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ABSTRACT

While bandlimited wavelets and associated IIR filters have
shown serious potential in areas of pattern recognition and
communications, the dyadic Meyer wavelet is the only known
approach to construct bandlimited orthogonal decomposition.
The sinc scaling function and wavelet are a special case of the
Meyer. Previous works have proposed a M-Band extension of
the Meyer wavelet without solving the problem. One key
contribution of this paper is the derivation of the correct
bandlimits for the scaling function and wavelets to guarantee an
orthogonal basis. In addition, the actual construction of the
wavelets based upon these bandlimits is developed. A composite
wavelet will be derived based on the M scale relationships from
which we will extract the wavelet functions. The proper solution
to this task is proposed which will generate associated filters
with the knowledge of the scaling function and the constraints
for M-band orthogonality.

1. INTRODUCTION

Generally in applications of signal processing [3] compactly
supported wavelets can be used in analyzing any given signal.
However, bandlimited orthogonal wavelets have recently shown
potential in areas of pattern recognition and communications
[1,2]. We address the problem of designing a M-Band perfect
reconstruction (PR) filter bank based on a bandlimited function.
Currently the dyadic case of the Meyer construction is well
understood, yet a M-Band extension of the theory would prove
to be useful in the above mentioned applications. The problem of
M-Band Meyer wavelets was first touched upon in the work of
Jones [2] in the context of multi carrier modulation. Jones
developed a wavelet set for use with orthogonally multiplexed
communication channels. It will be shown here that the
conclusions developed in [2] for the scaling function are not
sufficient to guarantee proper wavelet generation.

The goal of this paper is to develop the theory of the M-Band
bandlimited wavelet transform and use it to generate a new class
of wavelets based on the Meyer wavelet and scaling function. It
will be shown that the M-Band solution is a non-trivial extension
of the dyadic Meyer wavelet construction. Section II will be
dedicated to developing the theory of M-Band bandlimited
wavelet transforms. We will generalize the dyadic Meyer
formulation such that is leads to the development of the scaling
function, wavelets and associated filters. Section III will present
an example of the scaling and wavelet functions for M=3.

* Work partially made possible by a grant from the Gleason
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2. THE M-BAND BANDLIMITED
WAVELET

2.1 Magnitude Solution

For the two band Meyer wavelet case there is a clearly defined
scaling function and wavelet. When we apply this theory to the
M - Band wavelet we lose the clean distinction between
individual wavelets and the scaling function. Instead we can
determine a composite wavelet in which are hidden the M-1
wavelets that we are interested in. To determine this composite
wavelet we must first determine a form for the scaling function
in the frequency domain for the M-Band case. With this
determined a series of strict rules can be applied to extract all
wavelets in a single iteration. The well known Poisson
Summation formula clearly deals only with the magnitude of the
filters response, implying that the phase information will need to
be determined as a separate step in the filter bank analysis. We
start with the filter equation given in (1).

(Ma)=H(0)0() M

For the bandlimited case, ®(m) is bandlimited to a frequency ®y,,
i.e. ®(w)=0 for |o>®,. Then, from (1), H(w)=0 for the region
between ®,, /M and 1 . Therefore,

o, <Mnr ?2)

The Poisson Summation formula clearly indicates that the
scaling function must have a bandwidth that is greater than m.
We therefore rewrite the ®,, as

0, =1+a 3)

A restriction on o is that it must be a value that is greater than

zero. From (1) we can also determine that
@) =1 for 0<w<T-a

@) =0 forwzm+a
We turn now to the filter that is defined by the scaling function
in (1). The filter, H(w), is discrete which forces the frequency
response to be 2w periodic. For our purposes we will write this
as

@

H(w)=H(w+2r)=H" (21 - o) )
This, with the Poisson Summation formula, allows us to define
regions of support for the filter itself. From(2),(3) and (5),

H@)%0 for |o|<%
(©)
H@)=0 for ﬂ;[a<a)<[27r—(”;[a]]

The periodic nature of H(®) implies that we can write at the
boundary of (6)

H(Zﬂ—TJ:H((ZM _A;)”_a} 0 )
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The boundary condition is found when the stop band of the
H(w) filter lines up directly with the start of the transition band
in its shifted version. This provides us with the limit that is
necessary for the development of our o term. From this we can
determine the initial range on our o condition given the scaling
function as

OSaSn(Z:J ®)

In order to guarantee a valid scaling function the transition
band must satisfy the Poisson Summation formula. We write this
as

1 O<w<rmr-a
o) =1{rl@) r-a<o<r+a )
0 otherwise

The function y(w) satisfies the transition band defined by the
Poisson Summation formula
(@)= [@) +|d+27)" =1 (10)
If we let M=2 in (8) we see that it reduces to the correct value
for the two band Meyer wavelet case for which the scaling
function is bandlimited to 4m/3. Although (8) was also
developed by W.W. Jones [2] we will see in following sections
that this boundary on a is not sufficient to guarantee a valid M —
Band wavelet system. We will actually need to place further
restrictions on o to properly satisfy orthogonality.

