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ABSTRACT

Recently, the authors developed a new synthesis technique for the
design of higher-order Bode-type variable-amplitude (VA) wave-
digital (WD) equalizers. Thesalient feature of the resulting VAWD
equalizersis that they permit the continuous variation of the WD
equalizer transfer function from a shaping transfer function to its
inverse by changing the value of asingle variable digital multiplier
only. The proposed design technique was based on the WD real-
ization of the corresponding positive-real anal og prototype shaping
impedancefunction, and on the realization of the equalizer transfer
function as the refl ectance of the shaping impedance function with
respect to the constituent variable digital multiplier. This paper
is concerned with an investigation of the bounded-input bounded-
output (BIBO) stability of general-order VA WD equalizers. It is
shown that the resulting conditions are both necessary and suffi-
cient for the BIBO stability of the VA WD equalizersfor the entire
range of valuesfor the variable digital multiplier. Theseconditions
can be checked in a straightforward fashion in terms of the char-
acteristics of the shaping transfer function alone. An application
exampleis given to illustrate the main results.

1. INTRODUCTION

In his classical paper more than than six decadesago, Bode [1] in-
troduced the concept of variable-amplitude (VA) analog equalizers.
These equalizers are capable of varying the gain associated with
various frequency bands along the audio signal frequency spec-
trum, and find practical applicationsin multimedia, digital audio,
digital signal enhancement/correction and hearing aids.

The magnitude-frequency response characteristic of a Bode-
type VA analog equalizer satisfiesa relationship of the form

ry + Ts(s)

T'U (S) = 71 ) Tv (s) s

@
where Ty (s) is the transfer function of the VA egualizer, where
T (s) isafixed shaping transfer function, and wheres = jw isthe
continuous-time (analog) complex frequency-variable. Moreover,
ry = Ry/Rg, where R, isa(positive) variable resistor, and where
Rq is asuitable reference resistance. In this way, the variation of
ry from 0 (via 1) to oo resultsin ageometrical variation of [Ty (s)|
from | Ty (jw)| (vial) to | Ty (jw)|_1. Equivalently, the variation
of r, from 0 (via 1) to oo results in an arithmetical variation of
Ty (j)lap from | Ty(jw)lqp (Via0dB) to —|Ts(je)|4p-

In aprevious paper [2], the authors devel oped a synthesistech-
nique for the design of higher-order Bode-type VA wave-digital
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(WD) [3] equalizers consisting of one single variable digital mul-
tiplier only. This design technique was based on the derivation of
acorresponding positive-real analog prototype shapingimpedance
function, onthe WD realization of the prototype shaping impedance
function (employing the bilinear analog-to-digital frequency trans-
formation), and on the realization of the desired equalizer transfer
function as the refl ectance of the shaping impedancefunction with
respect to the constituent variable digital multiplier.

This paper is concerned with an investigation of the bounded-
input bounded-output (BIBO) stability of general-order VA WD
equalizers. Theseinvestigationsare carried out in terms of the ana-
log prototype equalizer transfer function by recognizing the fact
that the bilinear analog-to-digital frequency transformation pre-
serves the BIBO stability or instability in the corresponding VA
WD equalizer.

2. THEORETICAL BACKGROUND

L et usconsider acontinuous-time anal og prototy pe shaping transfer
function T (s) satisfying the following constrants:

Constraint 1: The analog prototype shaping transfer function
Ts(s) isareal rational function of s (in order for T (s) to bereal-
izable).

Constraint 2: a) 0 < |Ty(jw)| < 1 (used in what follows), or b)
1 < |Ts(jw)| < oo for al w (in order for the sign of |Tv({‘w)|d3
remain unchangedasr, variesin the “half-interval” 0 to 1-)
Theorem 1: In order for the analog prototype equalizer transfer
function T, (s) to be aBIBO stable transfer function for all values
of the variable resistor r,,, the shaping transfer function 7 (s) must
be a minimum-phase function.

