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Abstract  

The least mean fourth (LMF) algorithm is known for its 
fast convergence and lower steady state error, especially 
under sub-Gaussian noise conditions. Meanwhile, the 
recent work on the normalised versions of LMF 
algorithm has further enhanced its stability and 
performance in both Gaussian and sub-Gaussian noise. 
For example, the normalised LMF (XE-NLMF) 
algorithm, recently developed, is normalised by the 
mixed signal power and error power, and weighted by a 
fixed mixed-power parameter. Unfortunately, this 
algorithm depends on the selection of this mixing 
parameter. To overcome this obstacle, in this work, a 
time-varying mixed-power parameter technique is 
introduced to optimise its selection. An enhancement in 
performance is obtained through the use of this 
procedure in both the convergence rate and steady-state 
error.    

1 Introduction  
The LMF algorithm belongs to the class of 

stochastic gradient descent based algorithms, similar to 
the least mean square (LMS) algorithm [1]. The power of 
LMF lies in its faster initial convergence and lower 
steady state error relative to the LMS algorithm. More 
importantly, its mean fourth error cost function is 
optimum for noise of sub-Gaussian nature [2], or light-
tailed probability-density- function-like noise [3].    

However, this higher order algorithm requires a 
much smaller step size to ensure stable adaptation [4]. 
Where, the error power three in the LMF gradient vector 
can cause devastating initial instability. Therefore, it 
causes unnecessary performance degradation. The 
solution that is proposed is to normalise the step size as 
developed in [5, 6].   

Although, both normalisation techniques are quite 
similar, the XE-NLMF [6] offers more flexibility to gain, 
eventually more improvement in performance. The 
recursive equation for the XE-NLMF algorithm is 
defined as follows [6]:  

w(n+1) = w(n) + 
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where γxe represents the step size, w(n) is the filter 
coefficient vector of the adaptive filter, x(n) is the input 
vector and e(n) is the error vector. It is shown in 
equation (1) that the LMF is normalised by the signal 
power and error power, which is balanced by a mixed-
power parameter (λ). Combining signal power and error 
power has the advantage that the former normalise input 
signal, while the error power can dampen down the 
outlier estimation errors. Thus improving stability while 
still providing fast convergence speed.   

In general the adaptation scheme defined in (1) can 
be set up into the following:  

w(n+1) = w(n) + γxe f(e(n))x(n),     (2)  

where f(e(n)) denotes a general scalar function of the 
output estimation error e(n). Table 1 defines f(e(n)) for 
many famous special cases of (2).   

This paper is an extension of the XE-NLMF 
algorithm [6]. Instead of a fixed value λ, a variable λ(n) 
is proposed. The value of this mixed-power parameter 
will compromise between fast convergence and lower 
steady state error. Therefore, incorporating a variable 
value for the mixed-power parameter is prudent and 
desirable for better adaptive performance.  
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Table 1: Examples for ))(( nef .   

This algorithm finds great applications in 
environments with highly dynamic channels. The time 
variations of the mixing parameter allow the algorithm to 
follow the changes in the channel as opposed to the same 
algorithm with fixed mixing parameter.  

2. Variable Normalised XE-NLMF 
Algorithm 

The mixing power parameter is confined to the 
interval [0,1] and will be weighted recursively to adjust 

the signal power, 
2

)(nx , and error power, 
2

)(ne , for 

the best performance. The error is defined as:  

e(n) = d(n) - wT(n)x(n).   (3)  

Here, we propose an error square feedback 
according to [7]:  

µ(n+1) = νµ(n) + p(n)|e(n)e(n-1)|,  (4)  

where the quantity e(n)e(n-1) determines the distance of 
w(n) to the optimum weights, |·| denotes the absolute 
value operation, p(n) is updated according to the sum of 
past three samples of λ (n) in the following way:  

p(n) = [λ(n-2) + λ(n-1) + λ(n)]a,  (5)  

and a and ν are constants.   

With this averaging, the recursion curve of µ(n) can 
be more flexibly controlled. The error power estimate is 
then used to guide the λ(n), as follows:  

λ(n) = erf{µ(n)},   (6)  

where erf{·} is an error function with the purpose to 
constrain the µ(n) to [0,1]. The parameters ν and p are 
also restricted to the interval [0,1]. To avoid zero in the 
feedback loop, the initial value of p is set at p(0) = 0.5.   

This scheme provides an automatic adjustment to 
λ(n) according to the estimation of error square. When 
the estimation error is large, λ will approach unity and 
provide fast adaptation. While when the error is small 
(converged), λ is adjusted to a smaller value for lower 
steady error. Based on this motivation, the proposed 
variable normalised XE-NLMF algorithm is expressed as 
follow:  

w(n+1) = w(n) + 
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For this algorithm, the mixed-power parameter will take 
on the role of a forgetting factor.  

