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ABSTRACT in the recursive construction @ and Q. According to Parse-
val's theorem the former property givé&n H% = 2" (as eaclP is
Ghe Fourier transform of &1 sequence), while the latter property
'gives

A method for constructing spread spectrum sequences is presente
The method is based on a linear, orthogonal, symmetric transform
the Rudin-Shapiro transform (RST), which is in many respects
quite similar to the Haar wavelet packet transform. The RST pro-
vides the means for generating large sets of spread spectrum sig- | P“+1(E)|2+|Q”+1(§)|2 =2| P”(€)|2+2|Q”(€)|2 =2M2, ®)
nals. This presentation provides a simple definition of the sym- o on

metric RST that leads to a fadtlog(N) and numerically stable  since|€ 272'é| = 1. This leads to

implementation of the transform.

IPa(&) <v/2.2V2 veel0 1),

1. INTRODUCTION _ N _
a uniform upper bound foP,. Now, combining the two properties

The need for spread spectrum signals in various forms of digital Yields the squared crest factor
communication has increased significantly during the past years.
The purposes of spreading the spectrum are several. In some cases | Pn Hgo
the purpose is to provide multiple channels in some particular do- 1Pnli2 = )
main. This is the case for CDMA, see for instance Viterbi [1], and 2
OFDM. In other cases the purpose is encryption or disguising of __ . 5. .
signals, anti-amming, and multi-path systems. There exists a vast! NiS means that ma#n (£)|< is equal to or less than two times the
amount of literature on spread spectrum methods. A good place tonergy ofP. This gugrantees the polynomial to be somewhat flat.
start s the nice tutorial by Viterbi [2], and the more comprehensive TWO €xamples ofP, |~ are shown in Fig. 1.
book by Dixon [3]. It is important to r_ealize that the term ‘flat’ shoulq be under-

The presentation in this paper focuses on the mathematical asStood as ‘not excessively far from a constant function’, but not
pects of a method, given as a linear transform, for generating (andnecessarily ‘close to a constant function’. Usually the term flat
post-processing) spread spectrum signals. It is based on a discovtefers to a uniform upper bound for the peak-to-power ratio, that

ery by Shapiro in 1951 [4] and Rudin in 1959 [5] called the Rudin- IS, the bound is independent of the length of the sequence. This
Shapiro polynomials. upper bound is thus 2 for the Rudin-Shapiro polynomials. In most

literature the coefficient sequence of a flat polynomial is called a
spread spectrum sequence. To demonstrate this concept the two
lower most graphs in Fig. 1 show that neither the well-known (an

The Rudin-Shapiro polynomials are defined recursively as often used in applications) square wave nor a randdnsequence
can be considered flat.

1.1. Rudin-Shapiro Polynomials

Pre1®) = Pa®) + €775 Qn@). Ro=1 ()
Qny1(E) = Pn(§) — d272%QnE), Qo=1, 2) 1.2. The Rudin-Shapiro Transform

for & e [0; 1). It follows that eachP,. 1 has twice as many terms An interesting property of the RS sequences generated according
asPn, and therefore that the polynomials are generated by a simplel© (1) and (2) is that thé> and Q coefficient sequences are or-
‘append’ rule. We will refer to the coefficients of the RS polyno- thogonal. This is |mm_ed|ately evident fr(_)m the_append rule wh_|ch
mial as RS sequences. The ingenuity of these polynomials is thedoVerns the construction of the polynomials. Itis also worth noting

combination of fixed sized coefficients and the alternating signs that interchanging the- and — in (1) and (2) would still produce
sequences with the previously presented properties. In fact, ar-

