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ABSTRACT 
This paper proposes a new method for designing digital all-pass 

filters with a minimax design criterion using semidefinite 
programming (SDP).  The frequency specification is first 
formulated as a set of linear matrix inequalities (LMI), which is a 
bilinear function of the filter coefficients and the ripple to be 
minimized. Unlike other all-pass filter design methods, additional 
linear constraints can be readily incorporated. The overall design 
problem turns out to be a quasi-convex constrained optimization 
problem (solved using the SDP) and it can be solved through a 
series of convex optimization sub-problems and the bisection 
search algorithm.  The convergence of the algorithm is guaranteed.  
Nonlinear constraints such as the pole radius constraint of the filters 
can also formulated as LMIs using the Rouche’s theorem.  It was 
found that the pole radius constraint allows an additional tradeoff 
between the approximation error and the stability margin in finite 
wordlength implementation. The effectiveness of the proposed 
method is demonstrated by several design examples. 

I.   INTRODUCTION 
Digital all-pass filters are useful in many applications such as 

digital communications, phase equalization, implementation of 
digital and multirate filters, etc [4].  They have a unit magnitude 
response but a very flexible phase characteristic.  Therefore, they 
are very useful to equalize the phase response of nonlinear phase 
systems such as IIR filters designed by frequency transformation.  
They can also be used in efficient realization of digital filters by 
combining the outputs of two properly design all-pass filters [4].  
Due to the symmetry of the numerator and denominator of an all-
pass filter, it only requires N multiplications per sample as 
compared to 2N for general IIR filters having the same order of 
numerator and denominator.  From an implementation point of 
view, digital all-pass filters also possess many nice properties: such 
as nonlinear oscillation free characteristics, lossless property, and 
low coefficient sensitivity, which are very important to the finite 
wordlength implementation with low roundoff noise.  These 
attractive properties have motivated considerable research into the 
design of digital all-pass filters [1-3,5-7,12].  Weighted least 
squares designs of all-pass filters were considered in [2,5,6].  
Minimax designs of all-pass filters were also considered in 
[1,3,7,12].   Although it is possible to enforce the stability of the 
all-pass filters by choosing properly the design specification, the 
poles of the filters can lie arbitrarily close to the unit circle.  Due to 
the finite wordlength effects in practical implementation, the poles 
of the transfer function should not lie too close to the unit circle and 
certain stability margin is desirable [13].  Poles close to the unit 
circle may also enhance quantization noise.  Recently, methods for 
constraining the maximum pole radius when designing IIR filters 
have received considerable interest [11,13]. 

In this paper, we propose a new method for designing causal-
stable digital all-pass filters with a minimax design criterion using 
semidefinite programming. The frequency specification is first 
formulated as a set of linear matrix inequalities (LMI), which is a 
bilinear function of the filter coefficients and the ripple to be 
minimized.  Unlike other all-pass filter design methods, additional 
linear constraints can be readily incorporated. The overall design 

problem turns out to be a quasi-convex constrained optimization 
problem (solved using the SDP) and it can be solved through a 
series of convex optimization sub-problems and the bisection 
search algorithm.  The convergence of the algorithm is guaranteed.  
Nonlinear constraints such as the pole radius constraint and hence 
the stability of the filters is formulated as LMIs using the Rouche’s 
theorem.  Our formulation is a modification of the method in [13].  
We first solve the SDP problem without the pole constraint.  If the 
given pole radius constraint is satisfied, then the solution obtained 
is the desired result.  If not, the radii of those poles exceeding the 
prescribed pole radius will be reduced to obtain a feasible initial 
solution.  The Rouche’s theorem, which will be formulated as a set 
of LMIs, will be invoked together with the original LMIs to obtain 
the solution.  It was found that the pole radius constraint allows an 
additional tradeoff between the approximation error and the 
stability margin in finite wordlength implementation. The 
effectiveness of the proposed method is demonstrated by several 
design examples. 

The paper is organized as follows: In Section II, a brief 
introduction to digital all-pass filters is given. Section III is devoted 
to the proposed design method.  The frequency specification is first 
formulated as a set of matrix inequalities, and is solved 
successively using the SDP and the bisection search method. Then, 
the LMI for incorporating the maximum pole radius constraint is 
derived using the Rouche’s theorem.  A simple design example is 
given in section IV and is compared with other design technique. 
Finally, conclusions are drawn in section V. 