2.2 The Composite Wavelet

In order to determine a set of M-1 valid wavelet functions
wo(t), wi(b),...,wm(t), we introduce the concept of a composite
wavelet 0(t) whose Fourier transform magnitude satisfies

Blo) = Z‘P (@) (11)

m=0
From general discussions on orthogonal M-Band wavelet
filters, we can establish that the M-Band relationship between
the composite wavelet and the scaling function is given as
@) =leMo)’ +loMo) (12)
From equation (12), the composite wavelets shape can be
determined once we have developed an expression for the
associated scaling function. We have developed the rules for
frequency domain relationships between the individual wavelets
and the composite wavelet provided in (11) from which the form
of each individual bandlimited wavelet can then be found. The
3db points for the composite wavelet in the 2 band case occur at
both © and 2x. If we assume that the 3db points in the M-Band
case occur at T and Mr (see Figure 1) we can write the average
bandwidth of each wavelet as
5 _Mr-rm _
Y-
We have already illustrated that the scaling function essentially
consists of three regions, a pass band, a transition band and a
stop band. The pass band is identically equal to one in the range
0<w<(r—c)- Similarly the stop band is zero for the region

13)

where @ > + ¢ . The transition band has also been defined to
exist such that (10) is completely satisfied.

®(w)=7v(w) intheregion (m —or)<w < (m +cx) a4)

The function y(®w) must be such that
y() +y2r-o) =1

This equation is only important in the regions defined in (9).
We can define a function #(g) that is the mirror image of y(®) in

this region so that the above can be rewritten as
r) +7(@) =1 (15)

The composite wavelet is a band pass function that has five
bands that of are interest to us, each of which can be determined
from the shape of the scaling function. In Figure 1 we can see
that the transition from stop band to start band is defined as
7(w)- The composite wavelet maintains the shape of a dilated

scaling function after this transition. If we expand this function
in (12) so that it is a function of ® not M® then the shape of the
function is defined not by ®(w) but by (1)(%) This dilation

causes the transition from pass band to stop band to be governed
by the function 7(%) We have already determined a function

for y(®w) in previous section when we defined the scaling
function, we therefore have a complete mathematical model for
the magnitude of the composite wavelet

Assume that the transition band of each wavelet embedded
within the composite wavelet occurs such that the center of the
transition is at multiples of the average wavelet bandwidth, w. In
order to maintain the shape of the composite wavelet and its
symmetry, we must have for each wavelet

2

?[il]‘ for m+ir-a)zo <(m+l)ir+a)

A+

Jar (m+1)(fr+n:)£a) <(m+2:{fr+cx) (16)

o (w)f =4 ;

(=)

0 otherwise

formedr-a)zacims 2r+a)
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Figure 1 - The composite wavelet and its band
edges

The design is such that for any overlapping transition band
between two neighboring wavelets the following holds true

A o
m m

Previously, we defined o such that the scaling function and the
composite wavelet correctly interact. There is an issue with this
value that arises when dealing with individual wavelets. If we

choose o to be exactly , M —=1 then the start of the transition
M +1

band of the last wavelet will extend past the start of the transition

band of the first wavelet. This will cause all wavelet Fourier

transforms to overlap, thus violating the Poisson summation

formula. We must require that only neighboring wavelet bands

overlap in their transition bands. For this to hold true we need to
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examine the bounds on the last transition to pass band, (M-1),
and the second to last transition to stop band (M-2). In the best
case scenario these two bands can just touch one another, we
therefore write

M- -(M-Dax=(M -2 +(M-2)x
(18)
Solving this equation for o, uniquely determines a new value of
o that limits our choice for the original scaling function design.

T
aSZM—l 19

The result in (19) provides the correct value for the wavelet
design and is tighter for M>2 than the one presented by Jones in
(8). Generating a scaling function, as we did in (9), using the o
term given in (19) generates the correct bandlimited orthogonal
M-Band wavelets. It should be noted that the above equation
reduces to the basic Meyer scaling function and boundary
conditions when M=2. In addition, at M=2 Jones’ results
coincidently match those in (19). Also note as M increases, o
approaches zero, moving our scaling function closer to the ideal
Shannon scaling function. This shows that as M increases our
filters in the system move toward the uniform bandwidth defined
in (13).

2.3. Phase Solution

Due to the non ideal nature of our wavelet filters, there are
overlapping regions in the magnitude solution. Phase solutions
for these functions that are relative to the scaling filter, H(w),
can provide for the proper cancellation needed for our system to
satisfy the orthogonality criterion. From the orthogonality of the
scaling function and wavelet we can write

Y ®(w + 27k ¥, (@ + 27k )= 0 (20)
k=—eo

We are also aware of the M scale relationship between of the
frequency response of the scaling function and wavelet as

o) 2o ) s v0)-c S p(2)

If we substitute (21) back into (20) and reduce the expression
with some basic knowledge wavelet filters we can arrive at the

solution
- 27k ) 27k
kgmH[a)+%]Go(w+7):o (22)

The bounds on (22) become critical in the phase solution
development and it should be clearly noted that they extend
across all integer k. Similarly we develop an expression for all
adjacent wavelets as

