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ABSTRACT

A method for constructing spread spectrum sequences is presented.
The method is based on a linear, orthogonal, symmetric transform,
the Rudin-Shapiro transform (RST), which is in many respects
quite similar to the Haar wavelet packet transform. The RST pro-
vides the means for generating large sets of spread spectrum sig-
nals. This presentation provides a simple definition of the sym-
metric RST that leads to a fastN log(N) and numerically stable
implementation of the transform.

1. INTRODUCTION

The need for spread spectrum signals in various forms of digital
communication has increased significantly during the past years.
The purposes of spreading the spectrum are several. In some cases
the purpose is to provide multiple channels in some particular do-
main. This is the case for CDMA, see for instance Viterbi [1], and
OFDM. In other cases the purpose is encryption or disguising of
signals, anti-jamming, and multi-path systems. There exists a vast
amount of literature on spread spectrum methods. A good place to
start is the nice tutorial by Viterbi [2], and the more comprehensive
book by Dixon [3].

The presentation in this paper focuses on the mathematical as-
pects of a method, given as a linear transform, for generating (and
post-processing) spread spectrum signals. It is based on a discov-
ery by Shapiro in 1951 [4] and Rudin in 1959 [5] called the Rudin-
Shapiro polynomials.

1.1. Rudin-Shapiro Polynomials

The Rudin-Shapiro polynomials are defined recursively as

Pn+1(ξ) = Pn(ξ) + ei2π2nξ Qn(ξ), P0 = 1, (1)

Qn+1(ξ) = Pn(ξ) − ei2π2nξ Qn(ξ), Q0 = 1, (2)

for ξ ∈ [0; 1). It follows that eachPn+1 has twice as many terms
asPn, and therefore that the polynomials are generated by a simple
‘append’ rule. We will refer to the coefficients of the RS polyno-
mial as RS sequences. The ingenuity of these polynomials is the
combination of fixed sized coefficients and the alternating signs
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in the recursive construction ofP and Q. According to Parse-
val’s theorem the former property gives‖Pn‖2

2 = 2n (as eachP is
the Fourier transform of a±1 sequence), while the latter property
gives

|Pn+1(ξ)|2+|Qn+1(ξ)|2 = 2|Pn(ξ)|2+2|Qn(ξ)|2 = 2n+2, (3)

since|ei2π2nξ | = 1. This leads to

|Pn(ξ)| ≤ √
2 · 2n/2, ∀ξ ∈ [0; 1) ,

a uniform upper bound forPn. Now, combining the two properties
yields the squared crest factor

‖Pn‖2∞
‖Pn‖2

2

≤ 2 . (4)

This means that max|Pn(ξ)|2 is equal to or less than two times the
energy ofP. This guarantees the polynomial to be somewhat flat.
Two examples of|Pn|2 are shown in Fig. 1.

It is important to realize that the term ‘flat’ should be under-
stood as ‘not excessively far from a constant function’, but not
necessarily ‘close to a constant function’. Usually the term flat
refers to a uniform upper bound for the peak-to-power ratio, that
is, the bound is independent of the length of the sequence. This
upper bound is thus 2 for the Rudin-Shapiro polynomials. In most
literature the coefficient sequence of a flat polynomial is called a
spread spectrum sequence. To demonstrate this concept the two
lower most graphs in Fig. 1 show that neither the well-known (an
often used in applications) square wave nor a random±1 sequence
can be considered flat.

1.2. The Rudin-Shapiro Transform

An interesting property of the RS sequences generated according
to (1) and (2) is that theP and Q coefficient sequences are or-
thogonal. This is immediately evident from the append rule which
governs the construction of the polynomials. It is also worth noting
that interchanging the+ and− in (1) and (2) would still produce
sequences with the previously presented properties. In fact, ar-
bitrarily interchanges of the signs in each recursive step does not
affect the properties of the constructed sequences.
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Fig. 1. The coefficients (left) and modulo squared (right) of
the Rudin-Shapiro polynomialsP4 (first graph) andP5 (second
graph). Below the coefficients and modulo of the Fourier trans-
form of a square wave (third graph) and a random sequence (fourth
graph). The horizontal dashed line is the energy of the signal.

