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Abstract- Local discriminant bases method is a powerful 
algorithmic framework for feature extraction and classification 
applications that is based on supervised training. It is 
considerably faster compared to more theoretically ideal feature 
extraction methods such as principal component analysis or 
projection pursuit. In this paper an optimization block is added to 
original local discriminant bases algorithm to promote the 
difference between disjoint signal classes. This is done by 
optimally weighting the local discriminant basis using steepest 
decent algorithm. The proposed method is particularly useful 
when background features in the signal space show strong 
correlation with regions of interest in the signal as in 
mammograms for instance.  
Keywords: Best basis, Local discriminant basis, Local feature 
extraction, The steepest decent method, Pattern recognition, 
Time-frequency analysis, Wavelet packet and Mammography. 
 

1. INTRODUCTION 
 
In 1994, Coifman and Saito [8], [9], developed the local 
discriminant bases (LDB) method as Wickerhauser’s best basis 
algorithm [1], [2] counterpart in feature extraction and signal 
classification applications. Both best basis and LDB methods use 
tree-structured collections of basis functions (atoms) called 
dictionaries. These are redundant sets of basis functions that are 
localized in time and frequency. Examples of time-frequency 
dictionaries include wavelet packets and local trigonometric 
bases. For a complete discussion of these basis function 
collections and their properties the interested reader is referred to 
[2], [20].  
The best basis method can be tuned to adaptively choose the best 
set of basis functions so that the entropy of the signal coordinates 
is minimized. The same basis selection task is done by 
Karhunen-Loeve transform (KLT) [4] developed in 1965 that is 
better known as Principal Component Analysis (PCA). The 
advantage of best basis methods over KLT is twofold. By 
exploiting the structured nature of time-frequency dictionaries, 
Coifman and Wickerhauser developed a divide-and-conquer 
algorithm for best basis search with a computational cost of O(n 
log n) that is superior to KLT computational cost i.e. O(n3) [4]. 
Besides, in contrast to KLT, the best basis method is localized in 
time and frequency making it suitable for totally non-stationary 
process analysis. A local KLT has been developed by Coifman 
and Saito [5] but it suffers from the same high computational 
cost O(n3). 
Later on, best basis method was used for de-noising [6], [7]. In 
1994, Saito [8, Chapter 3] developed an algorithm for 
simultaneous de-noising and compression of signals. De-noising 
was the start of a new generation of best basis algorithms for 
signal classification problems. Compared to other supervised  
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feature extraction solutions such as projection pursuit [23], [24], 
LDB is modest in the sense that it picks a set of good coordinates 
from a finite collection rather than a sequence of the absolutely 
best projections without constraints. The LDB concept has 
increasingly gained popularity and has been applied to a variety 
of classification problems including biomedical [7], geophysical 
[11], sonar [12], radar [10], [22] and military [13], [14], [22] 
application areas. In 1996, Coifman and Saito discovered a 
counterexample in which, LDB was unable to distinguish 
between two classes of synthetic signals. Thereafter several 
improved versions of the original LDB were developed [21]. 
The authors have noticed that an additional stage in LDB 
algorithm for assigning weights to selected basis functions helps 
to improve the accuracy of LDB method. This feature boosting is 
especially useful when background data has strong correlation 
with regions of interest in signal space under study [25]. The 
method of gradient decent is employed to find the optimal 
weight for the selected basis functions. The effectiveness of the 
proposed optimization block is proved by experiment, i.e. near 
40% decrease in misclassification rate. Yoshida [25] has 
employed the same technique for improving the performance of 
matching pursuit method [26] for extraction of 
microcalcifications from mammograms.  The usefulness of our 
proposed scheme is currently being tested on a mammography 
database. 
This is how this paper is organized. In section 2 the LDB 
algorithm and its improved version are reviewed. Section 3 is 
devoted to the development of the new idea of boosting features 
by using optimally weighted basis functions. Simulation results 
are given in section 4. Section 5 discusses conclusions and future 
work. 
 

