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Abstract

The least mean fourth (LMF) agorithm is known for its
fast convergence and lower steady state error, especially
under sub-Gaussian noise conditions. Meanwhile, the
recent work on the normaised versions of LMF
algorithm has further enhanced its stability and
performance in both Gaussian and sub-Gaussian nhoise.
For example, the normalissd LMF (XE-NLMF)
algorithm, recently developed, is normalised by the
mixed signal power and error power, and weighted by a
fixed mixed-power parameter. Unfortunately, this
algorithm depends on the selection of this mixing
parameter. To overcome this obstacle, in this work, a
time-varying mixed-power parameter technique is
introduced to optimise its selection. An enhancement in
performance is obtained through the use of this
procedure in both the convergence rate and steady-state
error.

1 Introduction

The LMF agorithm belongs to the class of
stochastic gradient descent based algorithms, similar to
the least mean square (LM S) agorithm [1]. The power of
LMF lies in its faster initial convergence and lower
steady state error relative to the LMS agorithm. More
importantly, its mean fourth error cost function is
optimum for noise of sub-Gaussian nature [2], or light-
tailed probability-density- function-like noise [3].

However, this higher order agorithm requires a
much smaller step size to ensure stable adaptation [4].
Where, the error power three in the LMF gradient vector
can cause devastating initial instability. Therefore, it
causes unnecessary performance degradation. The
solution that is proposed is to normalise the step size as
developedin[5, 6].
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Although, both normalisation techniques are quite
similar, the XE-NLMF [6] offers more flexibility to gain,
eventualy more improvement in performance. The
recursive equation for the XE-NLMF agorithm is
defined as follows [6]:

w(n+1) =w(n) +
Vi€ (Mx(n) "
2 2
&+ @=N)xm)” +A|em)]

where vy, represents the step size, w(n) is the filter
coefficient vector of the adaptive filter, x(n) is the input
vector and e(n) is the error vector. It is shown in
equation (1) that the LMF is normalised by the signal
power and error power, which is balanced by a mixed-
power parameter (A). Combining signal power and error
power has the advantage that the former normalise input
signal, while the error power can dampen down the
outlier estimation errors. Thus improving stability while
still providing fast convergence speed.

In general the adaptation scheme defined in (1) can
be set up into the following:

w(n+1) = w(n) + yief(e(n))x(n), @)

where f(e(n)) denotes a general scalar function of the
output estimation error e(n). Table 1 defines f(e(n)) for
many famous special cases of (2).

This paper is an extension of the XE-NLMF
algorithm [6]. Instead of a fixed value A, a variable A(n)
is proposed. The value of this mixed-power parameter
will compromise between fast convergence and lower
steady state error. Therefore, incorporating a variable
value for the mixed-power parameter is prudent and
desirable for better adaptive performance.

ICASSP 2003




Algorithm f(e(n))
LMS €(n)
LMF e3(n)
€(n)
NLMS ||x(n)||2
e(n)
NLMF [5] “X (n)||2
e(n)
XENLMF 6] 5+(1- )\)llx(n)||2 + )\lle(n)||2
Sign-LMS sign(e(n)]

Table 1: Examplesfor f(e(n)).

This algorithm finds great applications in
environments with highly dynamic channels. The time
variations of the mixing parameter allow the algorithm to
follow the changes in the channel as opposed to the same
agorithm with fixed mixing parameter.

2. Variable Normalised XE-NLMF
Algorithm

The mixing power parameter is confined to the
interval [0,1] and will be weighted recursively to adjust

the signal power, ||x(n)||2, and error power, ||e(n)||2, for
the best performance. The error is defined as:

e(n) = d(n) - w'(n)x(n). 3

Here, we propose an error sguare feedback
according to [7]:

H(n+1) = vp(n) + p(n)le(n)e(n-1)|, (4)

where the quantity e(n)e(n-1) determines the distance of
w(n) to the optimum weights, || denotes the absolute
value operation, p(n) is updated according to the sum of
past three samples of A (n) in the following way:

p(n) = [A(n-2) + A(n-1) + A(n)]a, ©)
and a and v are constants.
With this averaging, the recursion curve of p(n) can

be more flexibly controlled. The error power estimate is
then used to guide the A(n), as follows:

A(n) = erf{u(n)}, (6)

where erf{-} is an error function with the purpose to
constrain the u(n) to [0,1]. The parameters v and p are
also restricted to the interval [0,1]. To avoid zero in the
feedback loop, the initial value of pis set at p(0) = 0.5.

This scheme provides an automatic adjustment to
A(n) according to the estimation of error square. When
the estimation error is large, A will approach unity and
provide fast adaptation. While when the error is small
(converged), A is adjusted to a smaller value for lower
steady error. Based on this motivation, the proposed
variable normalised XE-NLMF algorithmis expressed as
follow:

w(n+1) =w(n) +
¥,.£2()x(n)

5+ @- A Ao’

For this algorithm, the mixed-power parameter will take
on the role of aforgetting factor.