Proof: SinceT,(s) = Ts(s) forr, = 0,andsinceT,(s) = 1/ Ty(s)
for r, = oo (c.f. Eqgn. 1), in order for T, (s) to be aBIBO stable
transfer function, it is necessary that both 7 (s) and 1/ T, (s) be
BIBOstabletransfer functions. Thisimpliesthat theshpingtransfer
function T (s) must be a minimum-phase function.

Theorem 2: T (s) must be also a strictly minimum phase transfer
function.

Proof: Since |T(jw)| and |1/ T(jw)| are both bounded for all
valuesof w (c.f. Constraint 2), T (s) must be devoid of both poles
and zeros on the imaginary axis of the complex s-plane. Conse-
quently, the minimum-phase transfer function 7 (s) (c.f. Theorem
1) must also be a strictly minimum-phase function.

1Dueto its symmetrical variation, sign of |7}, (jw)|;p @so remainsun-
changed when r,, variesin the other “half-interval”, i.e. from 1to co.
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Let us assume that the shaping transfer function T (s) is of
general order n, having amagnitude-response characteristic which
satisfies the high-level system design specifications

g7 <IT(jw) weQ, )
W <|Ty(jo)l< p~t for we Qq, €

<1 for

where Q, (€2,) represents the passband (stopband) frequency re-
gion(s) of the transfer function Ty (s), and whereh > p > g > 1
are equalizer design parameters. Moreover, let us define a pair of
strictly BIBO stablereal rational continuous-timetransfer functions
Ty (s) of orders i, in accordancewith

N (s)

Tin(s) = Do (5)

for m=12, 4

where Ny, (s) representsthenumerator polynomial, and where D, (s)
represents the denominator polynomial of 7, (s). In addition, let
the transfer functions T;,, (s) possessa pair of magnitude-response
characteristics satisfying the system design specifications

0<—|Tn(jo)lap= Apm for
—|Tm(jo)lap > Aam for

€ Qpm, (5)
® € Qs (6)

in terms of passband ripples (stopband losses) Ay, (Aam), and
in terms of passhand (stopband) frequency region(s) 2, (Qam)-
Finally, let the transfer functions 7y, (s) have the sameordersny =
no = n, and havethesame passband (stopband) frequency region(s)
Qpl = QpZ =Qq (1= Q2= Qp)-

Theorem 3: The shaping transfer function T (s) satisfying the
above specifications can be derived as

1T(s)
Ts(s) = = 7
O =i e ¥
provided that
h? -1 h?—1
A,1 = 10log 71 and Aa1=10Iogq2_1, (8)
and
P2 <h2 _ 1) q2 <h2 — 1)
App =10log —-———7+ and A,p = 10log ————+-.
! h2 (p? - 1) ‘ h? (g2 = 1) (g)
Proof: See[2].

The transfer functions Ty, (s) will have the same numerator
polynomials (to within multiplication by aconstant) in accordance
with

Nao(s) = hN1(s) = N(s). (10)
Therefore, from Egns. 10, 7 and 4,
T (s) = D1(s)/ D2(s), (11)

rendering T (s) asastrictly minimum-phasetransfer function (c.f.
Theorem 2).

3. VAWD EQUALIZER REALIZATION

Let us define a normalized driving-point impedance function Z (s)
in accordancewith

2(5‘) _ TS(S) -1

RO (12)

Theorem 4: Z(s) in Eqgn. 12 isapositive-real impedancefunction.
Proof: Accordingto Talbot [4], Z(s) is a positive-real impedance
function since T (s) has no polesin the right-half of the complex
s-plane (c.f. Theorem 2), and since |T5(jw)| is bounded for al w
(c.f. Constraint 2).