II.  DIGITAL ALL-PASS FILTERS 

The transfer function of a digital all-pass filter, H , of 
order  and real-valued filter coefficients can be written as: 
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can be seen that the all-pass filter has a unit magnitude response 
and its phase response is governed by its filter coefficients.  
Therefore, it can be used to approximate a given phase response in 
order to equalize the nonlinear phase response of IIR filters and 
other systems.  They can also be used to implement very efficiently 
lowpass filters by summing the outputs of two properly designed 
all-pass filters.  Moreover, as the numerator and denominator 
coefficients are mirror images of each other, it only requires N 
multiplication for each output sample as opposite to 2N for a 
general IIR filter with the same order of numerator and 
denominator.  Suppose that an all-pass filter is used to approximate 
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a certain desired phase response θ . To formulate the 
design problem, we need to express the phase error 

 in terms of the filter coefficients as 
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(2-4) can be written more compactly in the following matrix form 
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(2-4) characterizes the phase response error of the all-pass filter at 
frequency  in terms of the filter coefficients and the desired 
phase response function. In next section, we will formulate the 
design problem of the all-pass filters using the minimax error 
criterion as a quasi-convex optimization problem, which can be 
solved by a series of convex SDP problems. 

III.   ALL-PASS FILTER DESIGN USING SDP 

3.1  Minimax Error Criterion 

If the all-pass filter is used to approximate a desired phase 
response over a set of disjoint intervals ω  in a 
weighted minimax error criterion, then the phase response error is 
to be bounded above and below by a positive quantity ∆ . Since the 
tangent function is monotonic in the interval [ , the value of 

 is bounded above and below by [ , where 
.  The design problem at hand is then given by 
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where W  is a positive weighting function associated with the 
disjoint intervals over which the desired response is to be 
approximated.  Note, the denominator in (3-2) cannot be zero and it 
must assume the same sign over ω .  We shall solve (3-2) as a 
series of SDP feasibility problems. To this end, rewrite (3-1) as: 
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We have assumed from stability consideration that the sign of the 
denominator in (3-1) is positive.  (3-2) is not a LMI because the 
constraints are bilinear function in  and .  To formulate (3-2) as 
LMIs, we assume that the ripple δ  is fix and given.  Instead of 
solving (3-2), we solve the following feasibility problem after 
discretizing the frequency variable ω  in the band of interest Ω  
into K points, ω  for , 
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where , 

 is an  identity matrix and  is a fictitious optimization 
variable introduced to determine whether the given ripple δ  can be 
achieved by the all-pass filter to be designed. If ε , then the 
given ripple can be achieved by the all-pass filter. Otherwise, the 
ripple is too small and it needs to be increased. The constraints, 

, can be stacked together to form the following 
standard LMI formulation  
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where . Since 
the matrix F  is affine in a and , (3-4) can be solved 
efficiently using SDP. To determine the minimum ripple that can be 
achieved by the all-pass filter in approximating the given 
specification, we combine the SDP formulation in (3-4) with the 
bisection method.  More precisely, let δ  and  be the lower 
bound and upper bound of δ , respectively (i.e. δ ).  We 
first set the ripple to δ +  and solve (3-4) for ε . If the 
solution of ε  is greater than zero, then the given ripple δ  is too 
small and it is set to the new lower bound, i.e. δ = .  On the 
other hand, if ε , then the given ripple is feasible and the upper 
bound is reduced to δ = .  After completing the first stage, we 

repeat this process until 
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UL δδ −  is smaller than a given tolerance.  
Therefore, the minimum achievable ripple can be found together 
with the appropriate filter coefficients.  In effect, we are solving the 
design problem as a series of convex SDP problem.  Since the 
difference between the two bounds of the ripples is reduced by half 
at each iteration, the solution will be found eventually when this 
difference goes to zero. Thus, the convergence of the algorithm is 
also guaranteed. Note, additional linear constraints such as a 
prescribed flatness at a certain frequency can be incorporated.   
3.2  Imposing Stability Constraint 

The design formulation in section 3.1 only deals with the 
frequency specification and, like many other proposed methods, it 
does not enforce the stability constraint. In other words, the all-pass 
filter so obtained cannot always be stable. The necessary and 
sufficient conditions for the all-pass filters to be stable are that its 
group delay satisfies [6,12] 

∫ =
π

ωωωτ
0

)( Nd  where 
ω
ωθ

ω
d

d )()( −=τ .  

