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ABSTRACT

This paper proposes a new method for designing digital all-pass
filters with a minimax design criterion using semidefinite
programming (SDP).  The frequency specification is first
formulated as a set of linear matrix inequalities (LMI), which is a
bilinear function of the filter coefficients and the ripple to be
minimized. Unlike other all-pass filter design methods, additional
linear constraints can be readily incorporated. The overall design
problem turns out to be a quasi-convex constrained optimization
problem (solved using the SDP) and it can be solved through a
series of convex optimization sub-problems and the bisection
search algorithm. The convergence of the algorithm is guaranteed.
Nonlinear constraints such as the pole radius constraint of the filters
can also formulated as LMIs using the Rouche’s theorem. It was
found that the pole radius constraint allows an additional tradeoff
between the approximation error and the stability margin in finite
wordlength implementation. The effectiveness of the proposed
method is demonstrated by several design examples.

I. INTRODUCTION

Digital all-pass filters are useful in many applications such as
digital communications, phase equalization, implementation of
digital and multirate filters, etc [4]. They have a unit magnitude
response but a very flexible phase characteristic. Therefore, they
are very useful to equalize the phase response of nonlinear phase
systems such as IIR filters designed by frequency transformation.
They can also be used in efficient realization of digital filters by
combining the outputs of two properly design all-pass filters [4].
Due to the symmetry of the numerator and denominator of an all-
pass filter, it only requires N multiplications per sample as
compared to 2N for general IIR filters having the same order of
numerator and denominator. From an implementation point of
view, digital all-pass filters also possess many nice properties: such
as nonlinear oscillation free characteristics, lossless property, and
low coefficient sensitivity, which are very important to the finite
wordlength implementation with low roundoff noise. These
attractive properties have motivated considerable research into the
design of digital all-pass filters [1-3,5-7,12]. Weighted least
squares designs of all-pass filters were considered in [2,5,6].
Minimax designs of all-pass filters were also considered in
[1,3,7,12].  Although it is possible to enforce the stability of the
all-pass filters by choosing properly the design specification, the
poles of the filters can lie arbitrarily close to the unit circle. Due to
the finite wordlength effects in practical implementation, the poles
of the transfer function should not lie too close to the unit circle and
certain stability margin is desirable [13]. Poles close to the unit
circle may also enhance quantization noise. Recently, methods for
constraining the maximum pole radius when designing IIR filters
have received considerable interest [11,13].

In this paper, we propose a new method for designing causal-
stable digital all-pass filters with a minimax design criterion using
semidefinite programming. The frequency specification is first
formulated as a set of linear matrix inequalities (LMI), which is a
bilinear function of the filter coefficients and the ripple to be
minimized. Unlike other all-pass filter design methods, additional
linear constraints can be readily incorporated. The overall design
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problem turns out to be a quasi-convex constrained optimization
problem (solved using the SDP) and it can be solved through a
series of convex optimization sub-problems and the bisection
search algorithm. The convergence of the algorithm is guaranteed.
Nonlinear constraints such as the pole radius constraint and hence
the stability of the filters is formulated as LMIs using the Rouche’s
theorem. Our formulation is a modification of the method in [13].
We first solve the SDP problem without the pole constraint. If the
given pole radius constraint is satisfied, then the solution obtained
is the desired result. If not, the radii of those poles exceeding the
prescribed pole radius will be reduced to obtain a feasible initial
solution. The Rouche’s theorem, which will be formulated as a set
of LMIs, will be invoked together with the original LMIs to obtain
the solution. It was found that the pole radius constraint allows an
additional tradeoff between the approximation error and the
stability margin in finite wordlength implementation. The
effectiveness of the proposed method is demonstrated by several
design examples.

The paper is organized as follows: In Section II, a brief
introduction to digital all-pass filters is given. Section III is devoted
to the proposed design method. The frequency specification is first
formulated as a set of matrix inequalities, and is solved
successively using the SDP and the bisection search method. Then,
the LMI for incorporating the maximum pole radius constraint is
derived using the Rouche’s theorem. A simple design example is
given in section IV and is compared with other design technique.
Finally, conclusions are drawn in section V.

