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ABSTRACT

This work is concerned with the design problem of awhole
sample symmetric filter bank where the lowpassand highpass
filters are defined in terms of a cmplex all passfilter. The design
problem reduces to the evaluation of the mefficients of this
alpass filter. The regularity requirement of the filter bank leads
to aset of flatnessconstraints. The required frequency seledivity
of the filters is expressed as ancther set of constraints. The
combined set of constraints leads to a generdized eigenvalue
problem that can bereduced to aregular eigenvalue problem by
conjeduring a cetain matrix to be nonsingular. The egenvedor
corresponding to the largest positive d@genvalue of the last
problem is the sought vedor of the mefficientsof the dlpass
filter.

. INTRODUCTION

The importance of the symmetry of the wavelet function stems
from the linea phase of the filters of the filter bank
corresponding to this wavelet. Although the FIR filter enjoysa
linea phase, the only symmetric wavelet correspondng to the
FIR filter isthe Haa wavelet which is discontinuous[1]. In order
to obtain red-valued othonorma wavelet bases with better
regularity than the Haa wavelet, Herley and Vetterli proposed a
class of IIR filters where the filter bank can be mnstructed using
red allpass filters [2]. Zhang et. al. proposed a dassof red-
valued orthonormal symmetric wavelet bases where the
asociated whole sample symmetric (WSS paraunitary filter
banks are composed of asingle mmplex all passfilter [3]. They
first arrived at the form of the transfer function d the dlpass
filter, which satisfies the symmetry and athonormality
condtions of wavelets. They seaond attadked the design problem
of paraunitary filter banks given the fad that the goals of wavelet
regularity and filter's frequency seledivity arein conflict. They
looked for filters having agiven degreeof flathessand ogimal
phase response of the complex all passfilter.

The main oljedive of the present paper isto redify the work
dore in[3] and extendit. First amatrix that has been erroneously

Let H(z) and G(2) be respedively thelowpassand hghpass
filters of the two-band paraunitary filter bank that generates
orthonormal wavelet basis. In order to construct aWSSfilter
bank where both the wavelet and scding functions are
symmetric, the numerator degrees of H(z) and G(z) shoud be
even [2]. H(z) and G(z) can be mndructed from a single
complex al passfilter A(z) asfollows[4]:
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where f&(z) is obtained from A(z) by complex conjugating its
coefficients. The linea phase and athonormality condtions

necesstate that A(z) hasthe form [3]:
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where an's arered coefficients, ag = 1, N isan even integer,

e — jaSZ

and n = +0.25m or n = +0.75r . The phase response G(w) of
A(z) isgiven by:

Grgw) =n+ 2(p(w) 4
o(w) = tan © % : ®)

Since N is an even integer, it can be expressed asN = 2M and

ignored in the e@genvalue formulation o the problemin [3] will one gets:
be brought out. Second ancther matrix will be mnjedured to be (PsM-1 s(M - 1) M
norsingular and consequently the generalized eigenvalue E nZO 8on+1 €O n-ljw IrMiseven
problem will be reduced to an ordinary eigenvalue problemto be N (w) _ 0.5(M -3) ©)
solved for the dgenvedor corresponding to the largest positive - H).SaM + Y Asny COS(M -2n- 1)60
eigenvalue. Third some eror that crept into [3] will be mrreded. H n=0

H if Misodd
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and

0.5M -1
%).SaM + nZO asn cos(M —2n)w if Miseven
D(w) = Uo.s(M-1)
ZO asn cos(M - 2n)w if Misodd
n=
M
I1l. THE FLATNESS CONDITIONS

The regularity of thefilterscan be expressed as the foll owing
flatnessconditions:

ak|H(e]w}
_ =0 ,k=0,---,K-1 (8)
k
ow
wW=1T
ak|G(e‘“’1
_ =0 ,k=0,--,K-1. (9)
k
ow
w=0

The &ove two sets of condtions are equivalent sinceH(z) and
G(z) are orthogonal. Zhang et. a. [3] showed that the K
condtions of (9) can bereduced to the following 0.5K explicit
condtions:

VDa=0 (20
whereV isthe 0.5K x (M + 1) Vandermonde matrix:
1 1 ) -1 1[0
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and D isthe diagonal matrix:
D= Diag{do,dl,~-~,dM} (12
with its elements given hy:
d = Ve 201, M -1 (13
ot0.57 iodd
.5 M
dy = even (14)
.5cot0.57 M odd

The dements of the mlumn vedor ain (10) are the wefficients
of the dlpassfilter A(Z) of (3),i.e,

a= [ao 3 ap ]T. (15
The number of condtions 0.5K in (10) lies in the range
0<05K <M where the etreme cae of K =2M

corresponds to the maximally flat filters.