This work is in part supported by the Danish Technical Science Foun- bitrarily interchanges of the signs in each recursive step does not
dation (STVF) Grant no. 9701481. affect the properties of the constructed sequences.
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1 2. SYMMETRIC RUDIN-SHAPIRO TRANSFORM
° The idea for making the RST symmetric is communicated in Byrnes
1 . et al. [8]. There the polynomials are defined by a modification of
° ¢ 8o the previously presented definition in (1) and (2). The following
Emin M 48 equations have been rewritten compared to [8], to suit the con-
01 1—{ J J s2f - f -4+ - - struction of a transform (most significantly, Byrnes have discarded
o 16 3 the Q polynomials in favor of a more advanced indexing of the
0 8 16 24 32 % 025 05 075 1 polynomials). The symmetric RST is derived from the following
Py — - 600 equations.
o 221
° Pii1am® = Pjam® +€775Q) am1(®),
L Uy L L I ] o
0 8 16 24 32 % 0.25 0.5 0.75 1 Pj+1,4m+1($) = Pj,Zm(S) - eIZHZIé’:Qj,Zm(‘i:)s
150 .
— - o o
1 y TJ Pi1ami2®) =  Pjoami1() + €276 Q) omya (®),
0 .
i 272
. i PHA A AL EA Pit1amt3(®) = =P ama(® +@¥29Q) omia @),
0 8 16 24 32 D0 0.25 0.5 0.75 1 ( )

Qjiram® = Pjom® —&Z?EQ; om(@),

Qji1ami1®) = Pjom® +eZ2EQ) om(®),
Fig. 1. The coefficients (left) and modulo squared (right) of : _ . 272 ~.
th(ge Rudin-Shapiro polynor(nial)§’4 (first graph) gndP5 (sfecgom)j Qj+1am+2(6) = =Pj.am2(6) + e' _EQJ’ZmH(g)’
graph). Below the coefficients and modulo of the Fourier trans-  Qjy1.4m+3(§) = Pj omy1(€) + e'hz]fQj,ZmH(é),
form of a square wave (third graph) gnd arandom sequence (fourthWi th
graph). The horizontal dashed line is the energy of the signal. ) )
PLo=Qu1=1+€%* and P 3=Qio=1-¢%",

) o o ~ andforj > 1andm = 0,...,21=1 — 1. Note thatP and Q
An eI_egant cqnstructlon achieving all con_1b|nat|o_ns_of SigN in (6) are equal to the previous definition in (1) and (2) except
changes is found in Benke [6] (Byrnes [7, 8] gives a similar con- for some changes of signs. The properties derived in the previous
struction). In short, sections therefore still apply. As before it is possible to obtain two
P polynomials with two terms, four with four terms, and so on.
[Pn+1,e(€)] _ [0 1]6” [1 1] [1 0 ] [F’n,e(é)] Listing the coefficient sequences in a matrix in their natural order

Coefficients Normalized frequency

Qni1.e®) 1 0| |1 —1||0 €272% || Qne(®) yields the following forj = 1, 2, 3.
whereen € {0, 1} is chosen in each step. A total dt Bifferent P 1 1 1 i _11 i
polynomials are possible aftarsteps. Thus, twd® polynomials [1 _1} , 1 -1 1 1]
with two coefficients each are obtained after one step, fopoly- -1 1 1 1
nomials with four coefficients each are obtained after two steps,
and so on. The RST is then simply defined (up to normalization) r 1 1 1 -1 1 1 -1 17
as the matrix where the rows are the polynomial coefficients. This 1 1 1 -1 -1 -1 1 -1
immediately gives a linear, square, orthogonal, Hadamard trans- 1 1 -1 1 1 1 1 -1
form where the corresponding basis consists of spread spectrum -1 -1 1 -1 1 1 1 -1
sequences. Thus, applying the RST decomposes a signal into a 1 -1 1 1 -1 1 1 1
basis of elements with a spread spectrum property. This is in some 1 -1 1 1 1 -1 -1 -1
sense the opposite of a Fourier transform, which is a decomposi- -1 1 1 1 1 -1 1 1
tion into a narrow spectrum basis. The RST is orthogonal and thus L 1 -1 -1 -1 1 -1 1 1 |

