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ABSTRACT

This work is concerned with the design problem of a whole
sample symmetric filter bank where the lowpass and highpass
filters are defined in terms of a complex allpass filter. The design
problem reduces to the evaluation of the coeff icients of this
allpass filter. The regularity requirement of the filter bank leads
to a set of flatness constraints. The required frequency selectivity
of the filters is expressed as another set of constraints. The
combined set of constraints leads to a generalized eigenvalue
problem that can be reduced to a regular eigenvalue problem by
conjecturing a certain matrix to be nonsingular. The eigenvector
corresponding to the largest positive eigenvalue of the last
problem is the sought vector of the coeff icients of the allpass
filter.  

I. INTRODUCTION

The importance of the symmetry of the wavelet function stems
from the linear phase of the filters of the filter bank
corresponding to this wavelet. Although the FIR filter enjoys a
linear phase, the only symmetric wavelet corresponding to the
FIR filter is the Haar wavelet which is discontinuous [1]. In order
to obtain real-valued orthonormal wavelet bases with better
regularity than the Haar wavelet, Herley and Vetterli proposed a
class of IIR filters where the filter bank can be constructed using
real allpass filters [2]. Zhang et. al. proposed a class of real-
valued orthonormal symmetric wavelet bases where the
associated whole sample symmetric (WSS) paraunitary filter
banks are composed of a single complex allpass filter [3]. They
first arrived at the form of the transfer function of the allpass
filter, which satisfies the symmetry and orthonormali ty
conditions of wavelets. They second attacked the design problem
of paraunitary filter banks given the fact that the goals of wavelet
regularity and filter's frequency selectivity are in conflict. They
looked for filters having a given degree of flatness and optimal
phase response of the complex allpass filter.  

The main objective of the present paper is to rectify the work
done in [3] and extend it. First a matrix that has been erroneously
ignored in the eigenvalue formulation of the problem in [3] will
be brought out. Second another matrix will be conjectured to be
nonsingular and consequently the generalized eigenvalue
problem will be reduced to an ordinary eigenvalue problem to be
solved for the eigenvector corresponding to the largest positive
eigenvalue. Third some error that crept into [3] will be corrected.

II. THE COMPLEX ALLPASS FILTER

Let H(z) and G(z) be respectively the lowpass and highpass
filters of the two-band paraunitary filter bank that generates
orthonormal wavelet basis. In order to construct a WSS filter
bank where both the wavelet and scaling functions are
symmetric, the numerator degrees of H(z) and G(z) should be
even [2]. H(z) and G(z) can be constructed from a single
complex allpass filter A(z) as follows [4]:
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where )(
~

zA is obtained from )(zA by complex conjugating its
coefficients. The linear phase and orthonormali ty conditions
necessitate that )(zA has the form [3]:

( )

N
za

N
zja

N
za

N
zja

N
za

N
zja

N
za

N
zja

zjazazjaa

zjazazjaaN
z

j
ezA

−+−−−−−+−−−

+−+−+−+

+−−−+−−

++++−=

0
)1(

1
)2(

2
)3(

3

0
1

1
2

2
3

3

3
3

2
2

1
10

3
3

2
210

�

�

�

�

η

(3)

where sna '  are real coefficients, 10 =a , N is an even integer,

and πη 25.0±=  or πη 75.0±= . The phase response ( )ωθ  of

)(zA is given by:
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Since N is an even integer, it can be expressed as N = 2M and
one gets:
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III. THE FLATNESS CONDITIONS
.

The regularity of the filters can be expressed as the following
flatness conditions:
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The above two sets of conditions are equivalent since H(z) and

G(z) are orthogonal. Zhang et. al. [3] showed that the K
conditions of (9) can be reduced to the following K5.0  explicit
conditions:

0 =aVD (10)
where V is the )1(5.0 +× MK Vandermonde matrix:
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and D is the diagonal matrix:

{ }MdddDiagD ,,1,0
�= (12)

with its elements given by:


 −== 1,,1,0,    

odd i     5.0cot

even i                1
Miid �

η
(13)


=

odd M    5.0cot5.0

even M                 5.0

ηMd (14)

The elements of the column vector a in (10) are the coeff icients

of the allpass filter )(zA of (3), i.e.,

[ ]TMaaaa �
10= . (15)

The number of conditions K5.0  in (10) lies in the range
MK ≤≤ 5.00  where the extreme case of MK 2=

corresponds to the maximally flat filters.

IV. FREQUENCY SELECTIVITY CONDITIONS

Since the allpass filter is completely specified by its phase

angle ( )ωθ , the design problem reduces to the evaluation of

( )ωθ . It can be shown that the desired phase response of

)(zA is given by [3]:
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where pω  and sω  are the cutoff f requencies of the passband

and stopband of H(z) respectively and πωω =+ sp . The

corresponding desired ( )ωφ  can be obtained from (4) as:
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It can be shown from (5)-(7) that
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In order for ( )ωφd  of (17) to produce the symmetry expressed

by (19), the angle η  should be:
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Because of the symmetry of ( )ωφ  expressed by (19) about the

frequency πω 5.0= , the design problem reduces to the

approximation of ( )ωφd  in the passband ],0[ pωω ∈ .

In order to get an equiripple phase response ( )ωφ , one

imposes the following conditions:
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where the si 'ω  are extremal frequencies in the passband

],0[ pωω ∈  arranged as:

05.010 ≥−>>>= KMp ωωωω �  . (22)

In (21), pδ  is the phase error to be minimized and the integer l

is selected such that pδ  will always be positive. Some thought

about ( )ωφd of (17) and an optimal equiripple ( )ωφ

superimposed on it will l ead to the values of l  given in Table 1.