IV. FREQUENCY SELECTIVITY CONDITIONS

Since the dlpass filter is completely spedfied by itsphase
angle e(w), the design problem reduces to the evaluation of

e(w). It can be shown that the desired phase resporse of
A(z) isgiven by [3]:

b4 ()= ED

(05T wgswsm

O<wo<
o< op (16)

where wp and wg are the autoff frequencies of the passhand
and stopband o H(z) respedively and Wp +wg =TT The
corresponding desired (p(w) can be obtained from (4) as:

[I-05n
P (©)=0
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It can be shown from (5)-(7) that
if Miseven
0.5m) = 18
(0( ) @O.Sn if Misodd (19
and
o\ -w if Miseven
olw) = A (19
m-Q n—w) if Misodd

In order for ?q (w) of (17) to produce the symmetry expressed
by (19), theangle n should be:

0.251 if Miseven
= S (20
+ 0.757 if Misodd

Becaise of the symmetry of (p(w) expressed by (19) abou the
frequency w = 0.5, the design problem reduces to the

approximation o @y (w) in the passhand w O [O,wp] .

In oder to get an equiripple phase resporse (p(w), one
imposes the foll owing condtions:

ol0)-04(w)=(-10"s, i=01-M-0sk @
where the w;'s are extrema frequencies in the pasdand
w0 [O,wp] arranged as:

Wp =Wy > W > > Wy _gsK >0. (22
In (21), 6p isthe phase aror to be minimized and the integer |
is ®leded such that 6p will aways be positive. Some thought
abou @y (w) of (170 and an opimal equiripple (p(w)

superimposed on it will | ead to the values of | givenin Table 1.

One should mention that those values of | have been
erroneously interchanged in [3].
From (21), (5) and (17), one gets:

—oulw ) = D(‘*’i )* N(wi )coto.5r;
tan[fp(wi) At |)] D(w; )cot0.57 - N(w; ) 23

- (_ 1)i+| 5

where § = tanép.
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First one considers the cae of even M and substitutes the
expressonsof N(w) and D(w) from (6) and (7) in (23) to get:

[cosMwi cosM -Dw; -+ cosw; 1]

T
[ao a cot0.5n ap -1 cot0.57 0.5ap, ]

= (— 1)i+| 6[cosMwi cosM - Dw; COSWj 1] (29

T
[ao cot0.5n - a —apm 0.5a), cot0.5n]

In order to put the dove equation in a wmpad form, one defines
the diagonal matrix T as:

where the diagonal elements are given by:

I .
= %—1)Iflot0.5n ieven =0l M -1 26)
-1) i odd
ty = %)5(— 1)I cot0.57 Meven 27

1+1
m.5(-1) M odd
Using the above definition and its counterpart for matrix D given
by (12)-(14), one can express(24) as.

cosMw; cosM -Dw; COSWj 1] Da=
i (29)
(— 1) 6[cosMwi cosM —Dw; COSWj 1]T a
where vedor ais defined by (15).
Seamnd ore considersthe cae of odd M and substitute (6) and
(7) in (23) to get:
cosMw; cosM -, COSWj 1]
T
[ao a4 cot0.5n ay - 05ay cotO.Sn]
i+ (29
= (— 1) 6[cosMwi cosM - Dw; COSWj 1]
T
[ao cot0.5n - ap -1 cot0.5n - 0.5, ]
Using the definition o the diagona matrices D and T, one
verifies that the @dove euation can be mmpadly expressed as
(28). Therefore (28) holdsirrespedive of M being even or odd.
Writing (28) for the (M — 0.5K +1) extremal frequencies of

(22), one gets:

CDa=9 SCTa (30
whereCisthe (M — 05K +1) x (M +1) matrix:
[J cosMw cosM - Dawy - A
U cosMw cosM —-1w 1L
- L1 o C (3
0 : : T
[GosMwy o5k COSM ~Dwy g5k 1T
and Sisadiagona matrix of order (M — 0.5K +1) defined hy:

S= Diag{L—l,l,—l,--- (M 05K } . 32)

One should point out that matrix S did na appea in the
treament of [3] sinceit was erroneously ignored.

V.COMBINED FLATNESS AND FREQUENCY
SELECTIVITY

In order to achieve the goals of wavelet regularity andfilter's
frequency seledivity, one should aspire to achieve both the
flatness condtions (10), the euiripple cnditions (30) and to
minimizethe aror d . Combining the two sets of constraints (10)
and (30) one gets:

Pa=90Qa (33
where

I

In Appendix B, one will conjedure that matrix P is
norsingular and adually an extensive numerical investigation
showed that thisistrue. Consequently the generalized eigenvalue
problem of (33) reduces to the ordinary eigenvalue problem:
Aa=Aa (35
where
A=P 0 ad A=1/5. 36)

Since J shoud be positive and minimum, one shoud seek the
largest positive dgenvalue of A since (36) implies that
Omin =1/ Amax- Consequently the vedor of coefficients a
which satisfies the @mbined constraint (35) and minimizesthe
error 0 is the dgenvector of matrix A correspondng tothe
maximum positive agenvalue.