36 l(an@JG*(aH%):o me{l,2--M -2} (23)
P 2w P v ,

We are only interested in the phase for the adjacent wavelets
and scaling function due to the physical structure of the system.
The filters are designed such that only neighboring functions
overlap. Non-adjacent wavelets immediately satisfy the
orthogonal relationships due to the product always being
identically zero, which is attributed to these filters non
overlapping regions of support. We define a new variable, q, that
indexes the overlapping regions as follows

g=1{012..M -2}

With q, we develop an expression for the required shift to
properly satisfy cancellation of these overlapping regions. If we
define a function z(q) as

M for 0Sq<%
2(g+1) 2
=(q)= Iy Iy 24)
—— for —<gs<M-2
2M - 2(q +1) 2

The resulting phase shift required to satisfy the orthogonality

criterion becomes

— _ @)
pq((D)— e (25)

This results in the relationship between scaling function and
wavelets as

6,0)= poVr"(0+37
B 2 (26)
G,(@)=p,®)G,, [w + ﬁ)for me{l2..M -2}

Notice that the z(q) term is designed to rotate the shifts around
the unit circle at specific points so that cancellation properly
occurs, in general resulting non-integer shifts. Also each shift is
with respect to the previous wavelet or scaling function. This
implies that the total shift is accumulative, and with respect to
the scaling function (which is defined with a phase of zero) the
relative shift continues to increase.

3. EXAMPLE

We will examine a Meyer wavelet construction for the case
where M=3. For illustrative purposes we will assume the worst
case @, in practical situations the filters can be made better by
choosing a smaller value for this parameter. We start with the
knowledge that our system is broken into three separate bands.

Referring to (19) we see that
_ /4 _r
“@3-1) s
A 7Y(w) function for the scaling function and associated
wavelets can be constructed utilizing this parameter. We have
shown that any function that satisfies (10) will generate an
acceptable M-Band system. For this case we have chosen y(®) to
take on a section of the cosine function.
From y(®) and our knowledge of the bounds on the scaling
function, we can now readily sketch out the remainder of ®(w).
Notice that the transition band is the heavy line in Figure 2.
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Figure 2— Depicts the Fourier transform squared magnitude of
the scaling function and wavelets embedded within the Fourier
transform squared magnitude composite wavelet for M=3.
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The M scale relationship that we developed in (12) allows to
quickly develop the composite wavelet that will contain all
embedded wavelets. The rising edge of the composite wavelet is
simply #(p). We have also established that the shape of the

composite wavelet is derived from the shape of the dilated
scaling function. This implies that the falling edge of the filter is
governed by the shape given by )/( ® ). As previously mentioned
3
there are two wavelets embedded in the composite wavelet
design. These two functions are also uniquely described by the
Y(w) that we arrived at. The midpoint of each transition occurs at
(m+1)r where m is the wavelet function index {0,1}. Each
successive wavelet dilates the y(w) function by another factor of
M. The passband region of each wavelet is identically one and
the stop band identically zero, from this we can arrive at both
embedded wavelets. The scaling function, composite wavelet
and the two Meyer wavelets are all clearly illustrated in Figure 3.

The scaling function and the corresponding wavelets are also
smooth and closely resemble the two band Meyer wavelet and
scaling function. One point that we should notice in this example
is the duration under which the signal energy is spread. We will
find that as we increase our o term the energy will be supported
less compactly than in the case above. The corresponding filters
can be found utilizing (21) and (26) and clearly result in
bandlimited filters which closely resemble their parent scaling
function and wavelets.

Figure 4 provides an additional example of a M=10 scenario.
Here we have chosen o to again be the lower limit of the bound.
It can be seen from figure 4 that the frequency responses
transition bands have greater overlap for larger values of M. This
is a direct result of (16). These bands can be made tighter by
reducing the value of oo which will result in the time domain
filters energy being spread across a longer duration. The
composite wavelet in figure 4 is the dark band under which the
nine wavelet frequency responses are contained.

4. Conclusion

For the first time wavelets have been produced for orthogonal
M-Band bandlimited decomposition, through a non-trivial
extension of the 2-band Meyer wavelet case. It has been shown
that the M—Band Meyer wavelet system generates a PRFB set if
we impose the proper constrains on the scaling function.
Previous developments of this M-Band extension were shown to
be insufficient in their derivation of boundary conditions,
resulting in functions that did not properly satisfy the wavelet
criteria.

One advantage that our design offers is in the smoothness of
the Meyer wavelet. This is particularly useful in image
processing systems where the transitions tend to be hard edges.
In areas where the 2 Band bandlimited filters are used [5], we
now have a M-Band extension. Another clear advantage to this
development is the lack of restriction that we place on M, which
can be either even or odd valued. It is believed that this will
further enhance the analysis properties of the wavelet under
these such conditions.
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Figure 3 - Time domain representation of the Meyer wavelets
and scaling function for M=3.
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Figure 4 — The Fourier transform squared magnitude of the
scaling function, composite wavelet and the 9 corresponding
embedded wavelet functions in a M=10 system.
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