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ABSTRACT
In this paper, we present a new design method of allpass digital
filters with equiripple group delay response. This method is based
on solving a least squares solution iteratively. At each iteration, the
desired group delay response is transformed so as to have equirip-
ple error. By this method, an equiripple solution is obtained very
quickly with less computational complexity

1. INTRODUCTION

The design of allpass digital filters with a prescribed group delay
response is important in digital signal processing. A characteristic
of allpass filters is that amplitude response is constant in all fre-
quency axis and only the phase response changes. Therefore, the
allpass filters have been used as phase and group delay equalizers.
The compensation problem of the group delay response has an im-
portant effect on signal processing and transmission. The group
delay equalizer is realized through a stable allpass filter.

However, since the approximation of the group delay response
is formulated as a nonlinear problem, it is very difficult to approx-
imate the group delay response directly. Instead of approximating
the group delay, a lot of methods to approximate the phase re-
sponse have been proposed[3]-[7]. However, these methods does
not evaluate the group delay directly.

Deczky[1][2] have solved the nonlinear problem for group de-
lay approximation by using Golden section and Newton’s algo-
rithm. However, the shortfalls of this algorithm include the need
of initial values of filter coefficients and heavy computation, espe-
cially for higher-order filter design.

Indirect methods[8],[9] which approximate a magnitude re-
sponse or phase response instead of a group delay response have
been proposed. Yegnanarayana transformed the group delay re-
sponse into the amplitude response by using a complex cepstram.
This method has an advantage in that the computational complex-
ity is low. However, it does not evaluate group delay error. More-
over, group delay error increases as the filter order increases.

In this paper, we propose a direct approximation of the group
delay response. This method is based on the least squares method,
and an optimal solution in the least squares sense can be obtained.
Moreover, by transforming the desired group delay response it-
eratively, we can obtain equiripple solutions very quickly. Al-
though equiripple solutions to group delay approximation prob-
lems are not necessarily optimal in the Chebyshev sence, it is true
that equiripple solutions often give quite satisfactory results[1].
Then we consider such cases and show that the best uniform ap-
proximation can be obtained.

The contents of this paper are as follows. In Section2, the
group delay response of allpass filters and the least squares method

is described. Section3 contains an explanation of the transforma-
tion of the desired group delay response, which is the focus of this
paper. In Section4, some examples are shown by computer simu-
lation. Section 5 is the conclusion.

2. LEAST SQUARES METHOD

A. Group Delay Response of Allpass Filters
The frequency response of allpass filter with order N is ex-

pressed by

A(z) =
z−NP (z−1)

P (z)

(P (z) =
N∑

n=0

anz−n, a0 = 1) (1)

The group delay response of A(z)|z=ejω is given by

τA(ω) = N − 2τP (ω)

(τP (ω) = −dθP (ω)

dω
) (2)

where τP (ω) is the group delay of the denominator polynimial.
When the desired group delay response of the filter is assumed

to be τ (ω), the mean square error is defined as follows.

E1 =
1

π

∫ π

0

(τA(ω) − τd(ω))2dω (3)

Instead of approximating the group delay of an allpass filter, it is
easy to approximate the group delay of the denominator polyno-
mial. Then τ̂d(ω) is defined as follows:

τ̂d(ω) = (N − τd(ω))/2 (4)

From eq.(2) and eq.(4), the minimization of E1 is equivalent
to the minimization of the following error function:

E2 =
1

π

∫ π

0

(τP (ω) − τ̂d(ω))2dω (5)

Therefore, we will solve the group delay approximation prob-
lem of the denominator polynomial.

