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ABSTRACT 

 
While bandlimited wavelets and associated IIR filters have 
shown serious potential in areas of pattern recognition and 
communications, the dyadic Meyer wavelet is the only known 
approach to construct bandlimited orthogonal decomposition. 
The sinc scaling function and wavelet are a special case of the 
Meyer. Previous works have proposed a M-Band extension of 
the Meyer wavelet without solving the problem. One key 
contribution of this paper is the derivation of the correct 
bandlimits for the scaling function and wavelets to guarantee an 
orthogonal basis. In addition, the actual construction of the 
wavelets based upon these bandlimits is developed. A composite 
wavelet will be derived based on the M scale relationships from 
which we will extract the wavelet functions. The proper solution 
to this task is proposed which will generate associated filters 
with the knowledge of the scaling function and the constraints 
for M-band orthogonality. 
 

1. INTRODUCTION 
    Generally in applications of signal processing [3] compactly 
supported wavelets can be used in analyzing any given signal. 
However, bandlimited orthogonal wavelets have recently shown 
potential in areas of pattern recognition and communications 
[1,2]. We address the problem of designing a M-Band perfect 
reconstruction (PR) filter bank based on a bandlimited function. 
Currently the dyadic case of the Meyer construction is well 
understood, yet a M-Band extension of the theory would prove 
to be useful in the above mentioned applications. The problem of 
M-Band Meyer wavelets was first touched upon in the work of 
Jones [2] in the context of multi carrier modulation. Jones 
developed a wavelet set for use with orthogonally multiplexed 
communication channels. It will be shown here that the 
conclusions developed in [2] for the scaling function are not 
sufficient to guarantee proper wavelet generation. 
    The goal of this paper is to develop the theory of the M-Band 
bandlimited wavelet transform and use it to generate a new class 
of wavelets based on the Meyer wavelet and scaling function. It 
will be shown that the M-Band solution is a non-trivial extension 
of the dyadic Meyer wavelet construction. Section II will be 
dedicated to developing the theory of M-Band bandlimited 
wavelet transforms. We will generalize the dyadic Meyer 
formulation such that is leads to the development of the scaling 
function, wavelets and associated filters. Section III will present 
an example of the scaling and wavelet functions for M=3. 
 
 
* Work partially made possible by a grant from the Gleason 
Foundation.     

2. THE M-BAND BANDLIMITED 
WAVELET 

2.1 Magnitude Solution  

For the two band Meyer wavelet case there is a clearly defined 
scaling function and wavelet. When we apply this theory to the 
M - Band wavelet we lose the clean distinction between 
individual wavelets and the scaling function. Instead we can 
determine a composite wavelet in which are hidden the M-1 
wavelets that we are interested in. To determine this composite 
wavelet we must first determine a form for the scaling function 
in the frequency domain for the M-Band case. With this 
determined a series of strict rules can be applied to extract all 
wavelets in a single iteration. The well known Poisson 
Summation formula clearly deals only with the magnitude of the 
filters response, implying that the phase information will need to 
be determined as a separate step in the filter bank  analysis. We 
start with the filter equation given in (1). 

 ( ) ( ) ( )ωωω Φ=Φ HM  (1) 

For the bandlimited case, Φ(ω) is bandlimited to a frequency ωm, 
i.e. Φ(ω)=0 for |ω|>ωm. Then, from (1), H(ω)=0 for the region 
between ωm /M and π . Therefore, 

 πω Mm ≤  (2) 

   The Poisson Summation formula clearly indicates that the 
scaling function must have a bandwidth that is greater than π. 
We therefore rewrite the ωm as 

 απω +=m
 (3) 

   A restriction on α is that it must be a value that is greater than 
zero. From (1) we can also determine that 

 ( )
( ) απωω

απωω

+≥=Φ

−≤≤=Φ

for0

0for1
2

2
 

(4) 