An all-pass filter is also stable if it has a phase approximation error 
less than π  at ω =  [6,12].  Several approaches for enforcing the 
stability constraints in designing IIR filters were previously 
proposed [13,10,11].  One possibility is to optimize the locations of 
the poles and require their magnitudes to be smaller than one [10].  
In other words, all the poles of the IIR filter are within the unit 
circle.  However, the frequency response of an IIR filter is usually a 
highly nonlinear function of the pole locations.  The constrained 
optimization can easily be trapped at local minimum. Another 
method is based on the Lyapunov stability constraint [11], which 
says that if a digital system is stable, then there exists a positive 
definite matrix  which satisfies 

π

P
0≥+ APPA TT  , (3-5) 

where A is the state transition matrix, and “ ” means that the 
matrix on the left hand side is positive semidefinite. Notice that (3-
5) is bilinear in the parameters ( , which cannot be cast 
directly as an SDP.  The third method, which was proposed in [13], 
is based on the Rouche’s theorem [8,9].  The IIR filter design 
method in [13] is based on an iterative Gauss-Newton method, 
where the frequency response of the filter is linearized to obtain a 
quadratic objective function in the design parameters.  The least 
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squares error is then minimized.  In using the Rouche’s theorem, it 
is assumed that the filter obtained in the last iteration is stable so 
that the condition on the incremental change in filter coefficients to 
ensure stability can be imposed.   

Our formulation is a modification of this method in that we 
first solve the problem in (3-4).  If the given pole radius constraint 
is satisfied, then the solution obtained is the desired result.  If not, 
the radii of those poles exceeding the prescribed pole radius will be 
reduced to obtain a feasible initial solution.  The Rouche’s theorem, 
which will be formulated as a set of LMIs in the sequel, will be 
invoked together with (3-4) to obtain the solution.  To proceed 
further, let’s start with the Rouche’s theorem as follows:    

Rouche’s theorem [8,9] 

If  and  are analytic inside and on a simple closed 
contour C, and if 

)(zf )(zg
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have the same number of zeros inside C.  To enforce the stability 
constraints using the Rouche’s theorem, consider the function 
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Note the denominator of the filter is given by .  Hence, the 
zeros of  and  are reciprocals of each other.   
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is the new denominator which has all its zero inside { : ρC

1<= ρz } while minimizing the minimax design criterion.  
Choosing the functions f(z) and g(z) as  
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which are analytic inside and on C , it then follows from the 

Rouche’s theorem that  and  have the same 
numbers of zeros inside C  if  
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By enforcing (3-10), A  and  will have the same 
numbers of zeros inside C .  If  has all its root inside C ,  

then so is A , and the desired pole radius constraint is 
imposed.   (3-10) can also be written in terms of   as 
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Therefore, if the initial polynomial A  is chosen with all its 
zeros inside C , then with constraint (3-11), all subsequent 

polynomials , i , will have their zeros inside C . 
Next, we shall reformulate (3-11) as a set of LMIs so that it can be 
solved using SDP. From (3-6) and (3-11), we have 
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Discretize the frequency variable ω  in the band of interest into  
points,  for , we obtain a finite set of constraints 

, for l . Stacking the constraints together, 
one obtains the discretized version of (3-13) as follows:  
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We now modify F ’s in (3-4) to incorporate these constraints.   
Substitute (3-6), (3-7) into (3-4) and expressing the variable a  in 
terms of ∆  and , one gets the following for  at the i -th 
iteration: 
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The feasibility problem to be solved is then given by: 

∆
εmin  subject to . 0)}(),,({ ≥aΛaF εdiag (3-16) 

Using this SDP and the bisection method, the all-pass filter with the 
minimum phase ripple and prescribed maximum pole radius can be 
obtained.  Figure 1 summarizes the proposed design algorithm.  

IV.   DESIGN EXAMPLES 
We illustrate the proposed design method by considering 

several design examples.  The SDP was solved using the Matlab 
LMI toolbox.  In the first example, an all-pass filter is designed to 
realize a digital halfband filter (HBF).  The transfer function of the 
HBF is given by ))(()( 2116
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H , where β  is an all-
pass digital filters. The desired response of β  is given by 