II. DIGITAL ALL-PASS FILTERS

The transfer function of a digital all-pass filter, H, (z), of

order N and real-valued filter coefficients can be written as:

v A
H = N , a :1 s 2-1
D= S @-1)
N
where A(z):Za”z’" , and a, ’s are real-valued filter
n=0

coefficients. Substituting z =’ into (2-1), one gets

H, (/) =e M . g2a@ = gl (2-2)

ﬁ:a” -sin(nw)
where 6(w)=—-No +2¢,(®) , and man(¢,(@)=-——— . It

Z a, -cos(nm)
n=0

can be seen that the all-pass filter has a unit magnitude response
and its phase response is governed by its filter coefficients.
Therefore, it can be used to approximate a given phase response in
order to equalize the nonlinear phase response of IIR filters and
other systems. They can also be used to implement very efficiently
lowpass filters by summing the outputs of two properly designed
all-pass filters. Moreover, as the numerator and denominator
coefficients are mirror images of each other, it only requires N
multiplication for each output sample as opposite to 2N for a
general IR filter with the same order of numerator and
denominator. Suppose that an all-pass filter is used to approximate
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a certain desired phase response 0(m)=6,(w). To formulate the

design problem, we need to express the phase error
0,(®)=0(w)-06,(w) in terms of the filter coefficients as

N
JP, ()
> a,e

ejOI,((u} — :77\]:0 , (2_3)

\ —j®, (@)
3o

n=0

where @, (0)=no — (No +0,(»))/2. Therefore, we have

ﬁ:an -sin(®, (0))
tan®,(0)/2)=20—— . (2-4)
Zan ~cos(®, (o))

n=0

(2-4) can be written more compactly in the following matrix form

tan®, (@) /2) =“T'—s(°°), (2-5)
a -c(o)
where a=[a, aq a1,

(@) =[cos(@,(®)) cos(@,(®))--cos@ (w))]", and

s(@) =[sin(@y(®)) sin(@,(®))---sin(@® ,(®))]" .
(2-4) characterizes the phase response error of the all-pass filter at
frequency ® in terms of the filter coefficients and the desired
phase response function. In next section, we will formulate the
design problem of the all-pass filters using the minimax error
criterion as a quasi-convex optimization problem, which can be
solved by a series of convex SDP problems.

III. ALL-PASS FILTER DESIGN USING SDP

3.1 Minimax Error Criterion

If the all-pass filter is used to approximate a desired phase
response over a set of disjoint intervals ® e Q c[-m,n] in a
weighted minimax error criterion, then the phase response error is
to be bounded above and below by a positive quantity A . Since the
tangent function is monotonic in the interval [0,7 /2], the value of

tan®,(w)/2) is bounded above and below by [-5,5], where
tan(A/2) =03 . The design problem at hand is then given by

mind subject to
a

T, 3-1
-5 SW(m)~a—s(w)£6,forweQ c[-n,n], (-
a’ -c(o

"e()

where W (®) is a positive weighting function associated with the
disjoint intervals over which the desired response is to be
approximated. Note, the denominator in (3-2) cannot be zero and it
must assume the same sign over ® € QO . We shall solve (3-2) as a
series of SDP feasibility problems. To this end, rewrite (3-1) as:

mind  subject to
‘ (3-2)

S c(@)<W()-a" -s®)<s@" -c(o)).
We have assumed from stability consideration that the sign of the
denominator in (3-1) is positive. (3-2) is not a LMI because the
constraints are bilinear function in 6 and a . To formulate (3-2) as
LMIs, we assume that the ripple § is fix and given. Instead of
solving (3-2), we solve the following feasibility problem after
discretizing the frequency variable ® in the band of interest Q
into K points, o, for k=1---,K,

ming  subject to
a (3-3)
F(a)+e-1,>0,for k=1,---,K,

where F (a)= a’ -G -cl@)+W () 5(®,)) 0
k 0 aT,(S'c(u)k)—W(m).s(mk)) P

1, is an NxN identity matrix and ¢ is a fictitious optimization

variable introduced to determine whether the given ripple 8 can be
achieved by the all-pass filter to be designed. If £ <0, then the
given ripple can be achieved by the all-pass filter. Otherwise, the
ripple is too small and it needs to be increased. The constraints,
F,(a)+¢-1,>0, can be stacked together to form the following

