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ABSTRACT

Modified discrete Fourier transform (MDFT) filter banks
are analyzed in relation with Weyl-Heisenberg expansions
over� in �����. This analysis is used to formally derive
a result that could sometimes be taken for granted with-
out any proof: the design of perfect reconstruction (PR)
MDFT subband coders is equivalent to that of PR MDFT
transmultiplexers. The framework of WH expansions over
� in ����� is also used to prove the equivalence between
the MDFT transmultiplexer and the biorthogonal frequency
division multiplex/offset quadrature amplitude modulation
(BFDM/OQAM) multicarrier system. This analysis also
leads to a slightly modified MDFT scheme with a reduced
reconstruction delay.

1. INTRODUCTION

The filter bank theory is now widely used and has two main
practical uses, which are subband coding and multicarrier
modulation. It is well known that the design of both sub-
band coders1 and transmultiplexers with perfect reconstruc-
tion (PR) are two dual problems. It has already been shown
that they are even equivalent in the case of an� -channel
maximally decimated filter bank [1, 2] or in the case of
oversampled DFT filter banks [3]. That is why it is often
considered that this conclusion is also valid for any type of
filter bank. But for instance in the case of a general over-
sampled filter bank the duality question is meaningless. The
equivalence between PR subband coders and PR transmul-
tiplexers mentioned above rests indeed on the fact that an
� -channel maximally decimated filter bank is equivalent to
a pair of biorthogonal bases over� in �����, and that over-
sampled DFT filter banks are related to Weyl-Heisenberg

�The first author performed the work while at France Télécom R&D,
Cesson Sévigné, France.

1Several authors refer to filter banks as subband coders, but here, as in
[1], we do not make this restriction. We consider that subband coders and
transmultiplexers constitute two different types of filter banks.

(WH) expansions over� in ����� [4]. But neither the first,
nor the second argument applies to MDFT filter banks. And
yet, it has recently been shown [5] that the BFDM/OQAM
multicarrier modulation can be realized thanks to a trans-
multiplexer whose PR conditions are the same as the ones
given for the MDFT subband coder [6]. Moreover, in spite
of a few differences, this BFDM/OQAM transmultiplexer is
very similar to the MDFT transmultiplexer used for the or-
thogonal multiple carrier data transmission (OMC) [7]. As
in both cases the realization schemes involve taking the real
part of the conventional inner product, an analysis based on
WH expansions over� is now proposed.

Therefore, in this paper, we briefly present the frame-
work of WH expansions over� in �����. Then, MDFT
filter banks are reviewed by separately considering their dif-
ferent subblocks. This leads us to an analysis of MDFT filter
banks thanks to a special type of WH expansions over� in
�����.

2. WH EXPANSIONS OVER � IN �����

The space of square summable sequences,�����, is usu-
ally seen as a Hilbert space over� with the inner product
��� ��� �

���
���� ��������� and norm��� �

�
��� ��� �����

���� �������. Thus, every� � ����� can be expanded

as���� �
���

���� �������, with �� � �, provided that
������� spans�����. But, it is clear that����� is also a
vector space over� and even a Hilbert space over�, with

the inner product��� ��� � �
����

���� ���������
�

and

without changing the norm. Using these notations, it is pos-
sible to define the notions of frame and biorthogonality as in
����� considered as a Hilbert space over� [8], except that
we use a real-valued inner product. Thus, two sets of se-
quences�������, ������� are said to be biorthogonal when

���� ��� � ��� ���� ����� � Æ���� � (1)
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� being a set of indices andÆ���� being the Kronecker op-
erator. Thus, if���� and���� are biorthogonal, and if� ��

��� 	���, then	� � ���� ���.
Besides,������� is said to be a frame if there exists two

finite, strictly positive real-valued numbers
, �, such that

�� � ������ 
���
� �

�
���

����� ����
� � ������ (2)

and we say that two frames�������, ������� are dual if
([9])

�� � ������ � �
�
���

���� �����
 (3)

Let us now define WH systems in����� [9]. We say that
� � ����� is the prototype function which defines the WH
system����, � � � � � 	 �, � � �, with parameters�
and� , ����� � �� if

������� � � �� 	 �� ���
��
�
��
 (4)