energy preserving, and the Hadamard property (equal amplitude ofThese resulting transforms can all be obtained from the non-sym-
all the entries in the transform) makes the transform numerical sta-metric RST of the same size simply by appropriate row permuta-
ble. In general, itis an appealing transform for design and analysistion and change of row signs. Thus, all rows (and columns) in the
of spread spectrum signals. However, in matrix form the transform symmetric matrices are mutually orthogonal, and the ‘symmetric’
is anO(N?) operation, and it is often preferable, if not crucial, to RS sequences of length’ Zherefore also constitute an orthogo-
ha_lve _anO(N logN) !mplementati_on,_especially for re_al time_ap- nal basis 01‘R2J while preserving the spread spectrum property
plications. Such an implementation is demonstrated in Section 3. demonstrated in the previous section.

While the rows of the presented matrices do have a low crest
factor, this is not the case for the columns, which exhibits a Walsh-
like structure rather than spread spectrum structure. Although this
does not present a problem in most applications, it is indeed pos-Although it is possible to permute the non-symmetric RST to ob-
sible to obtain a spread spectrum property in the columns as well.tain the symmetric RST it is advantageous to construct the sym-
In fact, it is possible with a slight alteration of the definition of the metric RST from the equations (6) since this provides the building
RS polynomials to obtain a symmetric transform. blocks for a fast implementation.

2.1. Deriving the Symmetric Transform
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The equations (6) can be written more compactly as

Pi+1m®) = (~DMM2P; |10 (&)

+(—yMmtDg2i2Eg, | o ), 7)
Qj+1m®) = (~nMFDM2p, | o (&)
+ (~)MADmADG2n2EQ, o), (8)

wherem; andm, are the two least significant digits of the binary
representation ah, and|m/2] means the biggest integer less than
or equal tam/2. Rewriting to the obvious matrix form yields

[ ] [(_1)(m1+l)m2 ]
Pj 1m/2;(€)

X | o i . (9
|:e|2772]§Qj,Lm/2J (E)}

This latter form of the RS equations shows the core of the trans-
form; the 2x 2 matrix. This turns out to be the ‘secret’ of the fast
implementation.

The following definition of the symmetric RST exploits the
existence of the 2 2 matrix to construct the RST as a factorization
of the symmetric 2 x 29 RST matrix. Each of thd matrix factors
can then easily be applied with linear complexity.

(—1)Mmz (=M (M2+1)

F’j +1,m&)
(—=1)(M+1)(m+1)

Qj+l,m(§)

Definition 1 Define the mapping;j m : R? R j>1 as
3 (_1)mk

s = 7| Jsaze] oo

fork=0,...,21"1—1when mapping toy. Define the J matrix
factors

(DK
_(_1) k+m

1
(=pm

Yk
Yit2i-1

Pj,O 0
P = : (11)
0 Pj23-i_1
and finally defined the RFTY) as
J
PO = TP (12)

j=1

Note that (10) is the inverse of the transform proposed in (9). The
2 x 2 matrix in (10) aside, it is not immediately obvious neither
how this definition is linked to (6), nor that it defines a symmetric
transform. However, a fairly straightforward proof shows that the
rows of P(9) are the coefficients of the polynomials defined in (6),

see la Cour-Harbo [9], and thus that the defined transform does
indeed possess the properties derived above for the Rudin-Shapiro

transform.

3. FAST IMPLEMENTATION

3.1. Factorization into Linear Steps

The definition of the RST given in Definition 1 is based on the re-
cursive construction process of RS polynomials. When writing this
process in matrix form the 2 2 matrix in (10) emerges along with
the 27 x 29 matrix in (11). The combination of these two matrices

is the key to a fast implementation. The large matrix factors pro-
vides a factorization of the RST matrix, and the small matrix gives
a simple and eas®(N) implementation of these matrix factors.
The principle is here demonstrated with a size®@transform, but
easily applies to all size2RSTs.