Intermsof Brune's sections, the driving-pointimpedance func-
tion Z(s) can be realized as shown in Fig. 1, where the leftmost
parallel tuned section realizes possible zerosat s = 0 and s = oo,
and where the remaining part realizes a minimum impedancefunc-
tion [4]. Inthisway, by using Egn. 12, T (s) can be expressed in

Ly Ly
eoe A AT eee —

@iz
L

Figure 1. The normalized driving-point impedance function Z(s).

terms of Z(s) in accordancewith

(13)

Then, by invoking Eqn. 13 in Egn. 1, and by manipulating the
resulting equation, one obtains

2 o
Ty(s) = 28 ", (14)
Z(s)+ 1y
where
Py = i* y (15)
-

Therefore, the transfer function 7y, (s) can be realized as the re-
flectanceof Z(s) with respect to 71,,, leading to the desired VA WD
equalizer as shown Fig. 2. The resulting WD equalizer realizes a
transfer function

Ty,wp(z) = B2(2)/ E(2), (16)

where Ty, wp (z) isrelated to Ty (s) through the bilinear anal og-to-
digital frequency transformation s = 2 f; ;__—% where z represents
the discrete-time (digital) complex-frequency variable, and where
fs represents the sampling frequency.

The VAWD redlization in Fig. 2 consists(from left to right) of
aconventional parallel two-port adaptor [5] and achain of two-port
subnetworks, with each subnetwork being easily identified by using
the corresponding realizationsin Fig. 3 or their dualsin Fig. 4 [6].

In this VA WD equalizer realization, the desired variations in 7y,
can be implemented directly through the variation of the value of
thesingledigital multiplier m,, within theleftmost two-port parallel
adapter [2].

VI - 374




B, o a fe e q [ g0, [ a, [ )

Figure 2: The desired VA WD equalizer realization.
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Figure 3: WD redlizationsfor various two-port subnetworks.
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Figure4: WD realizations for various dual two-port subnetworks.

4. BIBO STABILITY INVESTIGATION FOR THE
RESULTING VA WD EQUALIZER

Itiswell knownthat thebilinear frequency transformation preserves
the BIBO stability or instability of the analog prototype equalizer
transfer function T, (s) in the resulting VA WD equalizer transfer
function T, w p (z). Therefore, without any loss in generality, the
investigations of BIBO stability can be carried out in terms of the
analog prototype equalizer transfer function 7y, (s).

The above BIBO stability wasinvestigated in Theorems 1 and
2 for theextremevaluesr, = 0andr, = oo of thevariableresistor
ry. Therefore, it remains to investigate the BIBO stability for the
intermediate values0 < r, < oo of r,. From Egns. 11and 1,

165y = 21O 1 Do(s) an
Da(s) + 4 D1(s)

Therefor, the BIBO stability of 7, (s) requires the examination of
the roots of the characteristic equation

K(s) = Da(s) +ryD1(s) = 0. (18)

Let usexpress T (s) in the general form

dio + digst + ...+ dy,s”

Ts(s) = )
5() dog +dorst + ...+ doys

(19)

wherethe coefficientsd,,; (fori = 1, 2, ..., n) are (or can be made)
non-negative?.

Theorem 5: The Characteristic equation K (s) in Eqn. 18 isdegree
invariant for all valuesof 0 < r, < oco.

Proof: From Eqgns. 19 and 18, K (s) will be degree-invariant pro-
vided that

do, + rydy, # 0. (20

Theproof is at once established by recognizing the fact that at least
one of the two (non-negative) coefficients do,, or dq, is non-zero,
and by recalling that 0 < r, < oo.

Theorem 6: In order for T, (s) to be BIBO stablefor all (interme-
diate) valuesO < r, < oo of thevariableresistor ry, it is sufficient
for T's(s) to be astrictly minimum-phase transfer function.

Proof: If K (s) isdegree-invariant, thentheroots of K (s) will vary
continuously along a constant number of root-locus branches [7].
Thetransfer function Ty, (s) will becomeBIBO unstableif and only
if one or more of the root-locus branches associated with K (s)
intersects the imaginary axis of the complex s-plane, i.e. if

1+ ryTs(jog) =0 (21)

for oneor morefreguencieswq. Sincer, isareal-valuedresistance,
Eqgn. 21 is equivalent to

S{Ts(jwo)} = 0and 1+ ryM {Ts (jwo)} = 0, (22)

where N {.} and I {.} represent the real and imaginary parts of {.},
respectively.