We turn now to the filter that is defined by the scaling function 
in (1). The filter, H(ω), is discrete which forces the frequency 
response to be 2π periodic. For our purposes we will write this 
as 
 ( ) ( ) ( )ωππωω −=+= ∗ 22 HHH  (5) 

This, with the Poisson Summation formula, allows us to define 
regions of support for the filter itself. From(2),(3) and (5), 
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   The periodic nature of H(ω) implies that we can write at the 
boundary of (6) 
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   The boundary condition is found when the stop band of the 
H(ω) filter lines up directly with the start of the transition band 
in its shifted version. This provides us with the limit that is 
necessary for the development of our α term. From this we can 
determine the initial range on our α condition given the scaling 
function as  
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   In order to guarantee a valid scaling function the transition 
band must satisfy the Poisson Summation formula. We write this 
as  
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   The function γ(ω) satisfies the transition band defined by the 
Poisson Summation formula 
 ( ) ( ) ( ) 12 22 =+Φ+Φ⇒ πωωωγ  (10) 
   If we let M=2 in (8) we see that it reduces to the correct value 
for the two band Meyer wavelet case for which the scaling 
function is bandlimited to 4π/3. Although (8) was also 
developed by W.W. Jones [2] we will see in following sections 
that this boundary on α is not sufficient to guarantee a valid M – 
Band wavelet system. We will actually need to place further 
restrictions on α to properly satisfy orthogonality. 
 
2.2 The Composite Wavelet 

   In order to determine a set of M-1 valid wavelet functions 
ψ0(t), ψ1(t),…,ψM-2(t), we introduce the concept of a composite 
wavelet θ(t) whose Fourier transform magnitude satisfies 
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   From general discussions on orthogonal M-Band wavelet 
filters, we can establish that the M-Band relationship between 
the composite wavelet and the scaling function is given as 
 ( ) ( ) ( )222 ωωω MM Θ+Φ=Φ  (12) 
   From equation (12), the composite wavelets shape can be 
determined once we have developed an expression for the 
associated scaling function. We have developed the rules for 
frequency domain relationships between the individual wavelets 
and the composite wavelet provided in (11) from which the form 
of each individual bandlimited wavelet can then be found. The 
3db points for the composite wavelet in the 2 band case occur at 
both π and 2π. If we assume that the 3db points in the M-Band 
case occur at π and Mπ (see Figure 1) we can write the average 
bandwidth of each wavelet as 
 πππ =

−
−=Ψ )1(M

MB  (13) 

   We have already illustrated that the scaling function essentially 
consists of three regions, a pass band, a transition band and a 
stop band. The pass band is identically equal to one in the range 

( )απω −<≤0 . Similarly the stop band is zero for the region  
where απω +> . The transition band has also been defined to 
exist such that (10) is completely satisfied. 

 ( ) ( ) ( ) ( )απωαπωγω +<≤−=Φ regionthein  (14) 

   The function γ(ω) must be such that  
( ) ( ) 12 22 =−+ ωπγωγ  

   This equation is only important in the regions defined in (9). 
We can define a function ( )ωγ~  that is the mirror image of γ(ω) in 
this region so that the above can be rewritten as  
 ( ) ( ) 1~ 22 =+ ωγωγ  (15) 

   The composite wavelet is a band pass function that has five 
bands that of are interest to us, each of which can be determined 
from the shape of the scaling function. In Figure 1 we can see 
that the transition from stop band to start band is defined as 

( )ωγ~ . The composite wavelet maintains the shape of a dilated 
scaling function after this transition. If we expand this function 
in (12) so that it is a function of ω not Mω then the shape of the 
function is defined not by Φ(ω) but by ( )M

ωΦ . This dilation 
causes the transition from pass band to stop band to be governed 
by the function ( )M

ωγ . We have already determined a function 

for γ(ω) in previous section when we defined the scaling 
function, we therefore have a complete mathematical model for 
the magnitude of the composite wavelet 
   Assume that the transition band of each wavelet embedded 
within the composite wavelet occurs such that the center of the 
transition is at multiples of the average wavelet bandwidth, π. In 
order to maintain the shape of the composite wavelet and its 
symmetry, we must have for each wavelet 

