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ABSTRACT

Conventional implementation of multi-dimensional wavelet
transform (e.g. 3-D wavelet) requires whether a high amount of
"in access' memory or a continual access to slow memory of a
processor which makes it infeasible for most applications. In this
paper, we proposed a novel algorithm for computation of an n-D
discrete wavelet transform (DWT) based on lifting scheme. In
addition to benefits of lifting scheme (which causes a major
reduction in computational complexity and performs the total
computations in time domain), our real-time approach computes
the coefficients for all kinds of 1% and 2" generation wavelets
with short delay and optimized utilization of the slow and fast
memories of a processor.

1. INTRODUCTION

Multi-dimensional  discrete wavelet transform has been
considered to be used in many fields such as image and video
processing applications. In these applications one needs a fast
and memory efficient algorithm to compute the transform. In
traditional n-D DWT algorithms, the signal is first loaded on the
memory and then transform coefficients are computed. This
method is simple, but its main drawback is that the processor
should have access to the whole signal simultaneously, and
further none of the coefficients are ready before the end of the
whole process.

When implementing, one should consider the process time
in addition to necessary memory size. The number of "reads
from" and "writes on" the ow memory of a processor is one of
the main parameters that affects the process time. If an algorithm
is designed in such a way that while using a reasonable amount
of the fast memory of a processor is able to have at most one
read and write for each sample of the signal, the process speed
will increase considerably.

One of the schemes used to compute DWT is the lifting
scheme. Suppose that P(2) is the polyphase matrix of analysis
quadrature mirror filters (QMF) of a wavelet, which can be of
any type; minimum phase (orthonorma) or linear phase
(biorthogonal). The lifting scheme expresses that P(2) can be
decomposed into elementary matrices as:
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where 5(2) and t, (z) for 1<i < m areLaurent polynomials
and K is a nonzero constant [1]. This method is FFT free and in
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[6] has been shown that it reduces the computational complexity
to nearly 1/2 and for long filters even to 1/4, relative to the
standard algorithm.
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Figure 1. An example of lifting network for alifting polyphase
matrix decomposition.

Figure 1 illustrates an example of a lifting network for a
genera parametric lifting polyphase matrix decomposition, as:
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Note that based on lifting theory the decomposition structure can
be symetric/asymetric for both orthonorma and biorthogonal
filters. In this figure each edge between two nodes (at two
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consequent steps) and the corresponding weights indicates that
the node in the lower step should be multiplied to the weight and
be added to the amount of the node in the higher step. It is worth
noting that every paralel edge between two specific steps has
the same weight. Also, all horizontal edges have the weight of
one except for those that are ended to wavelet coefficients. In
this figure I;s and h;s indicate the low frequency and high
frequency wavelet coefficients, respectively.

A method for implementing lifting scheme is to compute
each step thoroughly for every sample and then move to the next
step [7]. This method has two main drawbacks:

1) either all of the signa should be available in a fast
memory or each sample of signal should be read from and
written on a slow memory at least as many times as the
number of stepsin lifting, and

I1) the procedure even takes the first transformation
coefficient only when it has the whole signal data, and
therefore this implementation can not be used in real-
time.

In this paper we suggest an implementation agorithm of lifting
scheme that overcomes these drawbacks.

2. THE PROPOSED ALGORITHM

It is more proper to first analyze the algorithm for one level of 1-
D DWT, and then generdize it to a multilevel and muilti-
dimensional case.

To overcome the drawbacks explained in the previous
section, here we propose an algorithm such that as each sample
enters the fast memory (a constant length buffer), al possible
computations on samples in buffer (in different steps) will be
performed, through which a wavelet coefficient is computed.
Then the procedure outputs the prepared coefficient and inputs
the next sample to the buffer. It is worth mentioning that the
length of the used buffer is in the order of the wavelet QMFs
half-length.

As can be seen in figure 1, al nodes in the i row are
intermediate values of a unique variable i. We say a node n(s;i)
is active, if the computation of the variable i is in step s
therefore it should be in the buffer in fast memory of processor.
By inspection, one can find that the nodes in step s+ 1 which are
connected to node n(s,i), can be updated from it only when the
computation of n(s,i) has been finalized (i.e., n(s,i) is complete).
When these nodes have received all of the information from
n(si) (i.e, n(si) is free), computation of variable i can be
transferred to node n(s+2,i) (i.e., n(s+2,i) is activated instead of
n(s,i)). These principles can be realized by two sub-procedures:

I. If node n(s,i) is complete, active nodes connected to it

in step s+1 can update their values from n(s,i).

I1. If n(s,i) is free, activate n(s+2,i). So it can update itself
from complete nodes of step s+1, which are connected to
it.

Regarding the method of polyphase matrix decomposition,
in lifting network (as can be seen in figure 1) in step 1 even
numbered nodes can aways be updated from odd numbered
nodes. As a result, we can execute the first sub-procedure if an
odd sample enters, and the second sub-procedure if an even
sample inputs. Besides, when entering a new sample, each step
of the lifting network needs to call a most one of these sub-
procedures for nodes available in the buffer. So the order of
calling these sub-procedures could be such that:

- by entering an odd sample, the sub-procedure | will be
executed at most once for each step on active nodes (the
oddupdate procedure), and

- by entering an even sample the sub-procedure Il will be
run for each step, if necessary (the evenupdate procedure).

