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ABSTRACT
Recently, the authors developed a new synthesis technique for the
design of higher-order Bode-type variable-amplitude (VA) wave-
digital (WD) equalizers. The salient feature of the resulting VA WD
equalizers is that they permit the continuous variation of the WD
equalizer transfer function from a shaping transfer function to its
inverse by changing the value of a single variable digital multiplier
only. The proposed design technique was based on the WD real-
ization of the corresponding positive-real analog prototype shaping
impedance function, and on the realization of the equalizer transfer
function as the reflectance of the shaping impedance function with
respect to the constituent variable digital multiplier. This paper
is concerned with an investigation of the bounded-input bounded-
output (BIBO) stability of general-order VA WD equalizers. It is
shown that the resulting conditions are both necessary and suffi-
cient for the BIBO stability of the VA WD equalizers for the entire
range of values for the variable digital multiplier. These conditions
can be checked in a straightforward fashion in terms of the char-
acteristics of the shaping transfer function alone. An application
example is given to illustrate the main results.

1. INTRODUCTION

In his classical paper more than than six decades ago, Bode [1] in-
troduced the concept of variable-amplitude (VA) analog equalizers.
These equalizers are capable of varying the gain associated with
various frequency bands along the audio signal frequency spec-
trum, and find practical applications in multimedia, digital audio,
digital signal enhancement/correction and hearing aids.

The magnitude-frequency response characteristic of a Bode-
type VA analog equalizer satisfies a relationship of the form

Tv(s) = rv + Ts (s)

1 + rvTs(s)
, (1)

where Tv(s) is the transfer function of the VA equalizer, where
Ts(s) is a fixed shaping transfer function, and where s = jω is the
continuous-time (analog) complex frequency-variable. Moreover,
rv = Rv/R0, where Rv is a (positive) variable resistor, and where
R0 is a suitable reference resistance. In this way, the variation of
rv from 0 (via 1) to ∞ results in a geometrical variation of |Tv(s)|
from |Ts(jω)| (via 1) to |Ts(jω)|−1. Equivalently, the variation
of rv from 0 (via 1) to ∞ results in an arithmetical variation of
|Tv(jω)|dB from |Ts(jω)|dB (via 0dB) to −|Ts(jω)|dB .

In a previous paper [2], the authors developed a synthesis tech-
nique for the design of higher-order Bode-type VA wave-digital

(WD) [3] equalizers consisting of one single variable digital mul-
tiplier only. This design technique was based on the derivation of
a corresponding positive-real analog prototype shaping impedance
function, on the WD realization of the prototype shaping impedance
function (employing the bilinear analog-to-digital frequency trans-
formation), and on the realization of the desired equalizer transfer
function as the reflectance of the shaping impedance function with
respect to the constituent variable digital multiplier.

This paper is concerned with an investigation of the bounded-
input bounded-output (BIBO) stability of general-order VA WD
equalizers. These investigations are carried out in terms of the ana-
log prototype equalizer transfer function by recognizing the fact
that the bilinear analog-to-digital frequency transformation pre-
serves the BIBO stability or instability in the corresponding VA
WD equalizer.

2. THEORETICAL BACKGROUND

Let us consider a continuous-time analog prototype shaping transfer
function Ts(s) satisfying the following constrants:
Constraint 1: The analog prototype shaping transfer function
Ts(s) is a real rational function of s (in order for Ts (s) to be real-
izable).
Constraint 2: a) 0 < |Ts(jω)| ≤ 1 (used in what follows), or b)
1 ≤ |Ts(jω)| < ∞ for all ω (in order for the sign of |Tv(jω)|dB

remain unchanged as rv varies in the “half-interval” 0 to 11).
Theorem 1: In order for the analog prototype equalizer transfer
function Tv(s) to be a BIBO stable transfer function for all values
of the variable resistor rv, the shaping transfer function Ts(s) must
be a minimum-phase function.
Proof: Since Tv(s) = Ts(s) for rv = 0, and since Tv(s) = 1/Ts(s)

for rv = ∞ (c.f. Eqn. 1), in order for Tv(s) to be a BIBO stable
transfer function, it is necessary that both Ts(s) and 1/Ts(s) be
BIBO stable transfer functions. This implies that the shping transfer
function Ts(s) must be a minimum-phase function.
Theorem 2: Ts(s) must be also a strictly minimum phase transfer
function.
Proof: Since |Ts(jω)| and |1/Ts(jω)| are both bounded for all
values of ω (c.f. Constraint 2), Ts(s) must be devoid of both poles
and zeros on the imaginary axis of the complex s-plane. Conse-
quently, the minimum-phase transfer function Ts (s) (c.f. Theorem
1) must also be a strictly minimum-phase function.

