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Abstract- Loca discriminant bases method is a powerful
agorithmic framework for feature extraction and classification
applications that is based on supervised training. It is
considerably faster compared to more theoretically ideal feature
extraction methods such as principal component analysis or
projection pursuit. In this paper an optimization block is added to
origina local discriminant bases algorithm to promote the
difference between digoint signal classes. This is done by
optimally weighting the loca discriminant basis using steepest
decent agorithm. The proposed method is particularly useful
when background features in the signal space show strong
correlation with regions of interest in the signa as in
mammograms for instance.
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1. INTRODUCTION

In 1994, Coifman and Saito [8], [9], developed the loca
discriminant bases (LDB) method as Wickerhauser's best basis
agorithm [1], [2] counterpart in feature extraction and signa
classification applications. Both best basis and LDB methods use
tree-structured collections of basis functions (atoms) called
dictionaries. These are redundant sets of basis functions that are
localized in time and frequency. Examples of time-frequency
dictionaries include wavelet packets and local trigonometric
bases. For a complete discussion of these basis function
collections and their properties the interested reader isreferred to
(2], [20].

The best basis method can be tuned to adaptively choose the best
set of basis functions so that the entropy of the signal coordinates
is minimized. The same basis sdlection task is done by
Karhunen-Loeve transform (KLT) [4] developed in 1965 that is
better known as Principa Component Analysis (PCA). The
advantage of best basis methods over KLT is twofold. By
exploiting the structured nature of time-frequency dictionaries,
Coifman and Wickerhauser developed a divide-and-conquer
agorithm for best basis search with a computational cost of O(n
log n) that is superior to KLT computational cost i.e. O(n®) [4].
Besides, in contrast to KLT, the best basis method is localized in
time and frequency making it suitable for totally non-stationary
process analysis. A local KLT has been developed by Coifman
and Saito [5] but it suffers from the same high computational
cost O(n®).

Later on, best basis method was used for de-noising [6], [7]. In
1994, Saito [8, Chapter 3] developed an agorithm for
simultaneous de-noising and compression of signals. De-noising
was the start of a new generation of best basis agorithms for
signal classification problems. Compared to other supervised
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feature extraction solutions such as projection pursuit [23], [24],
LDB is modest in the sense that it picks a set of good coordinates
from a finite collection rather than a sequence of the absolutely
best projections without constraints. The LDB concept has
increasingly gained popularity and has been applied to a variety
of classification problems including biomedical [7], geophysica
[11], sonar [12], radar [10], [22] and military [13], [14], [22]
application areas. In 1996, Coifman and Saito discovered a
counterexample in which, LDB was unable to distinguish
between two classes of synthetic signals. Theresfter several
improved versions of the original LDB were developed [21].

The authors have noticed that an additional stage in LDB
algorithm for assigning weights to selected basis functions helps
to improve the accuracy of LDB method. This feature boosting is
especialy useful when background data has strong correlation
with regions of interest in signal space under study [25]. The
method of gradient decent is employed to find the optimal
weight for the selected basis functions. The effectiveness of the
proposed optimization block is proved by experiment, i.e. near
40% decrease in misclassification rate. Yoshida [25] has
employed the same technique for improving the performance of
matching  pursuit method [26] for extraction of
microcalcifications from mammograms. The usefulness of our
proposed scheme is currently being tested on a mammography
database.

This is how this paper is organized. In section 2 the LDB
algorithm and its improved version are reviewed. Section 3 is
devoted to the development of the new idea of boosting features
by using optimally weighted basis functions. Simulation results
are given in section 4. Section 5 discusses conclusions and future
work.