3. Convergence Analysis
The mean convergence is studied with expectation
of the weight error deviation, v(n) = w(n) - w*.
Following the LMF convergence analysisin [2] and [6],
the difference equation for the weight error is defined as
follows:

E{v(n+1)} =[I - 3yE(n* ()} RIE{v(n)}. ©)

Hence the mean convergence for XE-NLMF is examined
by replacing y with the normalised step size, asfollows:

E{v(n+1)} =[I-

VBN (MR .o 9
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where ||x(n)||2: 02 and ||e(n)||2:0§. For tr[R] = No)z(,

ageneral condition for equation (9) to hold is:
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Two conditions for stability are observed in
equation (10). That is for A(n) = 1 and A(n) = 0. It
therefore, can be seen as a balance normalisation in the
variable normalised XE-NLMF agorithm. The effect of
A can be seenin Figure 1.
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The error is usually larger during the initial
adaptation and gradually decreases toward a minimum.

Therefore, the signal power, ||x(n)||2, will act as a

threshold to avoid large step size when the error
converges to a minimum. The combination of

@A) @+ A Jem)]*has the advantage  of
normalising the input signal power and an improved
stability where the ||e(n)||2 will dampen down the outlier

distribution of €%(n) in the recursive updating equation of
XE-NLMF algorithm.
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Figure 1. Effect of A in the XE-NLMF algorithm.

4. Simulation Results
In the first experiment, a system identification set
up is used to evaluate the algorithm’s performance. The
unknown system is modelled by a N=10 time-invariant
FIR filter with the following weights:

w* = [0.035 -0.068 0.12 -0.258 0.9 -0.25 0.10 -0.07
0.067 -0.067]".

Theinput signal x(n) is obtained by passing awhite
Gaussian noise u(n) through a channel, x(n) = x(n-1) +
0.6u(n); coloured input signal. The signal to noiseratio is
set at 20dB. Two types of additive noises (n(n)) are to be
tested, white Gaussian noise and binary additive noise
(sub-Gaussian). The performance considered is the
normalised weight error norm, 10log10(|w* - w(n)|f* /
w*|[?). 300 independent runs will average the results.
The step size for the XE-NLMF and the proposed
variable normalised XE-NLMF agorithm is set to the
same value, Yy = 0.1. The NLMS step size is pyms = 0.2.
Other parametersarev = 0.98 and a=0.9.

In Figure 1, the convergence and steady state error
of different A values affect the XE-NLMF performance,
significantly. Thus, alarger value for A is desired for fast
convergence and smaller value for lower steady state
error.
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Figure 2. Convergence performance for the proposed

algorithm, the XE-NLMF agorithm (A= 0.9) and the
NLMS algorithm in white Gaussian noise.

Figure 2 demonstrates the convergence behaviour
of the proposed variable normalised XE-NLMF, the XE-
NLMF and the NLMS agorithms under the same
convergence rate, in white Gaussian noise. As can be
seen in this result that the variable normalised XE-
NLMF agorithm adapts faster than the XE-NLMF and
NLMS algorithms. At the same time, producing lower
steady state weight error norm of more than 15dB.
Hence, this has demonstrated the advantages of
incorporating a variable mixed-power parameter for
further improvement of the XE-NLMF algorithm.

For the Binary additive noise in Figure 3, again it
demonstrates the variable normalised XE-NLMF
algorithm fast convergence and with lower steady state
error. An Improvement of about 25dB in weight error
norm over the NLMS agorithm can be seen. This has
showed that this LMF-based agorithm is better for sub-
Gaussian noise. While, the convergence and steady state
error of the NLMS is about the same under Binary noise.

In the second experiment, a channel equaliser is
used to determine performance in terms of bit error rate
(BER) on the proposed variable normalised XE-NLMF
algorithm. The channel equalisation set up will be similar
to [6], the channel is h(z) = 1 + 0.4z* and a co-channel

c(z)=1+0.2z%
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Figure 3. Convergence performance in Binary additive

noise.
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Figure 4. The BER performancein AWGN.

The BER result in AWGN (SNR) is shown in
Figure 4 and with co-channel interference (SIR) in
Figure 5. This demonstrates that the incorporated
variable normalisation does not affect the BER
performance. As expected in White Gaussian noise
(AWGN) the BER performance is similar for the
compared algorithms. In sub-Gaussian noise of co-
channel interference, the XE-NLMF and the proposed

variable normalised have produce 2dB improvement in
BER over the NLM S agorithm.

5. Conclusions
This work has proposed a variable normalised XE-
NLMF agorithm with a variable mixed-power parameter
(A). The variable mixed-power parameter follows the
scheme of variable step sizeLMS and is effective in
controlling the mixed-power parameter. This variable
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normalisation strategy provides an optimised mixed
normalisation of signa power and error power for the
LMF agorithm. Thus, removing the user selection of the
mixed-power parameter and provides extra performance
gain from the XE-NLMF agorithm. Under the sub-
Gaussian noise, the performance improvement becomes
more apparent. Thus, the variable normalised XE-NLMF
algorithm is able to produce better adaptive performance

in the sub-Gaussian noise and also in Gaussian noise
conditions.
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Figure 5. The BER performance in a co-channel
interference.
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