 
 

 
Figure 1 - The composite wavelet and its band 
edges  
 

   The design is such that for any overlapping transition band 
between two neighboring wavelets the following holds true 
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   Previously, we defined α such that the scaling function and the 
composite wavelet correctly interact. There is an issue with this 
value that arises when dealing with individual wavelets. If we 
choose α to be exactly 

1
1

+
−

M
Mπ  then the start of the transition 

band of the last wavelet will extend past the start of the transition 
band of the first wavelet. This will cause all wavelet Fourier 
transforms to overlap, thus violating the Poisson summation 
formula. We must require that only neighboring wavelet bands 
overlap in their transition bands. For this to hold true we need to 
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examine the bounds on the last transition to pass band, (M-1),  
and the second to last transition to stop band (M-2). In the best 
case scenario these two bands can just touch one another, we 
therefore write 
 ( ) ( ) ( ) ( )απαπ 2211 −+−≥−−− MMMM  

(18) 
Solving this equation for α, uniquely determines a new value of 
α that limits our choice for the original scaling function design.  
 

12 −
≤

M
πα  

(19) 

   The result in (19) provides the correct value for the wavelet 
design and is tighter for M>2 than the one presented by Jones in 
(8). Generating a scaling function, as we did in (9), using the α 
term given in (19) generates the correct bandlimited orthogonal 
M–Band wavelets. It should be noted that the above equation 
reduces to the basic Meyer scaling function and boundary 
conditions when M=2. In addition, at M=2 Jones’ results 
coincidently match those in (19).  Also note as M increases, α 
approaches zero, moving our scaling function closer to the ideal 
Shannon scaling function. This shows that as M increases our 
filters in the system move toward the uniform bandwidth defined 
in (13). 
 
2.3. Phase Solution  

   Due to the non ideal nature of our wavelet filters, there are 
overlapping regions in the magnitude solution. Phase solutions 
for these functions that are relative to the scaling filter, H(ω), 
can provide for the proper cancellation needed for our system to 
satisfy the orthogonality criterion. From the orthogonality of the 
scaling function and wavelet we can write  
 ( ) ( ) 022 *
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   We are also aware of the M scale relationship between of the 
frequency response of the scaling function and wavelet as 
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   If we substitute (21) back into (20) and reduce the expression 
with some basic knowledge wavelet filters we can arrive at the 
solution  
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   The bounds on (22) become critical in the phase solution 
development and it should be clearly noted that they extend 
across all integer k. Similarly we develop an expression for all 
adjacent wavelets as  
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   We are only interested in the phase for the adjacent wavelets 
and scaling function due to the physical structure of the system. 
The filters are designed such that only neighboring functions 
overlap. Non-adjacent wavelets immediately satisfy the 
orthogonal relationships due to the product always being 
identically zero, which is attributed to these filters non 
overlapping regions of support. We define a new variable, q, that 
indexes the overlapping regions as follows 

{ }22,1,0 −= Mq  
   With q, we develop an expression for the required shift to 
properly satisfy cancellation of these overlapping regions. If we 
define a function z(q) as 
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   The resulting phase shift required to satisfy the orthogonality 
criterion becomes 
 ( ) ( )ωωρ qjz

q e−−=  
(25) 

   This results in the relationship between scaling function and 
wavelets as 
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   Notice that the z(q) term is designed to rotate the shifts around 
the unit circle at specific points so that cancellation properly 
occurs, in general resulting non-integer shifts. Also each shift is 
with respect to the previous wavelet or scaling function. This 
implies that the total shift is accumulative, and with respect to 
the scaling function (which is defined with a phase of zero) the 
relative shift continues to increase.  