An elegant construction achieving all combinations of sign
changes is found in Benke [6] (Byrnes [7, 8] gives a similar con-
struction). In short,

[
Pn+1,ε (ξ)

Qn+1,ε (ξ)

]
=

[
0 1
1 0

]εn
[
1 1
1 −1

] [
1 0
0 ei2π2nξ

] [
Pn,ε (ξ)

Qn,ε (ξ)

]
,

(5)
whereεn ∈ {0, 1} is chosen in each step. A total of 2n different P
polynomials are possible aftern steps. Thus, twoP polynomials
with two coefficients each are obtained after one step, fourP poly-
nomials with four coefficients each are obtained after two steps,
and so on. The RST is then simply defined (up to normalization)
as the matrix where the rows are the polynomial coefficients. This
immediately gives a linear, square, orthogonal, Hadamard trans-
form where the corresponding basis consists of spread spectrum
sequences. Thus, applying the RST decomposes a signal into a
basis of elements with a spread spectrum property. This is in some
sense the opposite of a Fourier transform, which is a decomposi-
tion into a narrow spectrum basis. The RST is orthogonal and thus
energy preserving, and the Hadamard property (equal amplitude of
all the entries in the transform) makes the transform numerical sta-
ble. In general, it is an appealing transform for design and analysis
of spread spectrum signals. However, in matrix form the transform
is anO(N2) operation, and it is often preferable, if not crucial, to
have anO(N log N) implementation, especially for real time ap-
plications. Such an implementation is demonstrated in Section 3.

While the rows of the presented matrices do have a low crest
factor, this is not the case for the columns, which exhibits a Walsh-
like structure rather than spread spectrum structure. Although this
does not present a problem in most applications, it is indeed pos-
sible to obtain a spread spectrum property in the columns as well.
In fact, it is possible with a slight alteration of the definition of the
RS polynomials to obtain a symmetric transform.

2. SYMMETRIC RUDIN-SHAPIRO TRANSFORM

The idea for making the RST symmetric is communicated in Byrnes
et al. [8]. There the polynomials are defined by a modification of
the previously presented definition in (1) and (2). The following
equations have been rewritten compared to [8], to suit the con-
struction of a transform (most significantly, Byrnes have discarded
the Q polynomials in favor of a more advanced indexing of theP
polynomials). The symmetric RST is derived from the following
equations.

Pj +1,4m(ξ) = Pj ,2m(ξ) + ei2π2 j ξ Q j ,2m+1(ξ),

Pj +1,4m+1(ξ) = Pj ,2m(ξ) − ei2π2 j ξ Q j ,2m(ξ),

Pj +1,4m+2(ξ) = Pj ,2m+1(ξ) + ei2π2 j ξ Q j ,2m+1(ξ),

Pj +1,4m+3(ξ) = −Pj ,2m+1(ξ) + ei2π2 j ξ Q j ,2m+1(ξ),

Q j +1,4m(ξ) = Pj ,2m(ξ) − ei2π2 j ξ Q j ,2m(ξ),

Q j +1,4m+1(ξ) = Pj ,2m(ξ) + ei2π2 j ξ Q j ,2m(ξ),

Q j +1,4m+2(ξ) = −Pj ,2m+1(ξ) + ei2π2 j ξ Q j ,2m+1(ξ),

Q j +1,4m+3(ξ) = Pj ,2m+1(ξ) + ei2π2 j ξ Q j ,2m+1(ξ),

(6)

with

P1,0 = Q1,1 = 1 + ei2πξ and P1,1 = Q1,0 = 1 − ei2πξ ,

and for j ≥ 1 andm = 0, . . . , 2 j −1 − 1. Note thatP and Q
in (6) are equal to the previous definition in (1) and (2) except
for some changes of signs. The properties derived in the previous
sections therefore still apply. As before it is possible to obtain two
P polynomials with two terms, four with four terms, and so on.
Listing the coefficient sequences in a matrix in their natural order
yields the following for j = 1, 2, 3.

[
1 1
1 −1

]
,




1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1


 ,




1 1 1 −1 1 1 −1 1
1 1 1 −1 −1 −1 1 −1
1 1 −1 1 1 1 1 −1

−1 −1 1 −1 1 1 1 −1
1 −1 1 1 −1 1 1 1
1 −1 1 1 1 −1 −1 −1

−1 1 1 1 1 −1 1 1
1 −1 −1 −1 1 −1 1 1




.