1Due to its symmetrical variation, sign of |Tv(jω)|dB also remains un-
changed when rv varies in the other “half-interval”, i.e. from 1 to ∞.
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Let us assume that the shaping transfer function Ts(s) is of
general order n, having a magnitude-response characteristic which
satisfies the high-level system design specifications

q−1 ≤|Ts(jω)| ≤ 1 for ω ∈ �p, (2)

h−1 ≤|Ts(jω)|≤ p−1 for ω ∈ �a, (3)

where �p (�a ) represents the passband (stopband) frequency re-
gion(s) of the transfer function Ts (s), and where h > p > q > 1
are equalizer design parameters. Moreover, let us define a pair of
strictly BIBO stable real rational continuous-time transfer functions
Tm(s) of orders nm in accordance with

Tm(s) = Nm(s)

Dm(s)
for m = 1, 2, (4)

whereNm(s) represents the numeratorpolynomial, and whereDm(s)

represents the denominator polynomial of Tm(s). In addition, let
the transfer functions Tm(s) possess a pair of magnitude-response
characteristics satisfying the system design specifications

0 ≤ − |Tm(jω)|dB≤ Apm for ω ∈ �pm, (5)

− |Tm(jω)|dB ≥ Aam for ω ∈ �am, (6)

in terms of passband ripples (stopband losses) Apm (Aam), and
in terms of passband (stopband) frequency region(s) �pm (�am).
Finally, let the transfer functions Tm(s) have the same orders n1 =
n2 ≡ n, and have the same passband (stopband) frequency region(s)
�p1 = �p2 ≡ �a (�a1 = �a2 ≡ �p).
Theorem 3: The shaping transfer function Ts (s) satisfying the
above specifications can be derived as

Ts(s) = 1

h

T2(s)

T1(s)
, (7)

provided that

Ap1 = 10 log
h2 − 1

p2 − 1
and Aa1 = 10 log

h2 − 1

q2 − 1
, (8)

and

Ap2 = 10 log
p2

(
h2 − 1

)

h2
(
p2 − 1

) and Aa2 = 10 log
q2

(
h2 − 1

)

h2
(
q2 − 1

) .

(9)

Proof: See [2].
The transfer functions Tm(s) will have the same numerator

polynomials (to within multiplication by a constant) in accordance
with

N2(s) = hN1(s) ≡ N(s). (10)

Therefore, from Eqns. 10, 7 and 4,

Ts (s) = D1(s)/D2(s), (11)

rendering Ts(s) as a strictly minimum-phase transfer function (c.f.
Theorem 2).

3. VA WD EQUALIZER REALIZATION

Let us define a normalized driving-point impedance function Ẑ(s)

in accordance with

Ẑ(s) = Ts(s) − 1
Ts(s) + 1

, (12)

Theorem 4:Ẑ(s) in Eqn. 12 is a positive-real impedance function.
Proof: According to Talbot [4], Ẑ(s) is a positive-real impedance
function since Ts (s) has no poles in the right-half of the complex
s-plane (c.f. Theorem 2), and since |Ts(jω)| is bounded for all ω

(c.f. Constraint 2).
In terms of Brune’s sections, the driving-point impedance func-

tion Ẑ(s) can be realized as shown in Fig. 1, where the leftmost
parallel tuned section realizes possible zeros at s = 0 and s = ∞,
and where the remaining part realizes a minimum impedance func-
tion [4]. In this way, by using Eqn. 12, Ts(s) can be expressed in

L̂00 Ĉ00
R̂2f

L̂1i L̂3i

L̂2i

Ĉ2i

Figure 1: The normalized driving-point impedance function Ẑ(s).

terms of Ẑ(s) in accordance with

Ts(s) = 1 + Ẑ(s)

1 − Ẑ(s)
. (13)

Then, by invoking Eqn. 13 in Eqn. 1, and by manipulating the
resulting equation, one obtains

Tv(s) = − Ẑ(s) − r̂1v

Ẑ(s) + r̂1v

, (14)

where

r̂1v = 1 + rv

1 − rv
(15)

Therefore, the transfer function Tv(s) can be realized as the re-
flectance of Ẑ(s) with respect to r̂1v, leading to the desired VA WD
equalizer as shown Fig. 2. The resulting WD equalizer realizes a
transfer function

Tv,WD(z) = B2(z)/E(z), (16)

where Tv,WD(z) is related to Tv(s) through the bilinear analog-to-

digital frequency transformation s = 2fs
z−1
z+1 , where z represents

the discrete-time (digital) complex-frequency variable, and where
fs represents the sampling frequency.

