimation. This method is particularly ef-
fective to analyze a multi-component signal with time-
varying time-Doppler signatures. By using the different
time-Doppler signatures embedded in the multipath sig-
nals, this proposed method can reveal important target
maneuvering information, whereas other linear and bi-
linear time-frequency representation methods fail.

1. INTRODUCTION

By exploiting the reflective and refractive nature of
high-frequency (HF) radiowave propagation through the
ionosphere, over-the-horizon radars (OTHRs) perform
wide-area surveillance at long range well beyond the
limit of the horizon of conventional line-of-sight (LOS)
radars [1, 2, 3].

A significant problem in OTHR is robust high-reso-
lution Doppler processing of accelerating or decelerat-
ing targets. This arises during aircraft and ship tar-
get maneuver and during observations of rockets dur-
ing boost phase and mid-course flight. The complex
Doppler signatures present in these cases reveal impor-
tant information about the target.

Most OTHR systems use classical Doppler process-
ing where one Doppler spectrum is computed using
one full coherent integration time (CIT). Some sys-
tems use overlapped Doppler processing to provide a
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spectrogram analysis of time-varying Doppler. Accel-
erating/decelerating targets smear in Doppler and have
reduced detectability and localization. The smearing
reduces resolution and can obscure important multi-
component Doppler features.

There are numerous time-frequency distributions
(TFDs) other than the spectrogram [4, 5]. Many TFDs
provide superior localization in time and Doppler fre-
quency. Previous applications of time-frequency sig-
nal representations to OTHR, however, have generally
been disappointing. The fundamental challenge and
demand in OTHR is that TFD must retain its desirable
resolution and concentration properties in the presence
of clutter that is typically 40dB or more stronger than
the target (although possibly localized in a different
region of time-Doppler).

The objective of this paper is to investigate and ex-
tend recent developments in data-dependent TFDs to
the problem of robust high-resolution analysis of time-
varying OTHR target returns. Of particular interest
is the problem of multi-component target signal detec-
tion and identification where important information of
the maneuvering targets should be revealed. Such in-
formation is of significant value for the classification of
the targets and the prediction of ballistic destinations.

2. SIGNAL MODEL

The received OTHR signal, after waveform dechirping
at the receiver, is expressed as

y(t) = z(t) + u(d), (1)

where z(t) is the return signal from the target, and u(t)
is the clutter which also includes the additive noise.
In a typical OTHR scenario, in addition to the path
directly reflected from the ionosphere, there is a mul-
tipath due to additional reflection from the ground or
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sea near the target. Denote l; and [/, as the propaga-
tion distance of the two paths, respectively, and d; and
d, as the respective one-way slant range between the
transmitter and the target and between the target and
the receiver, respectively. Then, d; takes the value of
either {; and I, and so does d,.." Therefore, the received
signal consists of four combination paths which result
in the following three multipath components:

iIJ(t) _ Ale—jw2l1/c + A2e—jw2l2/c + Age_jw(l1+l2)/c,
(2)
where ¢ denotes the speed of light, w = 27 f, is the
carrier radian frequency, and Ay, Ay, and A3 are the
corresponding path losses.

In this paper, we consider a well encountered sce-
nario of a maneuvering aircraft as an example. In this
case, the target makes a 180° turn in 7' = 30.72 seconds
to change the height and direction. This time interval
corresponds to 6 revisits (blocks), and each block con-
tains 256 samples. The parameters used in the analysis
and simulations are listed in Table 1. All the multi-
path signals are considered to fall in the same range
cell. The time-Doppler signatures is plotted in Fig.
1. The dominant Doppler component is proportional
to the target velocity in the slant range direction, and
the small Doppler difference between the three paths
is proportional to the ascending velocity of the target.
The Doppler difference between the three paths, there-
fore, reveals important information on how the target
moves in the elevation direction. The maximum one-
side Doppler difference corresponding to the maximum
ascending speed 1500 m/min = 25 m/s is about 1.17
Hz.