These resulting transforms can all be obtained from the non-sym-
metric RST of the same size simply by appropriate row permuta-
tion and change of row signs. Thus, all rows (and columns) in the
symmetric matrices are mutually orthogonal, and the ‘symmetric’
RS sequences of length 2J therefore also constitute an orthogo-

nal basis ofR2J
while preserving the spread spectrum property

demonstrated in the previous section.

2.1. Deriving the Symmetric Transform

Although it is possible to permute the non-symmetric RST to ob-
tain the symmetric RST it is advantageous to construct the sym-
metric RST from the equations (6) since this provides the building
blocks for a fast implementation.
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The equations (6) can be written more compactly as

Pj +1,m(ξ) = (−1)m1m2 Pj ,bm/2c(ξ)

+ (−1)m1(m2+1)ei2π2 j ξ Q j ,bm/2c(ξ), (7)

Q j +1,m(ξ) = (−1)(m1+1)m2 Pj ,bm/2c(ξ)

+ (−1)(m1+1)(m2+1)ei2π2 j ξ Q j ,bm/2c(ξ), (8)

wherem1 andm2 are the two least significant digits of the binary
representation ofm, andbm/2c means the biggest integer less than
or equal tom/2. Rewriting to the obvious matrix form yields

[
Pj +1,m(ξ)

Q j +1,m(ξ)

]
=

[
(−1)m1m2 (−1)m1(m2+1)

(−1)(m1+1)m2 (−1)(m1+1)(m2+1)

]

×
[

Pj ,bm/2c(ξ)

ei2π2 j ξ Q j ,bm/2c(ξ)

]
. (9)

This latter form of the RS equations shows the core of the trans-
form; the 2× 2 matrix. This turns out to be the ‘secret’ of the fast
implementation.

The following definition of the symmetric RST exploits the
existence of the 2×2 matrix to construct the RST as a factorization
of the symmetric 2J ×2J RST matrix. Each of theJ matrix factors
can then easily be applied with linear complexity.

Definition 1 Define the mappingP j ,m : R2 j 7→ R
2 j

, j ≥ 1, as

[
yk

yk+2 j −1

]
= (−1)mk

√
2

[
1 (−1)k

(−1)m −(−1)k+m

] [
x2k

x2k+1

]
(10)

for k = 0, . . . , 2 j −1−1 when mappingx to y. Define the J matrix
factors

P(J)
j ≡




P j ,0 0
. . .

0 P j ,2J− j −1


 , (11)

and finally defined the RSTP(J) as

P(J) ≡
J∏

j =1

P(J)
j . (12)

Note that (10) is the inverse of the transform proposed in (9). The
2 × 2 matrix in (10) aside, it is not immediately obvious neither
how this definition is linked to (6), nor that it defines a symmetric
transform. However, a fairly straightforward proof shows that the
rows ofP(J) are the coefficients of the polynomials defined in (6),
see la Cour-Harbo [9], and thus that the defined transform does
indeed possess the properties derived above for the Rudin-Shapiro
transform.

3. FAST IMPLEMENTATION

3.1. Factorization into Linear Steps

The definition of the RST given in Definition 1 is based on the re-
cursive construction process of RS polynomials. When writing this
process in matrix form the 2×2 matrix in (10) emerges along with
the 2J ×2J matrix in (11). The combination of these two matrices

is the key to a fast implementation. The large matrix factors pro-
vides a factorization of the RST matrix, and the small matrix gives
a simple and easyO(N) implementation of these matrix factors.
The principle is here demonstrated with a size 8×8 transform, but
easily applies to all size 2J RSTs.

The first factor to be applied in the 8× 8 case isP(3)
3 = P3,0. That

is,

P(3)
3 =




1 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 −1
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1




.

This is equivalent to a Haar wavelet transform except that the filter
taps are changing during filtering. The result is two parts of length
4. In the Haar case the two parts can be identified as a low and high
pass part, respectively, while in the RST case the constant change
of filter taps results in two parts containing a mix of frequencies.
The splitting into two signal parts is also illustrated in Fig. 2 by the
first (top) set of arrows. The next step in the transform is

P(3)
2 =

[
P2,0

P2,1

]

=




1 1 0 0
0 0 1 −1
1 −1 0 0
0 0 1 1

1 1 0 0
0 0 −1 1

−1 1 0 0
0 0 1 1




,

i.e. the exact same procedure is repeat (independently) on each of
the two signal parts. Notice thatm = 0 when transforming the
left part andm = 1 when transforming the right part of the signal.
The m makes the transform symmetric in the sense thatm = 0
throughout the transform steps would produce the non-symmetric
RST. This second step is shown as the second set of eight arrows
(from the top) in Fig. 2. The final step is

P(3)
1 =




P1,0
P1,1

P1,2
P1,3




=




1 1
1 −1

1 1
−1 1

1 1
1 −1

1 1
−1 1




.