The first factor to be applied in thex88 case ings) = P3¢. That
is,

1 1 0 0 0 0 0 07

0 0 1 -1 0 0 0 0

0O o0 O 0 1 1 0 O

p®d _ 0 0 0 0 0 0 1 -1
3 711 -1 0 0 0 0 0 0
o o 1 1 o0 o0 0 O

0 0 0 0 1 -1 0 0
L0 0 0O O O 0 1 1]

This is equivalent to a Haar wavelet transform except that the filter
taps are changing during filtering. The result is two parts of length
4. Inthe Haar case the two parts can be identified as a low and high
pass part, respectively, while in the RST case the constant change
of filter taps results in two parts containing a mix of frequencies.
The splitting into two signal parts is also illustrated in Fig. 2 by the
first (top) set of arrows. The next step in the transform is

3 _ P20
PZ__ P2,1:|
r1 1 0 0 7]
0 0 1 -1
1 -1 0 0
o o 1 1
= i1 1 0 o0}
0 0 -1 1
-1 1 o0 O
0 0 1 1

i.e. the exact same procedure is repeat (independently) on each of
the two signal parts. Notice that = 0 when transforming the

left part andm = 1 when transforming the right part of the signal.
The m makes the transform symmetric in the sense that 0
throughout the transform steps would produce the non-symmetric
RST. This second step is shown as the second set of eight arrows
(from the top) in Fig. 2. The final step is

P10
3 _ P11
P = P12
L P13
-1 1 _
1 -1
1 1
3 -1 1
- 1 1
1 -1
1 1
L -1 1]

The factorization means that the RST can be applied Bteps
by multiplying a signal with all of thePﬁJ) matrices (in the right

order). The mapping given in (10) shows how to reduce each mul-
tiplication to anO(N) filtering process. For any choice of and
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m=0 for j = 0 to log2(N)-1

_ _ _ _ T N/27(j+1)
k=0 k=1 k=2 k=3 for m = 0 to 27-1 step 2

| ‘ | ‘ | ‘ | ‘ | for Kk = m T to (m+1l) -T-1 step 2

yIK] = x[2k]  + x[2k+1] }keven
1 11 -1 11 -1 yk+T] = x[2k] - x[2k+1]
1 —1f|r  1f{1 -1fj1 1 yk¥1] = x[2k+2] - x[2k+3]  odd meven
y[k+1+T] = x[2k+2] + x[2k+3] } 0
end for
k=0 k=1 k=0 k=1
for k = (m+1) T to (m+2) -T-1 step 2
meo [ [T ] [LTT Jm=s WK = K + 0
yIk+T] = x[2k+1] - x[2K] }ke"e” o odd
[1 1] [1 —1] [ 1 1} [—1 1] yik+l] = x[2k+3] - x(2k+2]  odd
] | FRT -1 1| 11 yIk+1+T] = x[2k+3] + x[2k+2] |
/><\ end for
k=0 k=0 k=0 k=0 end for
L Lyl sl ol ] end for
Il Il Il I
€ [1 1] E [ 1 1] = [1 1} = [ 1 1] Fig. 3. Pseudo code for the RST. Note that to perform the first step
1 -1 1 -1 -1 (j = 0) in the transform only them even’ part should be used,

;\1 /\ /\l and for the last step onlk‘even’ should be used.
HIE NN

Fig. 2. This figure shows how the value of the variables change
in the fast implementation of a symmetric RST. Here applied to a
vector inR8,

obtain a different decomposition of the transformed signal. This is
equivalent to selecting a particular basis in the Haar wavelet packet
decomposition for representing the signal. Consequently, much of
the theory regarding wavelet basesTor applies, and it becomes
easy to construct and handle huge sets of spread spectrum signals,
since it can be done within the framework of wavelet bases.

k the 2x 2 matrix contains 3 times-1 and one-1. Consequently,
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