standard LMI formulation

ming subjectto F(a,e)>0, (3-4)

where F(a,e) = diag(F,(a)+¢-I,,F,(a)+¢-1,,---F.(a)+¢-1I,) . Since
the matrix F(a,e) is affine in @ and ¢ , (3-4) can be solved

efficiently using SDP. To determine the minimum ripple that can be
achieved by the all-pass filter in approximating the given
specification, we combine the SDP formulation in (3-4) with the
bisection method. More precisely, let 6, and &, be the lower

bound and upper bound of & , respectively (i.e. 8, <& <3,). We
first set the ripple to 8 =5, +5,)/2 and solve (3-4) for ¢ . If the

solution of ¢ is greater than zero, then the given ripple & is too
small and it is set to the new lower bound, i.e. 5, =5 . On the

other hand, if € <0, then the given ripple is feasible and the upper
bound is reduced to &, =5 . After completing the first stage, we

repeat this process until |6 L —6U| is smaller than a given tolerance.

Therefore, the minimum achievable ripple can be found together
with the appropriate filter coefficients. In effect, we are solving the
design problem as a series of convex SDP problem. Since the
difference between the two bounds of the ripples is reduced by half
at each iteration, the solution will be found eventually when this
difference goes to zero. Thus, the convergence of the algorithm is
also guaranteed. Note, additional linear constraints such as a
prescribed flatness at a certain frequency can be incorporated.

3.2 Imposing Stability Constraint

The design formulation in section 3.1 only deals with the
frequency specification and, like many other proposed methods, it
does not enforce the stability constraint. In other words, the all-pass
filter so obtained cannot always be stable. The necessary and
sufficient conditions for the all-pass filters to be stable are that its
group delay satisfies [6,12]

do (o)
do

An all-pass filter is also stable if it has a phase approximation error
less than @ at @ =7 [6,12]. Several approaches for enforcing the
stability constraints in designing IIR filters were previously
proposed [13,10,11]. One possibility is to optimize the locations of
the poles and require their magnitudes to be smaller than one [10].
In other words, all the poles of the IIR filter are within the unit
circle. However, the frequency response of an IIR filter is usually a
highly nonlinear function of the pole locations. The constrained
optimization can easily be trapped at local minimum. Another
method is based on the Lyapunov stability constraint [11], which
says that if a digital system is stable, then there exists a positive
definite matrix P which satisfies

A"P+P"4>0 , (3-5)

J:‘c(o))dm = No where 1(®)=—

where A is the state transition matrix, and “> 0” means that the
matrix on the left hand side is positive semidefinite. Notice that (3-
5) is bilinear in the parameters (P,A4), which cannot be cast
directly as an SDP. The third method, which was proposed in [13],
is based on the Rouche’s theorem [8,9]. The IIR filter design
method in [13] is based on an iterative Gauss-Newton method,
where the frequency response of the filter is linearized to obtain a
quadratic objective function in the design parameters. The least
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squares error is then minimized. In using the Rouche’s theorem, it
is assumed that the filter obtained in the last iteration is stable so
that the condition on the incremental change in filter coefficients to
ensure stability can be imposed.

Our formulation is a modification of this method in that we
first solve the problem in (3-4). If the given pole radius constraint
is satisfied, then the solution obtained is the desired result. If not,
the radii of those poles exceeding the prescribed pole radius will be
reduced to obtain a feasible initial solution. The Rouche’s theorem,
which will be formulated as a set of LMIs in the sequel, will be
invoked together with (3-4) to obtain the solution. To proceed
further, let’s start with the Rouche’s theorem as follows:

Rouche’s theorem [8.,9]

If f(z) and g(z) are analytic inside and on a simple closed
contour C, and if |g(z)| <|f(2)| on C, then f(z) and f(z)+g(2)

have the same number of zeros inside C. To enforce the stability
constraints using the Rouche’s theorem, consider the function

N N

Az =D a,z" =1+ a,z". (3-6)
n=0 n=l

Note the denominator of the filter is given by A4(z). Hence, the

zeros of A(z™') and A(z) are reciprocals of each other.