Doppler frequency (Hz)

20+ 1

25
0

. . . . . .
5 10 15 20 25 30
time (sec)

Figure 1: Time-Doppler signature (block 3 is colored).

LA backscattering OTHR system uses different transmitter
and receiver antennas located at different places. Therefore, the
range of a target is slightly different when viewed from the trans-
mitter and the receiver. However, without loss of generality, we
assume identical values for notation simplicity.

Table 1: Major Parameters

Parameter Notation Value
initial range R(0) 2000 km
ionosphere height H 350 km
aircraft initial height h(0) 10000 m
maximum range speed v 500 km /hr
maximum climbing speed Ve 1500 m/min
carrier frequency fe 20 MHz
repetition frequency fs 50 Hz
samples per block N 256 samples

3. CLUTTER SUPPRESSION

In this paper, we consider TFD methods to achieve
high-resolution time-Doppler localization. In the un-
derlying problem, TFDs are referred to as time-Doppler
distributions (TDDs). The most commonly used TFD
is the Wigner-Ville Distribution (WVD). The WVD of
signal y(t) is defined as

Wo(t.1) = [ e+ /2" = 7/2e 7 (3)

where the superscript “*” denotes complex conjugate.
All integrals without limits imply integration from —oo
to +oo. Substituting (1) in (3), the WVD of y(t) can
be written in terms of

Wea (t, £)+Wau (b, £)+Wou(t, )+ Wee (t(, J;),

4
where the first two terms are, respectively, the au-
toterms of the target signal and the clutter, and the
other two are their crossterms. In a typical OTHR re-
ceiver, the clutter is much stronger than the target sig-
nal. Without substantial suppression of the clutter, the
WVD autoterm of the target will be significantly ob-
scured by the clutter autoterm as well as the crossterms
between the clutter and signal.

We point to the fact that the clutter is highly lo-
calized in low frequencies and can be well modeled as
an autoregressive (AR) process. Therefore, the clutter
can be substantially suppressed by using the AR pre-
whitening techniques. Denote P as the order of the AR
model, the AR polynomial parameters a(t),t =0, ..., P
can be estimated via the modified covariance method
[6].

Filtering the received signal y(¢) through a finite
impulse filter (FIR), constructed using the AR polyno-
mial parameters, results in the pre-whitened signal:

Wyy(ta f) =

z2(t) = y(t) x a(t) = z2(t) + zu(?), ()

where “*” denotes the convolution operator.
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In this paper, the target signal modeled in Section
2 is overlayed on real OTHR clutter data. We assume
that A1 = As. The order of the AR model should be
chosen to maximize the signal-to-clutter ratio (SCR).
In this paper, the order of the AR model is set to a unit
value (P=1). The spectrogram of block 3, which corre-
sponds to the 256 samples from 10.24 to 15.36 seconds,
before and after the AR pre-whitening is shown in Fig.
2. It is seen that, while the clutter is substantially sup-
pressed by more than 40 dB, the target signal is only
partially affected when its Doppler frequency is very
close to that of the clutter. Fig. 3 shows the WVD of
the pre-whitened data z(t). While it is often difficult to
identify the target in the WVD before pre-whitening,
the target signature can be somewhat identified in Fig.
3. Further and key improvement in resolutions of the
target signature components can be achieved by using
the techniques highlighted in Section 4.

spectrum (dB)

Figure 2: Block-wise spectrogram of the received signal
before and after AR pre-whitening.

4. HIGH-RESOLUTION TIME-DOPPLER
PROCESSING

To achieve chirp signal detection, discrimination, and
classification, we propose time-Doppler estimation ba-
sed on adaptive kernel and high-resolution time-Doppler
localization.

4.1. Adaptive Kernel Design

In the following, each component of the signal return
from the target is approximated as a chirp over the
period of one block, i.e.,

3
z(t) = ZAz.ej(ait+Bwt2/2)‘ (6)

i=1
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Figure 3: WVD of the received signal z(t) after AR
pre-whitening (block 3).

