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ABSTRACT (WH) expansions ove€ in I5(Z) [4]. But neither the first,

nor the second argument applies to MDFT filter banks. And
yet, it has recently been shown [5] that the BFDM/OQAM
multicarrier modulation can be realized thanks to a trans-
multiplexer whose PR conditions are the same as the ones
given for the MDFT subband coder [6]. Moreover, in spite
of a few differences, this BFDM/OQAM transmultiplexer is
very similar to the MDFT transmultiplexer used for the or-
thogonal multiple carrier data transmission (OMC) [7]. As
in both cases the realization schemes involve taking the real
part of the conventional inner product, an analysis based on
WH expansions oveR. is now proposed.

Therefore, in this paper, we briefly present the frame-
work of WH expansions oveR in [,(Z). Then, MDFT
filter banks are reviewed by separately considering their dif-
ferent subblocks. This leads us to an analysis of MDFT filter

1. INTRODUCTION banks thanks to a special type of WH expansions &ér

I2(Z).

The filter bank theory is now widely used and has two main )

practical uses, which are subband coding and multicarrier

modulation. It is well known that the design of both sub- 2. WH EXPANSIONSOVER R.IN lg(Z)

band codersand transmultiplexers with perfect reconstruc-

tion (PR) are two dual problems. It has already been shown

that they are even equivalent in the case ofiérchannel

Modified discrete Fourier transform (MDFT) filter banks
are analyzed in relation with Weyl-Heisenberg expansions
overR in I2(Z). This analysis is used to formally derive
a result that could sometimes be taken for granted with-
out any proof: the design of perfect reconstruction (PR)
MDFT subband coders is equivalent to that of PR MDFT
transmultiplexers. The framework of WH expansions over
R in lx(Z) is also used to prove the equivalence between
the MDFT transmultiplexer and the biorthogonal frequency
division multiplex/offset quadrature amplitude modulation
(BFDM/OQAM) multicarrier system. This analysis also
leads to a slightly modified MDFT scheme with a reduced
reconstruction delay.

The space of square summable sequeni¥,), is usu-

. . : : ally seen as a Hilbert space ow€rwith the inner product
maximally decimated filter bank [1, 2] or in the case of (u,0)c = S5 w*[k]o[k] and norm|u|| = Vi, u)c =
oversampled DFT filter banks [3]. That is why it is often ) /C T Lik==c0 B ’ B

considered that this conclusion is also valid for any type of 1/>4°° . |u[k]|2. Thus, every € I,(Z) can be expanded
filter bank. But for instance in the case of a general over- asu[k] = Y27 unen[k], with u, € C, provided that

sampled filter bank the duality question is meaningless. The(en)nGZ spansl»(Z). But, it is clear that,(Z) is also a

equivalence between PR subband coders and PR transmukjector space oveR and even a Hilbert space ovRr, with
tiplexers mentioned above rests indeed on the fact that an

. _ —+oo *
M -channel maximally decimated filter bank is equivalent to the inner productu, v)r = %{ h=—oco ¥ [k]v[k]} and
a pair of biorthogonal bases ov€rin [»(Z), and that over-

without changing the norm. Using these notations, it is pos-
sampled DFT filter banks are related to Weyl-Heisenberg sible to define the notions of frame and biorthogonality as in

I12(Z) considered as a Hilbert space 0¥&(8], except that
*The first author performed the work while at France Télécom R&D, we use a real-valued inner product. Thus, two sets of se-
Cesson Sevigneé, France. quencesu, ) net, (vn)ner are said to be biorthogonal when
n

LSeveral authors refer to filter banks as subband coders, but here, as i
[1], we do not make this restriction. We consider that subband coders and )
transmultiplexers constitute two different types of filter banks. V(n,n') € I, (Up,vp )R = Onnrs Q)
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I being a set of indices ant), ,,» being the Kronecker op-
erator. Thus, ifu,,) and(v,,) are biorthogonal, and it =
Y net Anlin, thena, = (v, u)r.

Besides(u, )ner is said to be a frame if there exists two
finite, strictly positive real-valued numbe#s B, such that

Vo € (Z), Allz]* < Y Kun, 2)rl* < Bl

nel

(2)

and we say that two frame,,)ner, (vn)ner are dual if
(El)

Vo € 15(Z), x = Z(un,x)Rvn. (3)

nel
Let us now define WH systemsig(Z) [9]. We say that

f € 15(Z) is the prototype function which defines the WH
systemf,, », 0 <m < N — 1,n € Z, with parameterd/
andN, (M, N) € N? if

fmnlk] = (4)

Thus, a WH expansmn ovR or overC, is a signal which
can be expanded 38" — ;T_OO Qoo frnns With @, €
R,orap,,, € C, respecuvely.