One should mention that those values of l  have been
erroneously interchanged in [3].

From (21), (5) and (17), one gets:
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where pδδ tan= .
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First one considers the case of even M and substitutes the
expressions of )(ωN  and )(ωD  from (6) and (7) in (23) to get:
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In order to put the above equation in a compact form, one defines
the diagonal matrix T as:

{ }MtttDiagT ,,1,0
�= (25)

where the diagonal elements are given by:
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Using the above definition and its counterpart for matrix D given
by (12)-(14), one can express (24) as:
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where vector a is defined by (15).
Second one considers the case of odd M and substitute (6) and

(7) in (23) to get:
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Using the definition of the diagonal matrices D and T, one
verifies that the above equation can be compactly expressed as
(28). Therefore (28) holds irrespective of M being even or odd.

Writing (28) for the )15.0( +− KM  extremal frequencies of
(22), one gets:

aTCSaDC        δ= (30)
where C is the )1()15.0( +×+− MKM  matrix:

















−−−

−
−

=

15.0)1cos(5.0cos

11)1cos(1cos

10)1cos(0cos

�

����

�

�

KMMKMM

MM

MM

C

ωω

ωω
ωω

(31)

and S is a diagonal matrix of order )15.0( +− KM  defined by:
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One should point out that matrix S did not appear in the
treatment of [3] since it was erroneously ignored.

V. COMBINED FLATNESS AND FREQUENCY
SELECTIVITY

In order to achieve the goals of wavelet regularity and filter's
frequency selectivity, one should aspire to achieve both the
flatness conditions (10), the equiripple conditions (30) and to
minimize the error δ . Combining the two sets of constraints (10)
and (30) one gets:
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In Appendix B, one will conjecture that matrix P  is
nonsingular and actually an extensive numerical investigation
showed that this is true. Consequently the generalized eigenvalue
problem of (33) reduces to the ordinary eigenvalue problem:

aaA   λ= (35)
where

QPA
1−=      and      δλ /1= . (36)

Since δ  should be positive and minimum, one should seek the
largest positive eigenvalue of A since (36) implies that

max/1min λδ = . Consequently the vector of coefficients a

which satisfies the combined constraint (35) and minimizes the
error δ  is the eigenvector of matrix A corresponding to the
maximum positive eigenvalue.

Since the extremal frequencies si 'ω  in (21) are not known

beforehand, one should use the Remez exchange algorithm [3].
In the extreme case of 0=K , one has the minimax frequency

response and matrix A of (36) reduces to:

TCSCDA   
11 −−= (37)

as can be seen from (34). The fact that matrix C in this case is
nonsingular will be proved in appendix A.

VI. CONCLUSION

A complex allpass filter has been designed and used as the
building block for the lowpass and highpass filters of a whole
sample symmetric filter bank. The problem formulation has
involved a generalized eigenvalue problem that has been reduced
to a regular eigenvalue problem by showing that a certain matrix
is nonsingular.  

APPENDIX A

Fact: The )1()15.0( +×+− MKM  matrix C defined by (31)
has a full row rank.
Proof:
One starts by stating the following definition and theorems:

Definition: A set of ( )1+M  functions

( ) ( ) ( ){ }ωφωφωφ M,,1,0
�  on ],[ ba  is a Chebyshev set on

],[ ba  iff for all Mααα ,,1,0
�  the linear combination

( )∑
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i ii0
ωφα  has at most M distinct zeroes on ],[ ba  [5].
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Theorem 1: If ( ) ( ){ }ωφωφ M,,0 �
 is a Chebyshev set on

],[ ba , then the square matrix:
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is nonsingular provided that Mωω ,,0 �
 are distinct points in

],[ ba  [5].

Theorem 2: { }ωωω Mcos,,2cos,cos,1
�

 is a Chebyshev set on

],0[ π  [6].

One first considers the case of 0=K  and denotes the square

matrix C  of (31) by sC . Since the frequencies Mωω ,,0 �  are

distinct by virtue of (22) and lie in the interval ],0[],0[ πω ⊂p ,

the above two theorems imply that sC  is nonsingular.

In the case of 0>K , matrix C of (31) will be formed by the

first )15.0( +− KM  rows of the nonsingular matrix sC , and

consequently it will have a full-row rank.

APPENDIX B

Conjecture: Matrix P defined by (34) is nonsingular and
consequently matrix A defined by (36) has a rank of

)15.0( +− KM .
Steps:
1) Since the )1(5.0 +× MK  matrix V defined by (11) is a

Vandermonde matrix and since MK ≤5.0 , it will have a
full row rank, i.e.,

( ) KV 5.0=ρ . (B1)

2) The heuristic step: Since the two matrices V of (11) and C of

(31) have full row ranks, the square partitioned matrix 



C

V

is conjectured to have a full row rank and consequently to be
nonsingular. Although this may not be true in general for any
two matrices, the fact that V and C have completely different
structures supports the conjecture.

3)  Since the diagonal matrix D defined by (12)-(14) is
nonsingular, one gets from (34) and the above step that:
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4)  Since  matrix S defined by (32) is nonsingular, one gets:

( ) ( ) 15.0 +−== KMCCS ρρ . (B3)

5)  Since the diagonal matrix T defined by (25)-(27) is
nonsingular, one gets from (34) and the above step that:

( ) ( ) 15.0 
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6)  From (36) and the above step, one gets:

( ) ( ) 15.0 +−== KMQA ρρ . (B5)

In the above development only the second step is heuristic.
Actually extensive numerical investigation has shown that P is
nonsingular.
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Table 1: The values of the integer l  in (21).

M even odd
η π25.0 π25.0− π75.0 π75.0−

( )πφ 5.0 0 0 π5.0− π5.0

l 0 1 1 0
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