Let the denominator of the all-pass filter obtained at the i-th

iteration be AV (2)=1+a’z"' +---+a¥z™". We hope to solve for
the coefficients in the following incremental polynomial
A=Ay + Az ++ Az, n=1,---,N,

A ()= AV (2) + AV (2) 3-7)

is the new denominator which has all its zero inside { C, :

where

|z| =p <1 } while minimizing the minimax design -criterion.
Choosing the functions f{z) and g(z) as
g@2)=z"A"(2)=A 2" +A 2V 1A, (3-8)
f(2)=z"4"z)=z" +az"" +- +al), (3-9)
which are analytic inside and on C, , it then follows from the

Rouche’s theorem that f(z)+g(z) and f(z) have the same
numbers of zeros inside C if

le@|<|f@). |=p-
By enforcing (3-10), 4“*"(z) and 4“(z) will have the same

numbers of zeros inside C, . If 4 (z) has all its root inside C,,

(3-10)

then so is 4“""(z) , and the desired pole radius constraint is

imposed. (3-10) can also be written in terms of A (z) as
|A<f>(z)|<|A(”(z)|’ C,:|{=p<1. (3-11)

Therefore, if the initial polynomial 4”(z) is chosen with all its

zeros inside C, , then with constraint (3-11), all subsequent
polynomials 4" (z), i=0,l,---, will have their zeros inside C, .

Next, we shall reformulate (3-11) as a set of LMIs so that it can be
solved using SDP. From (3-6) and (3-11), we have

N 2 N 2
ZAnpfne*jnco < Za:’lz)pfne—jnm — <o<n
n=0 =0
& ' -(BerBH>0 (3-12)
Where 72 =@""¢,)? +@"’s,)?, a” =[1 a? a1,
o=de,. B =A's, AO=[a, A - AT

c, =[1

and s, =[0 p'sino

p ' cosm p M cosNo]
pVsinNo]" .

(3-12) is equivalent to

X : Brl@) Bj(®)
Ad,0)=| Br@) 1 0
Bsi(®) 0 1
Discretize the frequency variable « in the band of interest into L
points, ®, for /=1,---,L , we obtain a finite set of constraints

>0, m<oO<T. (3-13)

A(4,0,)>0, for /=1,---,L . Stacking the constraints together,
one obtains the discretized version of (3-13) as follows:

A(A) =diag{A,(A),---,4,(4)}>0. (3-14)
We now modify F,(a)’s in (3-4) to incorporate these constraints.
Substitute (3-6), (3-7) into (3-4) and expressing the variable a in
terms of 4 and a'”, one gets the following for F, at the i +1-th
iteration:

v 0
Fk(A):[O v J,

T 3-15
v=@" 4@ )t ) s, O
nT
V, = (@ +4)-@ (@) -W(®,) s(®,)).
The feasibility problem to be solved is then given by:
mijls subject to diag{F(a,c),A(a)}>0. (3-16)

Using this SDP and the bisection method, the all-pass filter with the
minimum phase ripple and prescribed maximum pole radius can be
obtained. Figure 1 summarizes the proposed design algorithm.

IV. DESIGN EXAMPLES

We illustrate the proposed design method by considering
several design examples. The SDP was solved using the Matlab
LMI toolbox. In the first example, an all-pass filter is designed to
realize a digital halfband filter (HBF). The transfer function of the
HBF is given by H(z) = %(z’16 +z'B(z%)), where B(z) is an all-
pass digital filters. The desired response of P (z) is given by
By(e)=e7*" ©e[0,20,], where o, is the passband edge

of the halfband filter. In the passband, ie. ®e[0,0,],

e B(e’*™)) approximates e /' | and hence H(e™) is

—jl6w

approximately equal to e In the stopband, © €[w, ,n],

-jl16o

e ™ B(e’*)) approximates —e , and hence H(e’) is close to

zero. The order N of the allpass filter and ®, in our design are set
to 8 and w, =0.4n , respectively. This is identical to example 2 in

[1] for comparison purpose. The frequency band of interest
o €[0,2w ] is discretized uniformly to form K=700 constraints.