3. Convergence Analysis 
The mean convergence is studied with expectation 

of the weight error deviation, v(n) = w(n) - w*. 
Following the LMF convergence analysis in [2] and [6], 
the difference equation for the weight error is defined as 
follows:  

E{v(n+1)} = [I - 3γE{η2(n)}R]E{v(n)}.  (8)  

Hence the mean convergence for XE-NLMF is examined 
by replacing γ with the normalised step size, as follows:  

E{v(n+1)} = [I-
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where 
2

)(nx = 2
xσ and 

2
)(ne = 2

eσ . For tr[R] = N 2
xσ , 

a general condition for equation (9) to hold is:  
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Two conditions for stability are observed in 
equation (10). That is for λ(n) = 1 and λ(n) = 0. It 
therefore, can be seen as a balance normalisation in the 
variable normalised XE-NLMF algorithm. The effect of 
λ can be seen in Figure 1.  
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The error is usually larger during the initial 

adaptation and gradually decreases toward a minimum. 

Therefore, the signal power, 
2

)(nx , will act as a 

threshold to avoid large step size when the error 
converges to a minimum. The combination of               

(1-λ(n))
2

)(nx + λ(n)
2

)(ne has the advantage of 

normalising the input signal power and an improved 

stability where the 
2

)(ne will dampen down the outlier 

distribution of e3(n) in the recursive updating equation of 
XE-NLMF algorithm. 

 

Figure 1. Effect of λ in the XE-NLMF algorithm.  

4. Simulation Results 
In the first experiment, a system identification set 

up is used to evaluate the algorithm’s performance. The 
unknown system is modelled by a N=10 time-invariant 
FIR filter with the following weights:  

w* = [0.035 -0.068 0.12 -0.258 0.9 -0.25 0.10 -0.07 
0.067 -0.067]T.  

The input signal x(n) is obtained by passing a white 
Gaussian noise u(n) through a channel, x(n) = x(n-1) + 
0.6u(n); coloured input signal. The signal to noise ratio is 
set at 20dB. Two types of additive noises (η(n)) are to be 
tested, white Gaussian noise and binary additive noise 
(sub-Gaussian). The performance considered is the 
normalised weight error norm, 10log10(||w* - w(n)||2 / 
||w*||2). 300 independent runs will average the results. 
The step size for the XE-NLMF and the proposed 
variable normalised XE-NLMF algorithm is set to the 
same value, γxe = 0.1. The NLMS step size is µnlms = 0.2. 
Other parameters are ν = 0.98 and a = 0.9.   

In Figure 1, the convergence and steady state error 
of different λ values affect the XE-NLMF performance, 
significantly. Thus, a larger value for λ is desired for fast 
convergence and smaller value for lower steady state 
error. 

 

Figure 2. Convergence performance for the proposed 
algorithm, the XE-NLMF algorithm (λ= 0.9) and the 

NLMS algorithm in white Gaussian noise.  

Figure 2 demonstrates the convergence behaviour 
of the proposed variable normalised XE-NLMF, the XE-
NLMF and the NLMS algorithms under the same 
convergence rate, in white Gaussian noise. As can be 
seen in this result that the variable normalised XE-
NLMF algorithm adapts faster than the XE-NLMF and 
NLMS algorithms. At the same time, producing lower 
steady state weight error norm of more than 15dB. 
Hence, this has demonstrated the advantages of 
incorporating a variable mixed-power parameter for 
further improvement of the XE-NLMF algorithm.    

For the Binary additive noise in Figure 3, again it 
demonstrates the variable normalised XE-NLMF 
algorithm fast convergence and with lower steady state 
error. An Improvement of about 25dB in weight error 
norm over the NLMS algorithm can be seen. This has 
showed that this LMF-based algorithm is better for sub-
Gaussian noise. While, the convergence and steady state 
error of the NLMS is about the same under Binary noise.   

In the second experiment, a channel equaliser is 
used to determine performance in terms of bit error rate 
(BER) on the proposed variable normalised XE-NLMF 
algorithm. The channel equalisation set up will be similar 
to [6], the channel is h(z) = 1 + 0.4z-1 and a co-channel 
c(z) = 1 + 0.2z-1. 

λ = 0.9

 

λ = 0.5

 

λ = 0.1
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Figure 3. Convergence performance in Binary additive 
noise.  

 

Figure 4. The BER performance in AWGN.  

The BER result in AWGN (SNR) is shown in 
Figure 4 and with co-channel interference (SIR) in 
Figure 5. This demonstrates that the incorporated 
variable normalisation does not affect the BER 
performance. As expected in White Gaussian noise 
(AWGN) the BER performance is similar for the 
compared algorithms. In sub-Gaussian noise of co-
channel interference, the XE-NLMF and the proposed 
variable normalised have produce 2dB improvement in 
BER over the NLMS algorithm.   

5. Conclusions 
This work has proposed a variable normalised XE-

NLMF algorithm with a variable mixed-power parameter 
(λ). The variable mixed-power parameter follows the 
scheme of variable step size-LMS and is effective in 
controlling the mixed-power parameter. This variable 

normalisation strategy provides an optimised mixed 
normalisation of signal power and error power for the 
LMF algorithm. Thus, removing the user selection of the 
mixed-power parameter and provides extra performance 
gain from the XE-NLMF algorithm. Under the sub-
Gaussian noise, the performance improvement becomes 
more apparent. Thus, the variable normalised XE-NLMF 
algorithm is able to produce better adaptive performance 
in the sub-Gaussian noise and also in Gaussian noise 
conditions.  

 

Figure 5. The BER performance in a co-channel 
interference.  
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