To estimate the chirp rate of the signal, it is common
to exploit the ambiguity function. All ambiguity func-
tion autoterms pass through the origin, whereas the
crossterms are often away from the origin. For a multi-
component parallel chirp signal, the ambiguity function
shows linear signatures depending on the signal chirp
rate. The ambiguity function of z(t) is defined as

A.(6,7) :/z(t+7‘/2)z*(t—r/2)ej9tdt (7)

where 6 and 7 are, respectively, the frequency-lag and
time-lag variables. The chirp rate can be estimated by
searching for the peaks of the following @) function [7]

Q(6) = / |A. (r cos €, 7 sin €)|dr- (8)

In the case considered, peaks possibly appear at &, =
—1/tan=1(8,) and &, = —1/tan='(3,), where 3, and
0B are the chirp rates of the signal and the principle
component of the residual clutter, respectively.

Based on the chirp rate estimation, an adaptive ker-
nel can be designed. We construct a kernel whose pass-
band only captures the target signal chirp rate. The
clutter will be, subsequently, mitigated in the ambi-
guity domain due to its disdinct orientations. For an
estimated chirp rate fz, the following adaptive kernel
is constructed to encompass the autoterm ambiguity
function of the target signal, i.e.,

da(6,7) = =0T (9)
where ¢ is the kernel width, and
d*(0,7) = 6> + 72 — (fsiné, + Tcosé,):. (10)

The adaptive kernel suppresses the clutter and noise,
as well as all crossterms.
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4.2. High Resolution Time-Doppler Localization

In [7], chirp MUSIC was introduced which estimates
the Doppler frequencies at each time index ¢. The es-
timated auto-correlation function R,(t,7) is used to
constructed a data matrix for MUSIC spectrum es-
timation. However, the resulting matrix is, in gen-
eral, not positive definite. Therefore, in [7], the fil-
tered ambiguity function is transformed to the time-
frequency domain, and only the positive part of the
TFD is considered for the construction of the auto-
correlation function. This method, although showing
good time-Doppler localization in high signal-to-noise
ratio (SNR) situations, is computationally inefficient
because spectrum estimation is implemented for each
time index. In addition, the estimated time-Doppler
signature is not always consistent with the true values,
particularly in low SNR scenarios. Therefore, it is dif-
ficult to be applied in the underlying OTHR systems.

In this paper, we obtain the auto-correlation di-
rectly from the filtered ambiguity function as

Ralt;r) = o [ 4@ 0u0 ) s (1)

Because signal components with single chirp rate are
involved, the auto-corelation function R, ;(t, ) of each
chirp component has the form

R,i(t,7) = A?ej(ai"rﬁzt)‘r’ (12)

which is dependent of ¢{. Such dependence can be re-
moved by using the estimated value, 8, = —1/tan(,).
From R, ;(t,7), the time-independent auto-correlation
function is estimated as

Ro(r) = / Ro(t, 7)e~ %17 gt. (13)

The coherent integration yields coherent MUSIC sub-
space estimation of ;’s for improved performance. The
vector R, (7) is considered as raw data sequence, rather
than as covariance elements as in [7], to ensure the pos-
itive definiteness of the covariance matrix for spectrum
estimation. In our simulations, root-MUSIC algorithm
is used for computational convenience. Only one root-
MUSIC operation is required for each block. The chirp
signatures at different times are then constructed using
the estimated chirp rate and «;’s.

In Fig. 4, the coherent time-varying MUSIC spec-
trum is shown for block 3. Despite the low SCR, the
time-Doppler signatures, along with the Doppler fre-
quency difference information, are estimated clearly
and consistently. Simulation results for all other blocks
also confirmed successful Doppler signature estimation.

5. CONCLUSION

In this paper, a novel method has been proposed for
high-resolution time-Doppler signature localization ap-
plied to over-the-horizon radar systems. By combin-
ing AR pre-whitening for effective clutter suppression,
time-frequency based signal discrimination, and coher-
ent high-resolution spectrum analysis, the proposed me-
thod provides robust estimation of time-varying Dop-
pler signature in low signal-to-clutter ratio (SCR) sce-
narios.
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Figure 4: Coherent chirp MUSIC spectrum (block 3).
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