Thus, a WH expansion over�, or over�, is a signal which
can be expanded as

����
���

���
���� 	�������, with	��� �

�, or	��� � �, respectively.
In the context of expansion over�, it is useful to define

a new type of WH systems, which we call�-WH systems,
by

�������� � � �� 	 �� ���
��
�
�������� � (5)

with � 	 ����� � ��� � 	 ��
� �� ���� � �. In the case
of expansions over�, it can easily be shown that,���� �,
����� and����� constitute two biorthogonal families or two

dual frames if and only if��
�

��� and��
�

��� also constitute two
biorthogonal families or two dual frames, respectively. But
this is no longer true in the case of systems over�. In this
case, it can be shown that this equivalence is still true when

�� � �, such that����� 	 ���� � �� �
�� ��.

3. MDFT FILTER BANKS

MDFT filter banks (subband coders or transmultiplexers)
can be built thanks to the same basic blocks depicted in
figures 1, 2 and 3. The only difference between them is
that the analysis (figure 4) is performed before the synthesis
(figure 5) for the subband coder (see figure 6), whereas it
is performed afterwards for the transmultiplexer (see figure
7). Let us write the input-output relations of these blocks:

� analysis filter bank (see figure 1)

����� �
���

����

����� 	 ������� (6)

with ����� � ������
��
��

�����
�
�� (7)

� being an FIR filter and� being a strictly positive
integer parameter;

� synthesis filter bank (see figure 2)

���� �

���
����

�����
���

��������� 	 �� �� (8)

with ����� � � �����
��
��

�����
�
�� (9)

� being an FIR filter and� being the same strictly
positive integer parameter as for the analysis;

� demultiplexer (see figure 3)

������ � ���
��� ������ � ���
� 	 ��� (10)

� multiplexer (see figure 3)

���
� � �� � ������� ���
�� � ������
 (11)

4. WH ANALYSIS OF MDFT FILTER BANKS

4.1. MDFT analysis filter bank

Let us first define the phase term�	� by�	� � � if �� � is
even, and�	� � 


� if �� � is odd. Then, using notations of

figures 3 and 4, we have�� 	���� � �
�
����

�
��	����

�
. More-

over, using equation (10) and denoting������ � ��	��
��	
� �

and������	 � �	�, we get������ � �
�
������������

�
.

Then, using equations (6) and (7), we finally obtain

������ �

�

	
���

����

���� 	 ����
��
��

��������
�
������������



�

� ���������� ��� 	����� (12)

with ���� � ���� 	 ��, ���� � ���� 	
�

������ � 


� �
and� � 
� . Thus, an MDFT analysis filter bank can be
seen as an inner product in����� over� involving a�-WH
system.

4.2. MDFT synthesis filter bank

Using notations of figures 3 and 5, we can also write that
�	���� � ���

�
� ��	����. Then, using equation (11) and denot-

ing ������ � ��	������	� �, we get����� � �������� ������.
And, finally, using equations (8) and (9), we find that

���� �

�����
���

���
����

���� 	 �� ��������� ������� (13)

��� �� � �

�����
���

���
����

���� 	 �� ������� ���������

�

�����
���

���
����

������ ����������
 (14)
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Moreover, in a back-to-back subband coder,�� 	���� � ��	����
so that we can guarantee that������ � �. As for the MDFT
transmultiplexer, we assume that its inputs��	���� are real-
valued so that������ � �. Therefore, an MDFT synthesis
filter bank implements a�-WH expansion over�.

4.3. Dual WH frames over � and the PR MDFT sub-
band coder

An MDFT subband coder satisfies the PR property when
there exists a strictly positive integer parameter��, such that
���� � ���	��� under the assumption that��	���� � ��	����,
� � � � 
� 	 � and� � ��� ��, i.e. ������ � �����	 ��.
Moreover, we know from [6] that the reconstruction delay
is necessarily�� � ��� . Thus, using equations (12) and
(14), we find that PR is equivalent to

��� 	�� �

�����
���

���
����

�������
�
������� (15)

with ������ � ���������� ��� 	����� (16)

which is equivalent to the fact that����� and����� are two
dual frames. It is worthwhile mentioning that, as already
written in section 2, this is also equivalent to the fact that
��

�

��� and��
�

��� are two dual frames, provided that���� 	
����� � �� �
�� ��. Considering the definition of����
in section 4.1, it appears that���� � 


� ��� �� �
�� ��.
Thus, it is possible to define a generalized MDFT filter bank
corresponding to����� �



� �������� �
�� ��, satisfy-

ing the same PR conditions as the type I MDFT filter bank.
For instance, it can be shown that the type II MDFT filter
bank presented in [6] is another particular case of this gen-
eralized MDFT filter bank.