Inthisway, thetransfer function 7, (s) in Eqn. 17 will be BIBO
stablefor all valuesof 0 < r, < oo provided that,

when 3 {T; (jwg)} = 0, then 1+ r,% {T; (jawg)} > O.
(23

The real and imaginary parts of T, (jw) can be conveniently be

obtained as

R{D1(jo)} R {Da(jw)} + I {D1(jw)} I {D2(jw)}
R (D2(jo)}? + 3 {Da(jw))? (24)

My (jo)} =

and

~ . =R D1(jo)} I{D2(jw)} + I{D1(jw)} R{Da(jw)}
S{Ts(jo)} =

R (D2(jo))? + 3 {Da(jw))? (25)
From Eqgn. 25, when 3 {7 (jwg)} = 0,

R{D1(jwp)} I {D2(jwo)} + I {D1(jwo)} R {D2(jwp)} = 0.

(26)
Subsequently, from Eqgns. 26 and 24, when 3 {Ts(jwg)} = O,
NA{Ts(jowg)} = N{D1(jwo)} N{D2(jwo)} +
N{D1(jwy)} L2
——3{D . 27
N (Do) 3 {D2(jwo)} (27

2Thisis dueto the fact that D1(s) and Do(s) are strictly Hurwits poly-
nomials.
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But, R {D1(jw)} > 0and R {D2(jw)} > O for al values of w
(since D1 (s) and Do(s) are strictly Hurwitz polynomials). Conse-
quently, when 3 {Ts (jwg)} = O, W{Ts(jwg)} > O, giving rise to
satisfaction of Eqn. 23

Theorem 7: Subject to the satisfaction of Constraints 1 and 2, it is
both necessary and sufficient for theanal og prototypeshaping trans-
fer function T (s) to be astrictly minimum-phasetransfer function
if it is required that the corresponding VA W D equalizer transfer
function T,,w p (z) be BIBO stable for all values of the constituent
variable digital multiplier m,,.

Proof: The proof is at once established by taking into account The-
orems 3 and 6 together with the properties of the bilinear frequency
transformation (as pointed out before).

5. APPLICATION EXAMPLE

Let us consider the design of a fourth-order bandpass elliptic VA
WD equalizer satisfying the following specifications.
h =4.00 p=35 q=15
fp1=800Hz fp>=10.00 Hz
fa1=600Hz f,p=1200Hz 1/T =32.00 Hz

Then, A,1 = 1.249387366 dB, A,1 = 28.753975887 d B, and
App = 0.089548426 dB, A,» = 16.798711857 dB. Conse-
quently,

15

10

Magnitude Response, dB
o

2 4 6 8 10 12 14
Discrete-Time Frequency, Hz

Figure5: VAWD equalizer magnitude-frequency responsefor r, =
0,0.25,0.5, 1.0, 2.0, 5.0, cofrom bottom to top.
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Then, the variation of the magnitude-frequency response of the
corresponding VA WD equalizer as a function of the variable re-
sistor r, can be obtained as shown in Fig. 5. From Fig. 5, the
V A W D equalizer magnitude-frequency response exhibits the de-
sirable arithmetically symmetric variations (around 0 dB) for geo-
metrically symmetric variationsin r, values.

Finally, the root locus branches for the poles p; (for i =
1, 2, 3, 4) of the anal og prototype equalizer transfer function 75 (s)
asafunction of the variableresistor r, areasshowninFig. 6. From
Fig. 6, the poles of T, (s) remain in the left half of the complex s-
plane, rendering T, (s) asBIBO stable for the entire range of values
0 < ry < of thevariableresistor ry,.
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