The factorization means that the RST can be applied inJ steps

by multiplying a signal with all of theP(J)
j matrices (in the right

order). The mapping given in (10) shows how to reduce each mul-
tiplication to anO(N) filtering process. For any choice ofm and
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[
1 −1
1 1

][
1 1
1 −1

][
1 −1
1 1

][
1 1
1 −1

]
k = 0 k = 1 k = 2 k = 3

m = 0

[
1 −1
1 1

][
1 1
1 −1

] [−1 1
1 1

]

[
1 1

−1 1

][
1 1

−1 1

] [
1 1
1 −1

][
1 1
1 −1

]

k = 0 k = 1 k = 1k = 0

[
1 1

−1 1

]

k = 0 k = 0 k = 0k = 0

m
=

0

m
=

1

m
=

2

m
=

3
m = 0 m = 1

Fig. 2. This figure shows how the value of the variables change
in the fast implementation of a symmetric RST. Here applied to a
vector inR8.

k the 2× 2 matrix contains 3 times+1 and one−1. Consequently,
the output of the mapping is merely a series of sums and differ-
ences of sample pairs. A division by

√
2 should be applied to ev-

ery sum/difference, but since the mapping is linear this scaling can
be applied as division by 2 for every other step in the transform.

It is not apparent from this visualization of the fast implemen-
tation that it is its own inverse, i.e. if the resulting signal at the
bottom is placed at the top, the new output is actually the original
signal. But this is indeed the case since the transform is symmetric.

3.2. Stability and implementability

Applying a linear transform to a signal is basically a set of in-
ner products with the row vectors of the transform matrix. In the
case of the RST these vectors are±1’s only, and consequently the
RST is numerically very stable as all signal samples are weighted
equally. This property is preserved in the fast implementation
where each transform step also consists of±1’s only. The fact
that each intermediate sample depends on only two other samples
makes the fast implementation even more stable than the matrix
multiplication implementation. The normalization by 2 in every
other transform step possess only negligible problems in the vast
majority of applications.

The actual implementation of the RST can be accomplished by
a regular filtering process divided into steps for even and oddk and
m. In this way it is possible to avoid the computational demanding
powers of(−1) in (10). Pseudo code for doing this is shown in
Fig. 3. Note that the normalization is not included in this code.

The close relation to the Haar wavelet packet transform (ac-
tually, choosingk = 0 andm = 0 throughout the transform step
yields exactly the full-scale Haar wavelet packet transform) pro-
vides another interesting property; instead of doing all the steps
in the RST one can choose do only some of the steps and thereby

for j = 0 to log2(N)-1
T = N/2ˆ(j+1)
for m = 0 to 2ˆj-1 step 2

for k = m ·T to (m+1) ·T-1 step 2
y[k] = x[2k] + x[2k+1]
y[k+T] = x[2k] - x[2k+1]

}
k even

y[k+1] = x[2k+2] - x[2k+3]
y[k+1+T] = x[2k+2] + x[2k+3]

}
k odd


 m even

end for

for k = (m+1) ·T to (m+2) ·T-1 step 2
y[k] = x[2k+1] + x[2k]
y[k+T] = x[2k+1] - x[2k]

}
k even

y[k+1] = x[2k+3] - x[2k+2]
y[k+1+T] = x[2k+3] + x[2k+2]

}
k odd


 m odd

end for
end for
x = y

end for

Fig. 3. Pseudo code for the RST. Note that to perform the first step
( j = 0) in the transform only the ‘m even’ part should be used,
and for the last step only ‘k even’ should be used.

obtain a different decomposition of the transformed signal. This is
equivalent to selecting a particular basis in the Haar wavelet packet
decomposition for representing the signal. Consequently, much of
the theory regarding wavelet bases forR

N applies, and it becomes
easy to construct and handle huge sets of spread spectrum signals,
since it can be done within the framework of wavelet bases.
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