2. LOCAL DISCRIMINANT BASISALGORITHM

In this section we review the general problem of feature
extraction. Suppose that we have a space X 0 R" of input signals
and a space Y of class |abels. The god is to construct a classifier
d: XY that assigns the correct class label to each input signal.
The optimal classifier is known to be the so-caled Bayes
classifier. However, Bayes classifier is impossible to construct
due to high dimensionality of the real signals [21]. Examples of
high dimensional signals are medica X-ray tomography
(n=512%), seismic signals (n=4000) and a speech segment
(n=1024). Faced with the dimensionality and having such
difficulty in constructing the Bayes classifier, the extraction of
important features becomes essential. As Scott mentions in [3,
Chapter 7] multivariate data in R" are admost never n-
dimensional and there often exists lower dimension structures of
data. So based on the application whether compression or
classification, the problem aways has a lower intrinsic
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dimension. It is important to note that intrinsic dimension is an
application-oriented quantity. Coifman and Wickerhauser basis
selection scheme followed by a simple thresholding on the
amplitude of the coefficients can result in significant signa
dimension reduction. Saito’s LDB algorithm helps to reduce the
dimensionality of the problem for the feature extraction and
classification tasks. The feature extractor in LDB is formulated
asd = go@,o¥, where ¥is an orthogonal transformation, @, is
a projection operator into m most important coordinates and g is
a standard classifier. By a dimension reducer engine such as
LDB, i.e. @,0%, we select and keep the most important basis
vectors according to the classification task and discard the
nonessential  coordinates. The classifier, g, can be Linear
Discriminant  Analysis (LDA) [15], Classification and
Regression Trees (CART) [16], k-nearest neighbour (k-NN) [17]
or artificial neural networks (ANN) [18].

LDB method first decomposes available training signals from
different classes in a time-frequency dictionary, which is alarge
collection of bases functions, i.e. wavelet packets or loca
trigonometric basis. Then signal energies are accumulated for
each class separately to form a time-frequency energy
distribution per class. We assume that there are only two classes
of signals. The generdization of the method to more signa
classesis straightforward.

Let us assume that w is a typica basis function in a time-
frequency dictionary. The time-frequency distribution energies
of class 1 and class 2 along w are designated by /7, and /2
respectively.

In the origind LDB algorithm, the tree-structured time-
frequency dictionary is pruned by using a discrimination
measure such as

o |>distance:

W/ F)=Nrw - 152

e Relative entropy (or Kullback-Leibler divergence):

D(/_wl ) /—wz) = /_w1|09(/_w1//—w2):

e Symmetric relative entropy (or J-divergence):

Nt M) =D ) + D1 ).

In the first step LDB is the children nodes at the lowest part of
the tree in Fig.1. Then the discrimination measures of each two
children nodes are compared to their parent’s. If the sum of the
discrimination measures of the children nodes is higher than
their parent’s, we keep the children nodes. Otherwise, the parent
node is chosen as the LDB. Once a complete basis (LDB) is
selected, we further choose m(< n) atoms from the LDB. A
typicad mwould be n/10. The simplest way of choosing m atoms
from a collection of n atoms is to sort them in the order of
decreasing discrimination power and to retain the first m atoms.
It's important to note that the functionality of LDB lies in the
over-complete nature of binary tree dictionaries [2]. This
redundancy enables the introduction of different search
algorithms with different discriminant measures to prune the
binary tree in an optimal manner that is tailored to the particular
application. It is possible to construct a simple classification
problem that is intractable by origina LDB agorithm [21].
Therefore it is sometimes necessary to consider the distribution
of expansion coefficients for individual coordinates. The original
LDB agorithm measure is based on the differences of mean
class energy of projections. It is possible to use a measure based
on the differences between probability distribution functions.

Fig.1 A binary tree-structured dictionary

For a complete treatment of the problems that lead to the
introduction of Type II, Type Il and Type IV LDB agorithms
the interested reader is referred to [21]. Type || LDB has been
applied to real world applications [10], [12]. The initial problem
of Type Il would be the estimation of pdf’s from the available
database. Suppose that p,} and p,? are the pdf's of class 1 and
class 2 signals in w direction respectively. Here is a
discrimination measures proposed by Saito [21].

e Relative entropy (or Kullback-Leibler divergence):

D(pw’s P)= I Pu10g( parPes) dx.

3. OPTIMALLY WEIGHTED LDB ALGORITHM

The basis functions selected by LDB capture some of the
common features or background components as well. This
becomes particularly important when background structures are
highly correlated to the features of interest. In this section we
introduce a method of boosting desired distinguishing features
among different classes by optimaly weighting the basis
functions.