B. Least Squares Method
The group delay response τP (ω) of the denominator polyno-

mial is expressed by

τP (ω) = Re

[
z
dP (z)/dz

P (z)

]
z=ejω

(6)
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where

[zdP (z)/dz]z=ejω = P̂ (ω) =
N∑

n=1

nane−jnω (7)

Also, we denote P (z) as

P (ejω) = |P (ejω)|ejθP (ω) (8)

The group delay response of the denominator polynomial is
written by

τP (ejω) = Re{ 1

|P (ejω)|e
−jθP (ω)

N∑
n=1

nane−jnω}

=
1

|P (ejω)|
N∑

n=1

nancos(nω + θP (ω)) (9)

Using discrete frequency points and matrix representation, the
error function is written as

E = Qa −T (10)

where

Q =




cos(1·ω0+θP (ω0))

|P (ejω0 )| · · · cos(N·ω0+θP (ω0))
|P (ω0)|

cos(1·ω1+θP (ω1))

|P (ejω1 )| · · · cos(N·ω1+θP (ω1))

|P (ejω1 )|
...

. . .
...

cos(1·ω0+θP (ω0))

|P (e
jωL−1 )| · · · cos(N·ω0+θP (ω0))

|P (e
jωL−1 )|




a = [a1a2 · · · aN ]T

T = [τ̂d(ω0)τ̂d(ω1) · · · τ̂d(ωL−1)]

Therefore, eq.(5) is rewritten by

E = ET E

= aT QT Qa − 2aT QT T + TT T (11)

In order to minimize the eq.(11), E is differentiated by a.

∂E

∂a
= 2QT Qa − 2QT T = 0 (12)

Therefore, a is expressed by

a = (QT Q)−1QT T (13)

Since we can define a0 = 1 without loss of generality, we can
obtain {an}N

n=0 uniquely. However,the solution of eq.(13) is not
an optimal solution of the group delay in a least squares sense be-
cause we take no account of |P (ejω)| in eq.(9). Then, the obtained
coefficients are used to calculate P (ejω) and P (ejω) is substituted
into eq.(10) in the next iteration. As a result, this algorithm must
be iterated until P (z) has no change. If a converges, a is clearly
an optimal solution in a least squares sense. Then we show the
design algorithm as follows.

[ DESIGN ALGORITHM 1 ]

1. Decide N and desired group delay response τd(ω)

2. set P 0(ω) = 1, θ0
P (ω) = 0

3. The filter coefficients are obtained by solving the eq.(13)

4. if |P k−1(ω) − P k(ω)|/P k(ω) << 1,terminate

5. Let P k+1(ω) = P k(ω), θk+1
P (ω) = θk

P (ω), and go to
step3

In this algorithm, the important point is that we start with
P (ω) = 1, θP (ω) = 0 and continue with |P (ω)|, θP (ω) calu-
culated by an obtained set of coefficients on the previous itera-
tion. Although we can not show enough proof of convergence, we
have confirmed , through considerable experiences, this algorithm
shows good convergence. A least squares solution is used as initial
guess and is solved to get a equiripple solution in each iteration as
shown in the next section.

3. TRANSFORMING THE DESIRED RESPONSE

As mentioned above, a least squares solution of the group delay
is obtained very quickly. However, a least squares solution is not
optimal in the minimax sense. In order to minimize the maxi-
mum value of the group delay error between the designed and
desired response, an equiripple group delay error is desired. Al-
though the equiripple solution may not be optimal in the minimax
sense, it is true that equiripple solutions often give quite satisfac-
tory results[1].

A basic idea to obtain the equiripple solution is to solve a least
squares solution iteratively while changing the desired response
such that the group delay error between the designed and the de-
sired response becomes equiripple. First, we design an allpass fil-
ter based on a least squares method and find the local points of
error between the desired and the designed response:

Em(ω) = τm(ω) − τ0(ω) (14)

where τm(ω) is the group delay response derived by the least
squares method in the previous section, τ0(ω) is the desired group
delay response sqecified at the beginning of the algorithm, Em(ω)
is the error function and m is the number of iterations. We search
for the points of local maximums of |Em(ω)| as shown in Figure
1.
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Fig. 1. Maximum points of Error |E(ω)|

In Figure 1, ωk is the local maximum points, δk
m is errors at

the points of ωk and δk
m = |Em(ωk)|. Next, we derive a new
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function Rm(ωk) by transforming the error function Em(ωk) as
follows:

