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ABSTRACT

In this work, we derive via refinable super functions charac-
terization of approximation order of multi-scaling functions both
in time and in frequency domains. It is shown that approximation
order is achieved if the linear operator defined as the difference of
the down-sampled convolution matrix and a matrix associated with
the super function used has a zero eigenvalue. The left eigenvec-
tors associated with the zero eigenvalue define the combinations
of scaling functions that produce the desired refinable super func-
tion. In the frequency domain, the approximation order condition
is expressed in terms of the refinement masks of the multi-scaling
functions and the refinable super function. It shown that, implicit
in this new characterization lies some well known results on ap-
proximation order. A matrix equality that equates the frequency
characterization presented in this paper and Strang’s well known
characterization of accuracy is derived. It is shown that approxi-
mation order of multi-scaling functions can always be achieved by
a refinable, compactly supported super function.

1. INTRODUCTION

Approximation order (p) is an important feature of all wavelets.
It implies that polynomials up to degree p − 1 are in the space
spanned by the scaling function(s). In the scalar case, the scalar
sum rules determine the approximation order. Heil, Strang and
Strela [5], Plonka [8] and Jia [6] generalized these sum rules to
multi-scaling functions. The results were expressed in terms of
the existence of p non-zero vectors that satisfie a set of 2p equa-
tions. In [7], [8] and [9], Plonka et. al. studied the approximation
properties of refinable function vectors in detail. It was shown that
the factorization can be made almost identical to the well known
factorization in the scalar case, i.e., the refinement mask can be
factorized as the z-transform of a spline of order p times an arbi-
trary matrix polynomial.

In the seminal work of De Boor, DeVore and Ron [1], [2] [3],
based on the super function theory, it was shown that in L2(R),
the approximation order of a local (compactly supported) finitely
generated shift invariant subspace can always be realized by one
of its principal shift invariant subspaces spanned by a single func-
tion called the super function. In particular, the super function can
always be selected to be compactly supported.

In this work, we characterize the approximation order of multi-
scaling functions via refinable super functions. Specifically, we
derive the necessary and sufficient conditions to characterize ap-
proximation order p both in time and in frequency domains. In the

time domain, the characterization is formulated as an eigenvalue
equation. In the frequency domain, the characterization takes a
simple form which links the multi-scaling functions and the super
function and allows us to establish the equivalence of our approx-
imation order characterization with the well known characteriza-
tion of accuracy [5],[8] and [6]. It is concluded that the approxi-
mation order of multi-scaling functions can always be achieved by
compactly supported refinable super functions.

The rest of the paper is organized as follows. In section 2,
results on approximation order of multi-scaling functions are re-
called. First part of section 3 deals with the time domain char-
acterization of approximation order based on the refinable super
function. In the second part, frequency domain characterization is
presented. In section 4 we establish the equivalence of our char-
acterization and the well known characterization of accuracy.The
conclusions are given in Section 5.

Notations: Z denotes the set of integers, Cr denote the r di-
mensional space of complex numbers, Cr×r denotes the space of
r by r matrices. For X(ω), the Fourier transform of xk, Xj

0 and
Xj

π denote respectively the jth (j ≥ 0) derivative of X(ω) eval-
uated at ω = 0 and ω = π, i.e., X(j)(0) and X(j)(π). In case
j = 0, we simply write X0 and Xπ .

(
j
m

)
is the combination of m

over j. I and I2 are the identity matrices of size r and 2r respec-
tively.

2. PRELIMINARIES

Multi-resolution can be generated not just in the scalar context,
i.e., with one scaling function and one wavelet but in the vector
case with r scaling functions and r wavelets as well. The latter
leads to the notion of multi-wavelets. A multi-scaling function is
defined by the dilation or refinement equation

Φ(t) =
∑
k∈Z

CkΦ(2t − k) (1)

where Ck ∈ Cr×r and Φ(t) = [φ0(t) φ1(t) φ2(t) . . . φr−1(t)]
T .