Figures 2-a and 2-b illustrate the progress of the
computation in lifting network of figure 1 after the execution of
evenupdate and oddupdate procedures, respectively. The bolded
edges in each figure are computed during the last procedure
execution. In these figures B;s are the elements of the 8-length
buffer so the corresponding nodes are active nodes in buffer, and
the omitted edges have not been computed yet. In these
procedures, first one sample of signal is entered and then after
the completion of the procedure, one wavelet coefficient is
computed.
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Figure 2. Figures a and b show the progress of computation in
lifting network of figure 1, after the execution of evenupdate and
oddupdate procedures,respectively.

VI - 402




As stated above, this algorithm needs a buffer with alength
of Ng, that is nearly as long as the haf-length of QMFs. To
extend the algorithm to multi-levels, when a low frequency
coefficient of one level isready (one l;), it immediately enters to
the next level as a new sample. Figure 3 shows the 2-level
wavelet computation of figure 1. Thus for the J-level case, the
size needed for fast memory will be just NgJ.

In order to employ the advantages of our algorithm for
multi-dimensional signals such as video, it is proper to use its
structure only for the longest dimension (e.g., the time
dimension for video) and use the conventional implementation
of lifting for other dimensions. In this case, we need a memory
of size INgN, where N, is the amount of memory needed for one
sample of the signal in the mentioned dimension (e.g., an image
for video). It is obvious that using this amount of memory is
completely feasible for video signals with normal resolutions.

3. PERFORMANCE COMPARISON

There are only few researches done on n-D wavelets with
memory restriction considerations. Some of them have not
considered a true n-D wavelet transform. For instance they study
it on signals decomposed to groups of pictures (GOP), groups of
frames (GOF), or even perform independent transforms on
different dimensions (e.g., they implement a 3-D wavelet
transform by performing a 2-D wavelet on each frame and an
unrelated shorter 1-D wavelet on the tempord direction) [2, 4].
Another class like [3] makes use of parallel implementations on
parallel processors to speed up the process.

Reichd in [6] suggested a method of 2-D wavelet to reduce
memory requirements. In his work he needs a 40-length buffer
for the 9-7 Daubechies wavelet (the only example stated in his
algorithm). It is worth mentioning that with the same filter our
algorithm requires only a 5-length buffer. Also, his algorithm
needs multi reads and writes per pixel while ours needs only one.

In [5] a memory-constrained routine for just the 3-D 9-7
Daubechies wavelet transform is introduced. In fact this routine
can be viewed as a special case of our method while our
algorithm is also capable of dealing with al kinds of mother
wavelets.

Also in [8] Jiang and Ortega proposed a line-based system
in which they use GOP scheme (as appose to our algorithm)
followed by a boundary postprocessing approach. In addition,
compared to our algorithm, they need more tota memory
requirements in computational process, for both parallel and
sequential schemes. Therefore to the best knowledge of the
authors, the novelty of the proposed agorithm is that it
simultaneously satisfies the following interesting properties:

1. Isbased on lifting scheme, and therefore:

a is approximately 2 to 4 times faster than standard
DWT dgorithm for sufficient long filters (as can be
seenintable 1),

b. isan FFT free scheme and performs in time domain,

c. can be used for al types of wavelet filters, containing
1% and 2" generations,

d. computes wavelet coefficients in-place, and

e. has capability of implementing in parallel.

2. Requires few fast memories independent from signa
length. It needs only JNgN, byte of fast memory for a J-
level wavelet transform, where N is the buffer length and
N is the memory requirement for each frame of the signal.

Table 1 shows the Ng for some wavelet filters. It can be
seen that N is approximately as long as half-length of the
filter.

3. Needs only one read and write per each sample of a signal
from the slow memory of processor.

4. Uses the locadlity property of wavelet, therefore for
computing a wavelet coefficient it needs only necessary
samples of signal, and thus can be implemented in rea-
time.

Table 1 shows the performance of the proposed algorithm
for a number of orthonormal and biorthogonal wavelets.
Columns of this table show the wavelet type, the wavelet name,
length of the QMFs, length of the buffer required in the fast
memory (Ng), and the computational complexity rate relative to
the standard algorithm (R), respectively. As can be seen in this
table, the computational complexity of the proposed agorithm
for sufficiently long filters is about 1/2 and even in some cases
near 1/4 of the standard agorithm. We have also proposed a
wavelet that offers R of 0.292 (longer filter can be designed to
offer R of less than this amount up to 0.25). Also, as shown in
this table, Ng is approximately as long as half-length of the
QMFs (for sufficiently long filters).

Table 1. Performance of the proposed algorithm for a number of
orthonormal and biorthogonal wavelets. [Ng: length of buffer
required in fast memory, R: rate of computational complexity
relative to the standard a gorithm].

Wavelet Type | Wavelet Name | FiltersLength | Np R
Daubechies 7-9 5 0.6
Biortogonal CDF(2, 8) 3-17 9 | 0579
Proposed 75-75 38 | 0.292
Coiflet (1) 6 5 | 0.636
Orthonormal Daubechies 20 11 | 0.447
Vaidyanathan 24 13 | 0.53

4. CONCLUSION

In this paper we have explained a novel real-time algorithm for
implementing n-D wavelet transform. The agorithm is based on
lifting scheme and therefore is faster than standard algorithm. It
uses the fast and slow memory of a processor efficiently, which
makes it memory efficient and fast. We have also given a
performance comparison among other available agorithms and
have shown that the proposed algorithm is the only feasible and
general algorithm capable of implementing al types of n-D
wavelets (especidly in 3-D).
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Figure 3. 2-level wavelet computation of figure 1 (in this example the size needed for fast memory is only 2*8=16 unit).
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