Let us assume that t,//y,ls y < N is the collection of basis

functions that are obtained as the output of LDB algorithm. We
study the effect of assigning a weight sequence such as

a)y,ls y < N to these basis functions. The goa is to promote

the discrimination power of wyw y,l < y < N henceimproving

the classification accuracy. To this end, we minimize the
difference between samples of each signal class with the so-
called teacher signals[25]. Teacher signals for each class are the
average of the signal class windowed at the regions of interest;
therefore there are a limited number of them. The error function

is given in (1). In this expression, a}lf’s are the LDB

coordinated of signal s X . The corresponding teacher signal is

designated by T¥ ,
1

E@) = — T3S (@ -TX ()2, (1)
K k x

Sk(w, X) = %a}fwywy(x). 2

In (1) and (2) k ranges over the samples used in the optimization
phase whereas x ranges over time or pixels in an image
processing application and K is the number of samples used for
optimization. The error function E(w) can be minimized by a
gradient decent algorithm to yield an optimal set of weights that
maximaly separate different signal classes. The partia

derivative of E(w) interms of aweight Wy isgiven by (3),
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Therefore the weight update formula for gradient decent
agorithmwill beasin (4),

oE 2 k k k
—— =—XZ(S (@) -T (Nayy, (¥, ©)
dw, K K x
oE @
W, - -n—.
14 14 awy

Here 1 is a user-defined learning rate. For the purpose of
illustration we consider example 5.2 form [9] known as
“triangular waveform classification” problem [16]. The problem
is to classify three classes of the signals generated by the
statistical process givenin (5),

(i) = (6+ ) {q 5 () + £0)

bi(i) = (6+ ). X{a ) (i) + (i) . ®)
’ b-a
f(i)=(6+¢) 02"l s )
s 'X[a,b] ba

a is an integer-valued uniform random variable on the interva
[16,32]. b — a aso obeys an integer-valued uniform distribution
on [32,96]. ¢and ¢ are the standard normal variates, and

X[ab] (i) is the characteristic function on [a,b] . c(i) is caled

the ‘cylinder’ class whereas b(i) and f (i) are known as ‘bell’
and ‘funnedl’ classes. The statistical averages of the each classin
the above process over a set of 300 training signals are depicted
in Fig.2. The statistical average of each class will be windowed
around the regions of interest to be used as teacher signa in the
proposed optimization block. The same procedure can be
applied to obtain teacher images that locate microcacifications
in mammograms.

4. OPTIMIZED LDB SIMULATION RESULTS

In the beginning, local discriminant analysis was used to capture
LDB for a set of 300 training signals described above. The
wavelet packet was generated by a Coiflet 4 mother wavelet.
Symmetric relative entropy (J-divergence) was used as
discrepancy measure in our study. Fisher's Linear Discriminant
Analysis [15] was fixed as the classifier in this study. Two sets
of teacher signals were generated by windowing the statistical
averages in the intervals [40,55] and [40,60] to study the effect
of window size. These two sets of teacher signals are referred to
as 15-point and 20-point windows in al the graphs. The number
of samples used in optimization phase was fixed to 21 equally
distributed between three classes (K=21). Another set of 300
signads was generated as a test bed for examining the
effectiveness of optimization process. Fig.3 shows the results of
using the first 12 most discriminative LDB vectors. The weight
update process was performed on 15 and 20 first most
discriminant LDB vectors as opposed to 128 to save processor’s
time. The experiment continued up to 100 iterations. Fig.4 and
Fig.5 show similar results for classification based on 10 and 8
most discriminative LDB vectors respectively.

5. CONCLUSIONS AND DISCUSSION

The original and improved versions of loca discriminant bases
algorithm are reviewed. An additional feature boosting stage is
added to the algorithm. The authors have applied the new
technique on classification of synthetic data. Optimal weighting
of local discriminant basis improved the misclassification error
with reasonable number of iterations. The optimization block can
further improve the efficiency and accuracy of the loca
discriminant basis algorithm specially when the number of
selected LDB vectors is small and background data has strong
correlation with signal space. The explicit improvement in
accuracy proves that the process is worthwhile as a one-time
optimization performed right after training phase. Authors are
studying the effect and importance of varying different
parameters in the experiment such as the learning rate 77,

number of sample signals used in the optimization phase (K) as
well as other optimization algorithms, different wavelet packet
dictionaries and discrepancy measures. The usefulness of the
feature-boosting module is being studied in classification of
mammograms where background structure shows considerable
correlation with microcalcification patterns.
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Fig.3 The narrow curves show the misclassification rate when
teacher signals were windowed at [40,60]. Others are obtained
when windowing is done at [40,55].
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Fig.4 Repeating the experiment with 10 LDB vectors for
classification.
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Fig.5 Repeating the experiment with 8 LDB vectors for
classification.
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