It is known that Ck’s uniquely define the scaling function Φ(t).
Functions satisfying (1) are called refinable functions. If the sum-
mation is of finite terms, the scaling functions are compactly sup-
ported. If r=1, we have the scalar scaling function. We say that
the multi-scaling function Φ(t) has approximation order p(≥ 1)
if polynomials of order up to p − 1 lie in the linear span of in-
teger translates of this scaling function Φ(t). That is, there exist
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yj
k ∈ Cr (k ∈ Z, k = 0, 1, . . . p − 1) each of length r such that∑

k∈Z

yj
kΦ(t + n) = tj , j = 0, 1, . . . p − 1. (2)

In order to achieve approximation order p in the scalar case it is
necessary and sufficient to satisfy the following equivalent condi-
tions.

sum rules :
∑
k∈Z

(−1)kkjCk = 0, j = 0, 1, . . . , p − 1, (3)

and

zeros at π : M(eiω) =
1

2

∑
k∈Z

Cke−ikω has p zeros at π

(4)
In the case of multi-scaling functions, Heil, Strang and Strela [5],
Plonka [8] and Jia [6] gave the following characterization in terms
of the matrix filter coefficients. Assume Φ(t) is an integrable solu-
tion of the matrix refinement equation such that the integer trans-
lates of φ0, φ1, . . . , φr−1 are independent. Then Φ(t) has accu-
racy p if and only if there are vectors y0, y1, . . . , yp−1 ∈ Cr sat-
isfying the two conditions in (5) and (6) for j = 0, 1, . . . , p − 1:

j∑
m=0

(
j

m

)
2mij−mymM (j−m)(π) = 0 (5)

j∑
m=0

(
j

m

)
2mij−mymM (j−m)(0) = yj . (6)

3. CHARACTERIZATION OF APPROXIMATION ORDER
VIA REFINABLE SUPER FUNCTIONS

Super functions possessing approximation order p can locally pro-
duce polynomials up to degree p − 1. As shown in [1], [2] and
[3], a super function can always be found with the same approxi-
mation order as the multi-scaling function. Thus it is natural to try
to characterize the approximation order of multi-scaling functions
via super functions that has the desired approximation order. In
fact, the approximation order of one of the first multi-scaling func-
tions was established by showing that the Hat function lies in the
linear span of the integer translates of the multi-scaling functions
[12], [4]. Motivated from this observation, we derive in the next
two sub-sections time and frequency domain characterizations of
approximation order via refinable super functions. We assume that
the translates of the scaling functions Φ(t) are linearly indepen-
dent.

3.1. Time domain characterization

It is required that linear combination of multi-scaling functions
produces a given super function f(t) with desired approximation
order, i.e.,

f(t) =
∑
�∈Z

x�Φ(t − �) (7)

where x� = [a0
� a1

� . . . ar−1
� ].

If the super function f(t) is refinable then there exists a se-
quence bk such that

f(t) =
∑
k∈Z

bkf(2t − k) (8)

where bk is the sequence that defines the refinable super function.
Substituting (7) into the refinability requirement (8) gives

∑
�∈Z

x�Φ(t − �) =
∑
k∈Z

bk

(∑
�∈Z

x�Φ(2t − k − �)

)
(9)

Substituting the matrix dilation equation (1) into the left hand side
of (9) yields

x L = x B (10)

or
x (L − B) = 0 (11)

where L is the down-sampled convolution matrix,

L =




. . .
. . . C−1 C0 C1 . . .

C−1 C0 C1 . . .
C−1 C0 . . .

. . .




(12)
B is a matrix defined by the super function

B =




. . .
. . . b−1I b0I b1I . . .

b−1I b0I b1I . . .
b−1I b0I b1I . . .

. . .




(13)
and x = [ . . . x−1 x0 x1 . . . ].

Equation (10) or (11) characterizes approximation order of
multi-scaling functions in the time domain. To summarize, the
multi-scaling functions Φ(t) has approximation order p if and only
if

a) the super function f(t) defined by bk has approximation
order p, and

b) the matrix L − B has a zero eigenvalue.
Condition a) can be satisfied if bk is the regularity sequence

convolved with any nonzero sequence. The regularity sequence
is defined by the coefficients of zk (for k = 0, 1, . . . p) of the
polynomial (z + 1)p. In other words, it is a sequence coming
from Pascal’s triangle which guarantees p zeros at z = -1 in the
z-transform B(z) of bk. It is noted that the coefficients used in
the linear combination to construct the super function f(t) from
the multi-scaling functions constitute the left eigenvector associ-
ated with the zero eigenvalue of L−B. In other words, any vector
in the left null space of L − B will produce the super function
through equation (7). This is similar to the corresponding result in
the scalar wavelets [11] where the left eigenvectors of the infinite
down-sampled convolution matrix L describe the combinations of
scaling functions for which tj (j = 0, 1, . . . p − 1) can be con-
structed.