2. LOCAL DISCRIM INANT BASIS ALGORITHM  
 
In this section we review the general problem of feature 
extraction. Suppose that we have a space X ⊆ Rn of input signals 
and a space Y of class labels. The goal is to construct a classifier 
d: X→Y that assigns the correct class label to each input signal. 
The optimal classifier is known to be the so-called Bayes 
classifier. However, Bayes classifier is impossible to construct 
due to high dimensionality of the real signals [21]. Examples of 
high dimensional signals are medical X-ray tomography 
(n=5122), seismic signals (n=4000) and a speech segment 
(n=1024). Faced with the dimensionality and having such 
difficulty in constructing the Bayes classifier, the extraction of 
important features becomes essential. As Scott mentions in [3, 
Chapter 7] multivariate data in Rn are almost never n-
dimensional and there often exists lower dimension structures of 
data. So based on the application whether compression or 
classification, the problem always has a lower intrinsic 
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dimension. It is important to note that intrinsic dimension is an 
application-oriented quantity. Coifman and Wickerhauser basis 
selection scheme followed by a simple thresholding on the 
amplitude of the coefficients can result in significant signal 
dimension reduction. Saito’s LDB algorithm helps to reduce the 
dimensionality of the problem for the feature extraction and 
classification tasks. The feature extractor in LDB is formulated 
as d = gοΘmοΨ, where Ψ is an orthogonal transformation, Θm is 
a projection operator into m most important coordinates and g is 
a standard classifier. By a dimension reducer engine such as 
LDB, i.e. ΘmοΨ, we select and keep the most important basis 
vectors according to the classification task and discard the 
nonessential coordinates. The classifier, g, can be Linear 
Discriminant Analysis (LDA) [15], Classification and 
Regression Trees (CART) [16], k-nearest neighbour (k-NN) [17] 
or artificial neural networks (ANN) [18]. 
LDB method first decomposes available training signals from 
different classes in a time-frequency dictionary, which is a large 
collection of bases functions, i.e. wavelet packets or local 
trigonometric basis. Then signal energies are accumulated for 
each class separately to form a time-frequency energy 
distribution per class. We assume that there are only two classes 
of signals. The generalization of the method to more signal 
classes is straightforward.  
Let us assume that ωωωω is a typical basis function in a time-
frequency dictionary. The time-frequency distribution energies 
of class 1 and class 2 along ωωωω are designated by Γω

1 and Γω
2 

respectively. 
In the original LDB algorithm, the tree-structured time-
frequency dictionary is pruned by using a discrimination 
measure such as � l2-distance: 
W(Γω

1 , Γω
2) = 

�
Γω

1 - Γω
2 � 2, � Relative entropy (or Kullback-Leibler divergence): 

D(Γω
1 , Γω

2) = Γω
1 log(Γω

1/Γω
2), � Symmetric relative entropy (or J-divergence): 

J(Γω
1 , Γω

2) = D(Γω
1 , Γω

2) + D(Γω
2 , Γω

1). 
 
In the first step LDB is the children nodes at the lowest part of 
the tree in Fig.1. Then the discrimination measures of each two 
children nodes are compared to their parent’s. If the sum of the 
discrimination measures of the children nodes is higher than 
their parent’s, we keep the children nodes. Otherwise, the parent 
node is chosen as the LDB. Once a complete basis (LDB) is 
selected, we further choose m(< n) atoms from the LDB. A 
typical m would be n/10. The simplest way of choosing m atoms 
from a collection of n atoms is to sort them in the order of 
decreasing discrimination power and to retain the first m atoms. 
It’s important to note that the functionality of LDB lies in the 
over-complete nature of binary tree dictionaries [2]. This 
redundancy enables the introduction of different search 
algorithms with different discriminant measures to prune the 
binary tree in an optimal manner that is tailored to the particular 
application. It is possible to construct a simple classification 
problem that is intractable by original LDB algorithm [21]. 
Therefore it is sometimes necessary to consider the distribution 
of expansion coefficients for individual coordinates. The original 
LDB algorithm measure is based on the differences of mean 
class energy of projections. It is possible to use a measure based 
on the differences between probability distribution functions. 
 
 
 

 
 
 
 
 
 

 
Fig.1 A binary tree-structured dictionary 

 
For a complete treatment of the problems that lead to the 
introduction of Type II, Type III and Type IV LDB algorithms 
the interested reader is referred to [21]. Type II LDB has been 
applied to real world applications [10], [12]. The initial problem 
of Type II would be the estimation of pdf’s from the available 
database. Suppose that pω

1 and pω
2 are the pdf’s of class 1 and 

class 2 signals in ωωωω direction respectively.  Here is a 
discrimination measures proposed by Saito [21]. � Relative entropy (or Kullback-Leibler divergence): 
D(pω

1, pω
2)= �  pω

1 log( pω
1� pω

2) dx. 
 

3. OPTIM ALLY WEIGHTED LDB ALGORITHM  
 

The basis functions selected by LDB capture some of the 
common features or background components as well. This 
becomes particularly important when background structures are 
highly correlated to the features of interest. In this section we 
introduce a method of boosting desired distinguishing features 
among different classes by optimally weighting the basis 
functions. 