In the context of expansion ovE, it is useful to define

a new type of WH systems, which we c&tWH systems,
by

Flk — nM]ed Fmk.

0 o[kl = flk — nM]ed K mkeifman, (5)

with® : (m,n) € [0, N —1] X Z — 6, , € R. Inthe case
of expansions ove€, it can easily be shown that©, @',
[, andg? . constitute two biorthogonal families or two

dual frames if and only if &', andg® , also constitute two

biorthogonal families or two dual frames, respectively. But

this is no longer true in the case of systems denn this

case, it can be shown that this equivalence is still true when,yith g[k] = h*[D — k], O

30 € R, suchthat;, ,, — 0., = 6y (mod ).

3. MDFT FILTER BANKS

MDFT filter banks (subband coders or transmultiplexers)

¢ synthesis filter bank (see figure 2)

+o00 2M-1
SN amlfulk —nM],  (8)

n=—o0 m=0
with f,,,[k] = f[k]e/ 2 m(k=3) 9)

f being an FIR filter andD being the same strictly
positive integer parameter as for the analysis;

e demultiplexer (see figure 3)

Ymn] = ym[2n],  ypln] = yml2n - 1]; (10)
e multiplexer (see figure 3)
Tp[2n + 1] = 22 [n], zn[2n] = z5,[n]. (11)

4. WH ANALYSISOF MDFT FILTER BANKS

4.1. MDFT analysisfilter bank

Let us first define the phase tewn, by ¢;, = 0if m +iis
even, and;, = 7 if m +1is odd. Then, using notations of
figures 3and 4, we hag, [n] = R {e*j% v [n]}
over, using equation (10) and denoti@g[n] = gj;n[”“]

andy,, on—i = ¥i,, we getjn[n] = R {e=I0mny, [n]}.
Then, using equations (6) and (7) we finally obtain

Jimn] =
= i 2 D .
%{ > hlnM - k]eﬂﬁmmM—k—m[zﬁ]e—”’”’"},
(12)

More-

k=—o0
= <g’r?17n[k]’ x[k - D]>R7

= Pm,n — ZMm(nM + 3 )

andN = 2M. Thus, an MDFT analysis filter bank can be

seen as an inner productlis(Z) overR involving a©-WH
system.

4.2. MDFT synthesisfilter bank

can be built thanks to the same basic blocks depicted in Using notations of figures 3 and 5, we can also write that
figures 1, 2 and 3. The only difference between them is ;i ] = eI i i [n]. Then, using equation (11) and denot-
that the analysis (figure 4) is performed before the syntheS|smg Em[n] = & [n+1 ntl-i] we getr,,[n] = e/m =1 g, [n].

m

(figure 5) for the subband coder (see figure 6), whereas it ong, finally, using equations (8) and (9), we find that
is performed afterwards for the transmultiplexer (see figure

7). Let us write the input-output relations of these blocks: M1t . .
o . ylkl = > D fulk —nM]e?omn g, [n], (13)
e analysis filter bank (see figure 1) 0 e —oo
—+oo

> hw[nM — kla[k], (6) 2M—1 foo

Pt ylk+ M= > > fulk—nM]e?mr iy [n+ 1],
. _ j%m(k,g) m=0 n=—o0
with A, [k] = h[k]e : (7 IM—1 +oo

h being an FIR filter andD being a strictly positive = > Y dEmln+11fy k] (14)

m=0 n=—o0

integer parameter;
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Moreover, in a back-to-back subband codgf,[n] = i [n] which means thag$ ,, and £, constitute a pair of bior-
so that we can guarantee tligi[n] € R. As for the MDFT thogonal families. One could think that this problem is ex-

transmultiplexer, we assume that its inpaits[n] are real- actly the same as the PR problem for an MDFT subband
valued so that,,[n] € R. Therefore, an MDFT synthesis coder, but in fact the difference is that, in a subband coder,
filter bank implements ®-WH expansion oveR. we know that the subband coefficierits,[n] can be com-

puted thanks to an analysis filter bank, whereas in this case,
the coefficientg),,[n] can be any real-valued numbers and
we have no guarantee that they can be computed by an anal-
An MDFT subband coder satisfies the PR property when ysis filter bank. Nevertheless, if we make this assumption,
there exists a strictly positive integer paramétgrsuch that  then, in order to get a delayed versipn[n — o] of §,,[n] at

y[k] = z[k — k4] under the assumption thaf, [n] = g, [n], the output of the MDFT analysis filter bank, we have to put
0<m<2M —1andi € {0,1},i.e Zp[n] = gm[n — 1]. xz[k — aM] = y[k + D — aM], y[k] being the signal output
Moreover, we know from [6] that the reconstruction delay of the MDFT synthesis filter bank with input,,[n]. Thus,

is necessarilyey = D + M. Thus, using equations (12) and defininga andg by D = aM — 3,0 < 8 < M — 1, we