Rm(ωk) = Em(ωk)
δm

δk
m

(15)

where δm is the average of δk
m, and

δm =

M∑
k=1

δk
m

M
, (16)

where M is the number of local maximum points. This corre-
sponds to the scaling of the error function, as shown in Figure 2.
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Fig. 2. Scaled Error Function Rm

By adding the above error function Rm(ωk) to the original de-
sired function τ0(ωk), the new desired function with an equiripple
group delay error response is obtained:

τd(ωk) = Rm(ωk) + τ0(ωk) (17)

With this new desired response, a least squares solution is solved
iteratively only on the local points. Because the number of local
points is much less than the number of whole sampling points, the
computational complexity of (13) is greatly reduced. Finally, we
conclude the proposed algorithm as follows:

[PROPOSED ALGORITHM 2]

1. Calculate a by Algorithm1.

2. Calculate the group delay error by
Em(ω) = τm(ω) − τ0(ω) (where m is the number of iter-
ations)

3. . If max{|Em(ω)|}−max{|Em−1(ω)|}
max{|Em(ω)|} < ε (ε � 1)

,then terminate. Otherwise, go to next step.

4. Calculate the new desired group delay response from eq.(15),
(16) and (17).

5. With the new desired group delay response, a least squares
solution is solved only on the local points by Algorithm1.
Then a new τm(ω) is derived.

6. Increase m, and go to Step 2.

At all iteration in Algorithm 1 and 2, |P (ω)| and θP (ω) are
caluculated by an obtained set of coefficients on the previous iter-
ation. Although we can not show enough proof of convergence,
since this algorithm is similar to Remez algorithm used in FIR
filter design, a equiripple solution can be obtained with a few iter-
ations. In practice we have confirmed, through considerable expe-
riences, this algorithm shows good convergence.

4. DESIGN EXAMPLE

In this section, we show several examples of allpass digital filter to
demonstrate the effectiveness of the proposed method.

4.1. Example 1

The specifications of the filter is as follows:

N = 16

τd(ω) =
16

π
ω + 7.974 0.1π ≤ ω ≤ 0.99π

This specification is the same as [1] and the error is defined as

E(ω) = (τ (ω)− τd(ω))/(
16

π
ω)

In this case, the error function in (14) is expressed by the above
and (17) is rewritten by

τd(ωk) = Rm(ωk)
16

π
ωk + τ0(ωk)

With this modification, the algorithm converges very quickly as
shown in Fig.3. This algorithm needs 13 iterations and it took
about 0.6 seconds to converge. Fig.3 shows the comparison of
the group delay error between the proposed method and [1]. The
maximum errors are 3.0427 × 10−3 in the proposed method and
3.1398 × 10−3 in [1], respectively.

4.2. Example 2

The specifications of the filter is as follows:

N = 10

τd(ω) =

{
13 0 ≤ ω ≤ 0.3π
7 0.6π ≤ ω ≤ π

Fig.4 shows the group delay response designed by this algorithm
and the error between the designed and the desired response.

To compare this method with other methods, we transform the
desired group delay into the desired phase response as follows:

θd(ω) =

{ −13ω 0 ≤ ω ≤ 0.3π
−7ω − 3π 0.6π ≤ ω ≤ π
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Fig. 3. Example 1: left:Group Delay Error of the proposed method(solid line) and [1](dashed line) right: Convergence
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Fig. 4. Example 2, left:Group Delay Reponse, right:Group Delay error of the proposed method(solid line) and [7](dashed line)

Then we approximate the phase response by [7] such that the phase
error becomes equiripple. The dashed line shows the group delay
error, and the solid line shows the results obtained by the proposed
method. As shown in these figures, the algorithm converges very
quickly and can obtain the equiripple group delay response.

5. CONCLUSION

In this paper, we proposed a new design method of an all-pass dig-
ital filters using a least squares method by transforming the desired
frequency response to obtain the equiripple solution. As a result,
we could obtain equiripple solution in various specifications and
degrees. Since this algorithm solves the linear equation iteratively
only on local points without initial guess and solvin any nonlinear
problems, its computational complexity is less than the conven-
tional method. Also the algorithm converges with a few iteration
because it is based on Remez algorithm.
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