Let us assume that N≤≤ γγψ 1,  is the collection of basis 

functions that are obtained as the output of LDB algorithm. We 
study the effect of assigning a weight sequence such as 

N≤≤ γγω 1, to these basis functions. The goal is to promote 

the discrimination power of N≤≤ γγψγω 1,  hence improving 

the classification accuracy. To this end, we minimize the 
difference between samples of each signal class with the so-
called teacher signals [25]. Teacher signals for each class are the 
average of the signal class windowed at the regions of interest; 
therefore there are a limited number of them. The error function 

is given in (1). In this expression, 
k
γα ’ s are the LDB 

coordinated of signal kS . The corresponding teacher signal is 

designated by 
k

T , 

2
))(),((

1
)( x

k
Tx

k
S

k xK
E −

���
= ωω ,                                   (1) 

)(),( x
k

x
k

S �=
γ γψγωγαω .                                                  (2) 

In (1) and (2) k ranges over the samples used in the optimization 
phase whereas x ranges over time or pixels in an image 
processing application and K is the number of samples used for 
optimization. The error function )(ωE  can be minimized by a 
gradient decent algorithm to yield an optimal set of weights that 
maximally separate different signal classes. The partial 

derivative of )(ωE  in terms of a weight γω  is given by (3),  
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Therefore the weight update formula for gradient decent 
algorithm will be as in (4), 
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Here η  is a user-defined learning rate. For the purpose of 
illustration we consider example 5.2 form [9] known as 
“ triangular waveform classification”  problem [16]. The problem 
is to classify three classes of the signals generated by the 
statistical process given in (5), 
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a  is an integer-valued uniform random variable on the interval 
[16,32]. ab −  also obeys an integer-valued uniform distribution 
on [32,96]. ς and ε are the standard normal variates, and 

)(],[ ibaχ is the characteristic function on ],[ ba . )(ic is called 

the ‘cylinder’  class whereas )(ib and )(if are known as ‘bell’  
and ‘ funnel’  classes. The statistical averages of the each class in 
the above process over a set of 300 training signals are depicted 
in Fig.2. The statistical average of each class will be windowed 
around the regions of interest to be used as teacher signal in the 
proposed optimization block.  The same procedure can be 
applied to obtain teacher images that locate microcalcifications 
in mammograms.  
 

4. OPTIM IZED LDB SIM ULATION RESULTS 
 

In the beginning, local discriminant analysis was used to capture 
LDB for a set of 300 training signals described above. The 
wavelet packet was generated by a Coiflet 4 mother wavelet. 
Symmetric relative entropy (J-divergence) was used as 
discrepancy measure in our study. Fisher’s Linear Discriminant 
Analysis [15] was fixed as the classifier in this study. Two sets 
of teacher signals were generated by windowing the statistical 
averages in the intervals [40,55] and [40,60] to study the effect 
of window size. These two sets of teacher signals are referred to 
as 15-point and 20-point windows in all the graphs. The number 
of samples used in optimization phase was fixed to 21 equally 
distributed between three classes (K=21). Another set of 300 
signals was generated as a test bed for examining the 
effectiveness of optimization process. Fig.3 shows the results of 
using the first 12 most discriminative LDB vectors. The weight 
update process was performed on 15 and 20 first most 
discriminant LDB vectors as opposed to 128 to save processor’s 
time. The experiment continued up to 100 iterations. Fig.4 and 
Fig.5 show similar results for classification based on 10 and 8 
most discriminative LDB vectors respectively.  
 
 
 

5. CONCLUSIONS AND DISCUSSION 
 

The original and improved versions of local discriminant bases 
algorithm are reviewed. An additional feature boosting stage is 
added to the algorithm. The authors have applied the new 
technique on classification of synthetic data. Optimal weighting 
of local discriminant basis improved the misclassification error 
with reasonable number of iterations. The optimization block can 
further improve the efficiency and accuracy of the local 
discriminant basis algorithm specially when the number of 
selected LDB vectors is small and background data has strong 
correlation with signal space. The explicit improvement in 
accuracy proves that the process is worthwhile as a one-time 
optimization performed right after training phase. Authors are 
studying the effect and importance of varying different 
parameters in the experiment such as the learning rate η , 

number of sample signals used in the optimization phase (K) as 
well as other optimization algorithms, different wavelet packet 
dictionaries and discrepancy measures. The usefulness of the 
feature-boosting module is being studied in classification of 
mammograms where background structure shows considerable 
correlation with microcalcification patterns. 
 

 
Fig.2 Statistical averages of different signal classes. 
 

 
Fig.3 The narrow curves show the misclassification rate when 
teacher signals were windowed at [40,60]. Others are obtained 
when windowing is done at [40,55]. 
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Fig.4 Repeating the experiment with 10 LDB vectors for 
classification. 
 

 
Fig.5 Repeating the experiment with 8 LDB vectors for 
classification. 
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