Besides, the multiplexing/demultiplexing steps, which
allow us to alternately take the real part and the imaginary
part of ����� during the analysis, also introduce a single
sample delay, since������ � �����	��. Moreover, equation
(14) shows that this one sample delay passed into the syn-
thesis filter bank causes an� samples delay at the output.
That is why it is possible to reduce by� samples the overall
reconstruction delay if we directly put������ at the input of
the synthesis filter bank, instead of������. Thus, if we avoid
the multiplexing/demultiplexing middle stages, we can get
a generalized MDFT subband coder with reduced delay, as
depicted in figure 8.

4.4. Biorthogonal WH expansions over� and PR MDFT
transmultiplexer

Let us now focus on the dual problem. We want to find�

and� such that

������ � ���������� ��� 	���� with (17)

��� 	�� �
�����
���

���
����

�������
�
������� (18)

which means that����� and����� constitute a pair of bior-
thogonal families. One could think that this problem is ex-
actly the same as the PR problem for an MDFT subband
coder, but in fact the difference is that, in a subband coder,
we know that the subband coefficients������ can be com-
puted thanks to an analysis filter bank, whereas in this case,
the coefficients������ can be any real-valued numbers and
we have no guarantee that they can be computed by an anal-
ysis filter bank. Nevertheless, if we make this assumption,
then, in order to get a delayed version�����	�� of ������ at
the output of the MDFT analysis filter bank, we have to put
���	�� � � �����	�� �, ���� being the signal output
of the MDFT synthesis filter bank with input������. Thus,
defining� and� by � � �� 	 �, � � � � � 	 �, we
get��� 	 �� � � ��� 	 ��. In other words, when we know
that ������ can be computed thanks to an MDFT analysis
filter bank, the PR for an MDFT subband coder is equiva-
lent to the PR for the transmultiplexer depicted in figure 9,
into which we have introduced a� samples delay along the
transmission line.

We can see from [5] that this transmultiplexer corre-
sponds to a BFDM/OQAM (or OFDM/OQAM [10]) mo-
dem. Thus, [6] and [5] show that the PR for an MDFT filter
bank is in fact equivalent to the PR for this transmultiplexer,
without any restriction on the real-valued symbols������.
Thus, this proves that�-WH dual frames of����� over�
are also in fact biorthogonal bases of����� over�.

5. CONCLUSION

We have derived a new generalized MDFT subband coder
with reduced delay, which is exactly the dual form of the
transmultiplexer given in [5] and corresponds to a BFDM
or OFDM/OQAM modem. We have also proved that PR
for MDFT subband coders is related to a special type of
dual WH frames in����� over� and that PR for the dual
transmultiplexer is related to a biorthogonality condition for
the same type of WH systems. Finally, using the PR con-
ditions for MDFT subband coders and the BFDM/OQAM
transmultiplexer given in [6] and [5] respectively, we have
proved that, for this particular type of WH systems, the WH
dual frames and the WH biorthogonal families are the same,
and that both are pairs of biorthogonal bases of����� over
�.
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Fig. 1. Analysis filter bank (AFB).
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Fig. 2. Synthesis filter bank (SFB).
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Fig. 3. (a) Demultiplexer (DMUX) and (b) Multiplexer
(MUX).

����

����

����

����

����

����

�

�

�

����

����

����

���

���
�
	�


���
�
	�


���
�
	�


���
�
	�


���
����

	�


���
����

	�


�	�


���

���

���

Fig. 4. MDFT analysis filter bank (MDFT-AFB).
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Fig. 5. MDFT synthesis filter bank (MDFT-SFB).
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Fig. 6. MDFT subband coder.
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Fig. 7. MDFT transmultiplexer.
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Fig. 8. Generalized MDFT subband coder with reduced de-
lay.

�

�

��� �
�� ���

�

�

����

����

������

���������

������ ��

��������� ��

�
��������

�
�����������

�
�����

�
��������

Fig. 9. BFDM/OQAM or OFDM/OQAM transmultiplexer.
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