The maximum pole radii p are set to 0.98, 0.8, and 0.78, and the
frequency variable ® of the stability contour C in (3-7) is
discretized uniformly into L=700 points. The tolerance of the ripple
S is set to 0.01, as a reasonable tradeoff between computational
time and final accuracy. The frequency responses of the halfband
filters obtained are shown in Figure 2(a). Their passband ripple and
group delay responses are shown in Figures 2(b) and (c),
respectively. The upper and lower bound values of the ripple error
are 0.000238 and 0.000235, respectively. This difference can be
made arbitrary small by reducing the tolerance of 6 . Figure 2(d)
shows the pole-zero plot of the allpass filter with p = 0.98. From
these figures, we can see that the stopband is approximately equi-
ripple with a highly linear phase characteristic in the passband and
stopband. The stopband attenuation for p = 0.98 is 72.467dB,
which is very close to 72.5dB that was obtained in example 2 of
[1]. The latter was known to be the best result reported so far.
From Figure 2(d), it can be seen that the outermost pole is bounded
by specified pole radius. On the other hand, if the pole constraint is
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smaller than 0.81, the ripple will be increased to satisfy the smaller
prescribed pole radius constraint. Since the stopband attenuation
between successive values of N is rather large, for some
applications, the stopband attenuation of the AP-based digital filters
might exceed the given specification of stopband attenuation by a
considerable margin. The stopband attenuation can be traded for
better stability margin as illustrated in this example. Hence, the
pole radius constraint allows an additional tradeoff between the
approximation error and the stability margin in finite wordlength
implementation. To demonstrate the usefulness of the proposed
approach in imposing linear constraints, 3 and 15 zeros at ® =7
are respectively imposed as linear constraints in (3-16). The
frequency responses of the resulting HFBs are shown in figure 3.
We have also done a comparison with the results in [3,7,14], and
the results are either identical to or better than (in the multiband
case [14]) the results reported. Due to page limitation, these results
are omitted here.

V. CONCLUSION

A new method for designing digital all-pass filters with a
minimax design criterion using SDP is presented. Unlike other all-
pass filter design methods, additional linear constraints can be
readily incorporated. The convergence of the algorithm is
guaranteed. Nonlinear constraints such as the pole radius constraint
and hence the stability margin of the filters can also be formulated
as LMIs using the Rouche’s theorem. This allows an additional
tradeoff between the approximation error and the stability margin in
finite wordlength implementation. The effectiveness of the
proposed method is demonstrated by several design examples.
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Initialization: 8, =0, 8, =8, ., P = P
1. Test the feasibility of (3-4) for &, .
If infeasible, no good solution is found.
If the maximum pole radius is greater than p
{Replace the radius of those poles by p ,if it is larger than p .
Test the feasibility of (3-16) for J,, .
If infeasible, no good solution is found. }
2.1f |18, /8,) |< tolerance , report the most recent solution.
Else {
S« (B,+6,)/2;
If no pole radius constraint is violated so far
{Test the feasibility of (3-4) for J .
If the maximum pole radius is greater than p
{Replace the radius of those poles by p , if it is larger than p .
Test the feasibility of (3-16) for & .} }
Else
Test the feasibility of (3-16) for o .
If feasible
S, <95

Else 8, <0

goto 2.}
Figure 1. Summary of the proposed design method.
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Figure 2. Design results: (a) Frequency responses of the HFB. (b) Passband
ripple errors. (c) Group delay responses of the AP filter with p =0.98, 0.8,

and 0.78  (d) Pole-zero plot of the all-pass filters with p = 0.98. “O” and
“X” stand for a zero and a pole respectively.
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Figure 3. Magnitude responses of the AP-based HB filters: solid-line - 15
zeros at ® =T , dotted-line - 3 zeros at ® =T ).
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