3.2. Frequency domain characterization

It is an easy matter to verify that (10) is equivalent to the following
matrix equation.

xu Lu = xB (14)
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where Lu is the convolution matrix

Lu =




. . .
. . . C−1 C0 C1 . . .

C−1 C0 C1 . . .
C−1 C0 C1 . . .

. . .



(15)

and xu = [. . . x−1 0 x0 0 x1 . . . ].
Taking the discrete time Fourier Transform of (14), one ob-

tains
X(2ω)M(ω) = X(ω)B(ω) (16)

where
B(ω) = b̂(ω)I, b̂(ω) =

∑
k∈Z

bke−ikω (17)

X(ω) =
∑
k∈Z

xke−ikω (18)

are the discrete time Fourier Transforms of the coefficients bk defin-
ing the super function and the coefficients producing the super
function respectively. The frequency domain characterization of
the approximation order is stated as follows. The multi-scaling
function Φ(t) has approximation order p if and only if

a) b̂(ω) has p zeros at ω = π; and
b) X(2ω)M(ω) − X(ω)B(ω) = 0
Again, condition a) is achieved by the regularity sequence bk.

Condition b) links the super function with the multi-scaling func-
tions in the frequency domain. It is this frequency domain link-
age that guarantees the approximation order of the super function
is passed to the multi-scaling functions. For the case where the
multi-scaling functions are compactly supported, it can be shown
that condition b) can be simplified as some rank conditions. This
will be studied in the next section.

4. EQUIVALENCE OF THE TWO
CHARACTERIZATIONS

First we write equations (5) and (6) in the following equivalent
form

[
ijy0 ij−1y1 . . . i0yj

]



20
(

j
0

)
M j

π

21
(

j
1

)
M j−1

π

...
2j

(
j
j

)
Mπ


 = 0 (19)

and

[
ijy0 ij−1y1 . . . i0yj

]



20
(

j
0

)
M j

0

21
(

j
1

)
M j−1

0

...
2j

(
j
j

)
M0


 = 0 (20)

It follows that the existence of
[
y0 y1 . . . yp−1

]
∈ Cr satisfying

(5) and (6) are equivalent to the following rank conditions

rank
[
M j

S

]
< (j + 1) r j = 0, 1, . . . p − 1 (21)

where

M
j
S

=




Mπ M0−I . . . 20(j
0)M

j
π 20(j

0)M
j
0

0 0 . . . 21(j
1)M

j−1
π 21(j

1)M
j−1
0

0 0 . . . 22(j
2)M

j−2
π 22(j

2)M
j−2
0

...
...

. . .
...

...
0 0 . . . 2j(j

j)Mπ 2j(j
j)M0−I


 (22)

In other words the scaling function Φ(t) has approximation order
p if and only if none of the first (j + 1)r by 2(j + 1)r (j =
0, 1, . . . p − 1) block matrices are of full row rank.

We now consider the frequency domain characterization b).
Evaluating the expression at ω = 0 and ω = π and noting the 2π
periodicity of the discrete time Fourier Transform, one obtains

X0 M0 − X0 B0 = 0 and X0 Mπ − XπBπ = 0 (23)

If the super function has approximation order p then Bπ = B1
π =

. . . = Bp−1
π = 0 and we assume without loss of generality that

B0 = 1. Hence

X0 (M0 − B0) = 0 and X0 Mπ = 0 (24)

The first derivative of the frequency domain expression gives

2X ′(2ω)M(ω) + X(2ω)M ′(ω) = X ′(ω)B(ω) + X(ω)B′(ω)
(25)

when evaluated at ω = 0 and ω = π, we have

X0(M
1
0 − B1

0) + X1
0 (2M0 − B0) = 0 (26)

X0M
1
π + 2 X1

0Mπ = 0 (27)

Proceeding to take the jth (j < p) derivative, we obtain the fol-
lowing matrix equations[

X0 X1
0 . . . Xj

0

]
M j

B = 0, (28)

where M j
B is given by


Mπ M0−I . . . 20(j

0)M
j
π 20(j

0)M
j
0
−(j

0)B
j
0

0 0 . . . 21(j
1)M

j−1
π 21(j

1)M
j−1
0

−(j
1)B

j−1
0

0 0 . . . 22(j
2)M

j−2
π 22(j

2)M
j−2
0

−(j
2)B

j−2
0

...
...