4.3. Dual WH frames over R and the PR MDFT sub-
band coder

(14), we find that PR is equivalent to getz[k — aM] = y[k — B]. In other words, when we know
aM—1 +oo thaty,,[n] can be computed thanks to an MDFT analysis
Z Z Gmn [k (15) filter bank, the PR for an MDFT subband coder is equiva-

lent to the PR for the transmultiplexer depicted in figure 9,
with g [n] = <g,(2 K], [k — D])w. (16) ![?;(r)];/vnf:;;:;g\:]e"?é\./e introduced/Aasamples delay along the
which is equivalent to the fact thgﬁ{ n andfe are two We can see from [5] that this transmultiplexer corre-
dual frames. It is worthwhile mentioning that as already sponds to a BFDM/OQAM (or OFDM/OQAM [10]) mo-
written in section 2, this is also equivalent to the fact that dem. Thus, [6] and [5] show that the PR for an MDFT filter
g}?;’n and fﬁjn are two dual frames, provided th@j, ,, — bank is in fact equivalent to the PR for this transmultiplexer,
O = bo (mod 7). Considering the definition ap,, , without any restriction on the real-valued symbgls[n].

in section 4.1, it appears that,, ,, = 7(m +n) (mod 7). Thus, this proves thad-WH dual frames of,(Z) overR
Thus, itis possible to define a generalized MDFT filter bank are also in fact biorthogonal based ofZ) overR.
correspondingte;,, ,, = 3 (m+n)+6y (mod ), satisfy-

ing the same PR conditions as the type | MDFT filter bank.
For instance, it can be shown that the type || MDFT filter
bank presented in [6] is another particular case of this gen-
eralized MDFT filter bank.

Besides, the multiplexing/demultiplexing steps, which
allow us to alternately take the real part and the imaginary
part of z,,[n] during the analysis, also introduce a single
sample delay, since,,[n] = g.,[n—1]. Moreover, equation
(14) shows that this one sample delay passed into the syn-
thesis filter bank causes dd samples delay at the output.
Thatis why itis possible to reduce By samples the overall
reconstruction delay if we directly pgt,[n] at the input of
the synthesis filter bank, insteadif, [#]. Thus, if we avoid
the multiplexing/demultiplexing middle stages, we can get
a generalized MDFT subband coder with reduced delay, a:
depicted in figure 8.

4.4. Biorthogonal WH expansionsover R.and PR MDFT
transmultiplexer

Let us now focus on the dual problem. We want to fihd [1] M. Vetterli, “A theory of multirate filter banks,”|EEE
andg such that Transactions on Acoustics, Speech, and Signal Processing,

vol. ASSP-35, pp. 356-372, Mar. 1987.

m=0 n=—00

5. CONCLUSION

We have derived a new generalized MDFT subband coder
with reduced delay, which is exactly the dual form of the
transmultiplexer given in [5] and corresponds to a BFDM
or OFDM/OQAM modem. We have also proved that PR
for MDFT subband coders is related to a special type of
dual WH frames inl»(Z) overR and that PR for the dual
transmultiplexer is related to a biorthogonality condition for
the same type of WH systems. Finally, using the PR con-
ditions for MDFT subband coders and the BFDM/OQAM
transmultiplexer given in [6] and [5] respectively, we have
proved that, for this particular type of WH systems, the WH
SduaI frames and the WH biorthogonal families are the same,
and that both are pairs of biorthogonal base&,¢%.) over
R.
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Fig. 1. Analysis filter bank (AFB).
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Fig. 2. Synthesis filter bank (SFB).

DMUX

]

R{1 | gi[n]

AFp —DMUX

#?n]

R{-}

91 [n]

DMUX

O—{»0)]

J o
Gans-1[n]

Qng 1[n]

Fig. 4. MDFT analysis filter bank (MDFT-AFB).
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(MUX). Fig. 9. BFDM/OQAM or OFDM/OQAM transmultiplexer.
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