Since the extremal frequencies wj's in (21) are not known
beforehand, one should use the Remez exchange dgorithm [3].

In theextreme @seof K = 0, one has the minimax frequency
resporse and matrix A of (36) reduces to:

A=D ciscT 37)
as can be seen from (34). Thefact that matrix C inthisceseis
norsingular will be proved in appendix A.

VI. CONCLUSION

A complex alpass filter has been designed and used asthe
building block for the lowpass and highpassfilters of awhade
sample symmetric filter bank. The problem formulation has
involved ageneralized eigenvalue problem that has been reduced
to aregular eigenvalue problem by showing that a cetain matrix
isnonsingular.

APPENDIX A

Fact: The (M —0.5K +1) x(M +1) matrix C defined by (31)
has afull row rank.

Proof:
One starts by stating the foll owing definiti on and theorems:
Definition: A set of (M + 1) functions

{goo(w),qal(w),-~-,goM (w)} on [a,b] is aChebyshev seton

[a,b] iff for Al ag,aq,-, 0\ the linea combination

M
.Zoai(pl (w) hasat most M distinct zeroeson [a,b] [5].
1=
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Theorem 1: If {(po (w),-~-,(pM (w)} is a Chebyshev set on
[a,b] , then the square matrix:

b
Tolow) - oo )

is nonsingular provided that wg, 1 W\ are distinct pointsin
[a,b] [5].
Theorem 2: {1, CoSw, cosZw,~-~,cosMw} is a Chebyshev set on
[0, m] [6].

One first considers the case of K = 0 and denotes the square
matrix C of (31) by Cg. Sincethe frequencies w,---,w), are

distinct by virtue of (22) and liein the interval [O,wp] 0[o,m],

the above two theorems imply that Cg isnonsingular.

In the case of K >0, matrix C of (31) will be formed by the
firt:. (M —0.5K +1) rows of the nonsingular matrix Cg, and
consequently it will have afull-row rank.

APPENDIX B

Conjecture: Matrix P defined by (34) is nonsingular and

consequently matrix A defined by (36) has a rank of

(M -05K +1).

Seps.

1) Since the 05K x (M +1) matrix V defined by (11) isa
Vandermonde matrix and since 0.5K < M, itwill havea
full row rank, i.e.,

p(v) =05k . (B1)
2) The heuristic step: Since the two matrices V of (11) and C of

(31) havefull row ranks, the square partitioned matrix ﬁ E

is conjectured to have afull row rank and consequently to be
nonsingular. Although this may not be truein general for any
two matrices, the fact that V and C have completely different
structures supports the conjecture.

3) Since the diagona meatrix D defined by (12)-(14) is
nonsingular, one gets from (34) and the above step that:

(B2

o(P) = p%% M +1.

4) Since matrix Sdefined by (32) is nonsingular, one gets:
p(sc)=p(c)=m -o05K +1. (83)

5) Since the diagona matrix T defined by (25)-(27) is
nonsingular, one gets from (34) and the above step that:

p(Q) = p%o(:%: p(sc)=m-osk +1. (B4
6) From (36) and the above step, one gets:
p(A)=p(Q)=M -05K +1. (B5)

In the above development only the second step is heuristic.
Actually extensive numerical investigation has shown that Pis
nonsingular.

REFERENCES

[1] G. Strang and T. Nguyen, Wavelets and Filter Banks,
Welledey, MA: Wellesley-Cambridge Press, 1996.

[2] C. Herley and M. Vetterli, "Wavelets and recursive filter
banks," IEEE Transactionson Sgnal Processing, vol. 41,
pp. 2536-2556, Aug 1993.

[3] X. Zhang, A. Kato and T. Yoshikawa, "A new class of
orthonormal symmetric wavelet bases using a complex
allpass filter,” |IEEE Transactions on Signal Processing,
vol. 49, pp. 2640-2647, November 2001.

[4] P.P. Vaidyanathan, P.A. Regdiaand S.K. Mitra, "Design
of doubly complementary IIR digitd filtersusing asingle
complex alpass filter with multirate applications," IEEE
Transactions on Circuits and Systems, vol. CAS-34, pp.
378-389, April 1987.

[5] JR. Rice, The Approximation of Functions, vol. 1,
Reading, MA: Addison Wesley, 1964, pp. 55-66.

[6] JH. McCldlan and T.W. Parks, "Eigenvalue and
eigenvector decomposition of the discrete Fourier
transform,” |EEE  Transactions on Audio and
Electroacoustics, vol. AU-20, pp. 66-74, March 1972.

Table 1: The values of theinteger | in (21).

M even odd

n 0.25mr | —0.25r| 0.75m | —0.75
»(0.5m) 0 0 -0.57 | 05w

| 0 1 1 0
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