. . .
...

...
0 0 . . . 2p−1(j

j)Mπ 2p−1(j
j)M0−I



(29)

If Φ(t) is a solution of the matrix dilation equation with approx-
imation order p than the matrix M j

B is not of full row rank. The
vectors in the left null space of M j

B give constraints on the behav-
ior of X(ω) at ω = 0. Noting the similarities between the matrices
given in (22) and (29) and the fact that they both are related to the
problem of characterization of approximation order, one wonders
how the two matrices M j

B and M j
B are related. With some matrix

manipulations we establish the following matrix equality.

Λ1 M j
S = M j

BΛ2 (30)

where

Λ1 =




I λ1I λ2I . . .
(

j
0

)
λjI

0 I 2λ1I . . .
(

j
1

)
λjI

0 0 I . . .
(

j
2

)
λjI

...
...

...
. . .

...
0 0 0 0 I


 (31)
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Λ2 =




I2 λ1I2 λ2I2 . . . 2j
(

j
0

)
λjI2

0 I2 2λ1I2 . . . 2j−1
(

j
1

)
λj−1I2

0 0 I2 . . . 2j−2
(

j
2

)
λj−2

...
...

...
. . .

...
0 0 0 0 I2



(32)

with
λ1 = −B1

0 (33)

λ2 = −1

3
B2

0 − 4

3
B1

0λ1 (34)

and in general

λj = −
j−1∑
m=0

2m
(

j
j−m

)
2j − 1

Bj−m
0 λm, j ≤ p (35)

with λ0 = 1.
Since both Λ1 and Λ2 are non-singular matrices, (30) implies

that M j
S and M j

B have the same rank. Consequently the rank con-
ditions (21) for accuracy p is equivalent to the following rank con-
ditions

rank
[
M j

B

]
< (j + 1) r j = 0, 1, . . . p − 1. (36)

This again is equivalent to the existence of non-zero [X0 X1
0 . . . Xj

0 ]
satisfying (28). From the frequency condition b), it is obvious
that the rank conditions (36) are necessary for approximation or-
der p via refinable super functions. If furthermore, X(ω) can be
uniquely determined by [X0 X1

0 . . . Xp−1
0 ] which is possible in

the case when x is of finite length less than p, the rank conditions
are also sufficient. From (1), it follows that X(ω) will be of finite
length if the super function f(t) and multi-scaling function Φ(t)
are compactly supported.

Therefore we can conclude that approximation order p can al-
ways be achieved via compactly supported refinable super func-
tions.

Finally, it is noted that in the context of scalar scaling functions
(r = 1), it can be verified that the rank conditions (36) implies

M0 = 1 and M j
π = 0 , j = 0, 1, . . . , p − 1 (37)

That is the sum rules are included in the rank conditions.
Also it follows from the matrix equality (30) that the vector

coefficients in [5] are related with the Xj
0 ’s by

[y0 y1 . . . yp−1] = [X0 X1
0 . . . Xp−1

0 ] Λp
1 Λ−1

i (38)

where
Λi = diagblock(i−(p−1)I . . . i−1I I) (39)

5. CONCLUSION

Refinable super functions are used to characterize approximation
order of multi-scaling functions both in time and in frequency do-
mains. In the time domain, it is shown that approximation order is
implied by the existence of a zero eigenvalue of a linear operator
defined as the difference of the down-sampled convolution ma-
trix and a matrix associated with the super function selected. The

left eigenvectors associated with the zero eigenvalue determine the
vector coefficient in the linear combination of scaling functions
that produce the desired refinable super function. In the frequency
domain, the approximation order condition is expressed in terms
of the refinement masks of the multi-scaling functions and the re-
finable super function. A matrix equality that relates the frequency
characterization presented in this paper and the well known char-
acterization of accuracy is derived. Based on this equality, it is
shown that approximation order of multi-scaling functions can al-
ways be achieved by a refinable, compactly supported super func-
tion.
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