, ω ∈ , where ω  is the passband edge 

of the halfband filter.  In the passband, i.e. ω ∈ , 

 approximates , and hence H  is 
approximately equal to e .  In the stopband,  ω , 

 approximates , and hence  is close to 
zero.  The order N of the allpass filter and ω  in our design are set 

to 8 and ω , respectively.  This is identical to example 2 in 
[1] for comparison purpose.  The frequency band of interest 

 is discretized uniformly to form K=700 constraints. 
The maximum pole radii ρ  are set to 0.98, 0.8, and 0.78, and the 
frequency variable ω  of the stability contour C in (3-7) is 
discretized uniformly into L=700 points. The tolerance of the ripple 

 is set to 0.01, as a reasonable tradeoff between computational 
time and final accuracy.  The frequency responses of the halfband 
filters obtained are shown in Figure 2(a). Their passband ripple and 
group delay responses are shown in Figures 2(b) and (c), 
respectively. The upper and lower bound values of the ripple error 
are 0.000238 and 0.000235, respectively.  This difference can be 
made arbitrary small by reducing the tolerance of δ .  Figure 2(d) 
shows the pole-zero plot of the allpass filter with  = 0.98.  From 
these figures, we can see that the stopband is approximately equi-
ripple with a highly linear phase characteristic in the passband and 
stopband. The stopband attenuation for ρ  = 0.98 is 72.467dB, 
which is very close to 72.5dB that was obtained in example 2 of 
[1].  The latter was known to be the best result reported so far.  
From Figure 2(d), it can be seen that the outermost pole is bounded 
by specified pole radius.  On the other hand, if the pole constraint is 

)(z
)z

∈

)ωje

(

(H

ρ

ωβ 18()( −−= jj
d ee

))( 2ωω β jj ee−

))( 2ωω β jj ee−

.0=p

]2,0[ pωω ∈

δ

p

p

],0[ pω

)( ωje
],[ πω s

VI - 415

➡ ➡



smaller than 0.81, the ripple will be increased to satisfy the smaller 
prescribed pole radius constraint.  Since the stopband attenuation 
between successive values of N is rather large, for some 
applications, the stopband attenuation of the AP-based digital filters 
might exceed the given specification of stopband attenuation by a 
considerable margin.  The stopband attenuation can be traded for 
better stability margin as illustrated in this example.  Hence, the 
pole radius constraint allows an additional tradeoff between the 
approximation error and the stability margin in finite wordlength 
implementation.  To demonstrate the usefulness of the proposed 
approach in imposing linear constraints, 3 and 15 zeros at ω =  
are respectively imposed as linear constraints in (3-16).  The 
frequency responses of the resulting HFBs are shown in figure 3.  
We have also done a comparison with the results in [3,7,14], and 
the results are either identical to or better than (in the multiband 
case [14]) the results reported.  Due to page limitation, these results 
are omitted here.   

π

V.   CONCLUSION 
A new method for designing digital all-pass filters with a 

minimax design criterion using SDP is presented.  Unlike other all-
pass filter design methods, additional linear constraints can be 
readily incorporated. The convergence of the algorithm is 
guaranteed.  Nonlinear constraints such as the pole radius constraint 
and hence the stability margin of the filters can also be formulated 
as LMIs using the Rouche’s theorem.  This allows an additional 
tradeoff between the approximation error and the stability margin in 
finite wordlength implementation. The effectiveness of the 
proposed method is demonstrated by several design examples. 
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    Initialization: , ,    0:=Lδ InitU δδ =: Initρρ =:
1. Test the feasibility of (3-4) for δ .   U

    If infeasible, no good solution is found. 
    If the maximum pole radius is greater than   ρ
      {Replace the radius of those poles by , if it is larger than . ρ ρ
        Test the feasibility of (3-16) for .   Uδ
        If infeasible, no good solution is found.} 
2. If | , report the most recent solution. toleranceLU <− |)/(1 δδ
    Else { 
     δ ; 2/)( UL δδ +←
      If no pole radius constraint is violated so far 
        {Test the feasibility of (3-4) for .    δ
        If the maximum pole radius is greater than   ρ
            {Replace the radius of those poles by , if it is larger than . ρ ρ
              Test the feasibility of (3-16) for .} } δ
      Else  
        Test the feasibility of (3-16) for . δ
      If feasible  
        δ ← . δU

      Else δ ←  δL

      goto 2.} 
 Figure 1. Summary of the proposed design method. 
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Figure 2. Design results: (a) Frequency responses of the HFB. (b) Passband 
ripple errors. (c) Group delay responses of the AP filter with  = 0.98, 0.8, 
and 0.78    (d) Pole-zero plot of the all-pass filters with  = 0.98. “O” and 
“X” stand for a zero and a pole respectively. 

ρ
ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

S
to

pb
an

d 
A

tt
en

ua
tio

n 
(d

B
)

Norm aliz ed A ngular Frequenc y  ω /π  
Figure 3. Magnitude responses of the AP-based HB filters: solid-line - 15 
zeros at ω = , dotted-line - 3 zeros at ω = ). π π
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