 
3. EXAMPLE 

 
   We will examine a Meyer wavelet construction for the case 
where M=3. For illustrative purposes we will assume the worst 
case α, in practical situations the filters can be made better by 
choosing a smaller value for this parameter. We start with the 
knowledge that our system is broken into three separate bands. 
Referring to (19) we see that  

( ) 5132
ππα =

−⋅
=

 

   A γ(ω) function for the scaling function and associated 
wavelets can be constructed utilizing this parameter. We have 
shown that any function that satisfies (10) will generate an 
acceptable M-Band system. For this case we have chosen γ(ω) to 
take on a section of the cosine function. 
   From γ(ω) and our knowledge of the bounds on the scaling 
function, we can now readily sketch out the remainder of Φ(ω). 
Notice that the transition band is the heavy line in Figure 2. 
 

 
Figure 2−  Depicts the Fourier transform squared magnitude of 
the scaling function and wavelets embedded within the Fourier 
transform squared magnitude composite wavelet for M=3. 
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   The M scale relationship that we developed in (12) allows to 
quickly develop the composite wavelet that will contain all 
embedded wavelets. The rising edge of the composite wavelet is 
simply ( )ωγ~ . We have also established that the shape of the 
composite wavelet is derived from the shape of the dilated 
scaling function. This implies that the falling edge of the filter is 
governed by the shape given by 







3
ωγ . As previously mentioned 

there are two wavelets embedded in the composite wavelet 
design. These two functions are also uniquely described by the 
γ(ω) that we arrived at. The midpoint of each transition occurs at 
(m+1)π where m is the wavelet function index {0,1}.  Each 
successive wavelet dilates the γ(ω) function by another factor of 
M. The passband region of each wavelet is identically one and 
the stop band identically zero, from this we can arrive at both 
embedded wavelets. The scaling function, composite wavelet 
and the two Meyer wavelets are all clearly illustrated in Figure 3. 
   The scaling function and the corresponding wavelets are also 
smooth and closely resemble the two band Meyer wavelet and 
scaling function. One point that we should notice in this example 
is the duration under which the signal energy is spread. We will 
find that as we increase our α term the energy will be supported 
less compactly than in the case above. The corresponding filters 
can be found utilizing (21) and (26) and clearly result in 
bandlimited filters which closely resemble their parent scaling 
function and wavelets.   
   Figure 4 provides an additional example of a M=10 scenario. 
Here we have chosen α to again be the lower limit of the bound. 
It can be seen from figure 4 that the frequency responses 
transition bands have greater overlap for larger values of M. This 
is a direct result of (16). These bands can be made tighter by 
reducing the value of α which will result in the time domain 
filters energy being spread across a longer duration. The 
composite wavelet in figure 4 is the dark band under which the 
nine wavelet frequency responses are contained. 
 

4. Conclusion 
 

   For the first time wavelets have been produced for orthogonal 
M-Band bandlimited decomposition, through a non-trivial 
extension of the 2-band Meyer wavelet case. It has been shown 
that the M–Band Meyer wavelet system generates a PRFB set if 
we impose the proper constrains on the scaling function.  
Previous developments of this M-Band extension were shown to 
be insufficient in their derivation of boundary conditions, 
resulting in functions that did not properly satisfy the wavelet 
criteria.  
   One advantage that our design offers is in the smoothness of 
the Meyer wavelet. This is particularly useful in image 
processing systems where the transitions tend to be hard edges. 
In areas where the 2 Band bandlimited filters are used [5], we 
now have a M-Band extension. Another clear advantage to this 
development is the lack of restriction that we place on M, which 
can be either even or odd valued. It is believed that this will 
further enhance the analysis properties of the wavelet under 
these such conditions. 
 

 
Figure 3 - Time domain representation of the Meyer wavelets 
and scaling function for M=3. 
 

 
Figure 4 – The Fourier transform squared magnitude of the 
scaling function, composite wavelet and the 9 corresponding 
embedded wavelet functions in a M=10 system.  
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