The VA WD realization in Fig. 2 consists (from left to right) of
a conventional parallel two-port adaptor [5] and a chain of two-port
subnetworks,with each subnetwork being easily identified by using
the corresponding realizations in Fig. 3 or their duals in Fig. 4 [6].
In this VA WD equalizer realization, the desired variations in r̂1v

can be implemented directly through the variation of the value of
the single digital multiplier mv within the leftmost two-port parallel
adapter [2].
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Figure 2: The desired VA WD equalizer realization.
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Figure 3: WD realizations for various two-port subnetworks.
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Figure 4: WD realizations for various dual two-port subnetworks.

4. BIBO STABILITY INVESTIGATION FOR THE
RESULTING VA WD EQUALIZER

It is wellknown that the bilinear frequency transformation preserves
the BIBO stability or instability of the analog prototype equalizer
transfer function Tv(s) in the resulting VA WD equalizer transfer
function Tv,WD(z). Therefore, without any loss in generality, the
investigations of BIBO stability can be carried out in terms of the
analog prototype equalizer transfer function Tv(s).

The above BIBO stability was investigated in Theorems 1 and
2 for the extreme values rv = 0 and rv = ∞ of the variable resistor
rv. Therefore, it remains to investigate the BIBO stability for the
intermediate values 0 < rv < ∞ of rv. From Eqns. 11 and 1,

Tv(s) = D1(s) + rvD2(s)

D2(s) + rvD1(s)
(17)

Therefor, the BIBO stability of Tv(s) requires the examination of
the roots of the characteristic equation

K(s) = D2(s) + rvD1(s) = 0. (18)

Let us express Ts (s) in the general form

Ts (s) = d10 + d11s
1 + . . . + d1nsn

d20 + d21s1 + . . . + d2nsn
, (19)

where the coefficientsdmi (for i = 1, 2, ..., n) are (or can be made)
non-negative2.
Theorem 5: The Characteristic equation K(s) in Eqn. 18 is degree
invariant for all values of 0 < rv < ∞.
Proof: From Eqns. 19 and 18, K(s) will be degree-invariant pro-
vided that

d2n + rvd1n �= 0. (20)

The proof is at once established by recognizing the fact that at least
one of the two (non-negative) coefficients d2n or d1n is non-zero,
and by recalling that 0 < rv < ∞.
Theorem 6: In order for Tv(s) to be BIBO stable for all (interme-
diate) values 0 < rv < ∞ of the variable resistor rv, it is sufficient
for T s(s) to be a strictly minimum-phase transfer function.
Proof: If K(s) is degree-invariant, then the roots of K(s) will vary
continuously along a constant number of root-locus branches [7].
The transfer function Tv(s) will become BIBO unstable if and only
if one or more of the root-locus branches associated with K(s)

intersects the imaginary axis of the complex s-plane, i.e. if

1 + rvTs(jω0) = 0 (21)

for one or more frequencies ω0. Since rv is a real-valued resistance,
Eqn. 21 is equivalent to

� {Ts(jω0)} = 0 and 1 + rv� {Ts (jω0)} = 0, (22)

where �{.} and �{.} represent the real and imaginary parts of {.},
respectively.

In this way, the transfer function Tv(s) in Eqn. 17 will be BIBO
stable for all values of 0 < rv < ∞ provided that,

when � {Ts (jω0)} = 0, then 1 + rv� {Ts(jω0)} > 0.

(23)

The real and imaginary parts of Ts(jω) can be conveniently be
obtained as

�{Ts (jω)} = �{D1(jω)}� {D2(jω)} + � {D1(jω)} � {D2(jω)}
� {D2(jω)}2 + � {D2(jω)}2

,

(24)

and

� {Ts (jω)} = −� {D1(jω)} � {D2(jω)} + � {D1(jω)} � {D2(jω)}
� {D2(jω)}2 + � {D2(jω)}2

.

(25)

From Eqn. 25, when � {Ts(jω0)} = 0,

�{D1(jω0)} � {D2(jω0)} + � {D1(jω0)}� {D2(jω0)} = 0.

(26)

Subsequently, from Eqns. 26 and 24, when � {Ts(jω0)} = 0,

� {Ts(jω0)} = � {D1(jω0)}� {D2(jω0)} +
� {D1(jω0)}
� {D2(jω0)}� {D2(jω0)}2 . (27)

2This is due to the fact that D1(s) and D2(s) are strictly Hurwits poly-
nomials.
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But, �{D1(jω)} > 0 and � {D2(jω)} > 0 for all values of ω

(since D1(s) and D2(s) are strictly Hurwitz polynomials). Conse-
quently, when � {Ts (jω0)} = 0, �{Ts (jω0)} > 0, giving rise to
satisfaction of Eqn. 23
Theorem 7: Subject to the satisfaction of Constraints 1 and 2, it is
both necessary and sufficient for the analog prototype shaping trans-
fer function Ts (s) to be a strictly minimum-phase transfer function
if it is required that the corresponding VA WD equalizer transfer
function TvWD(z) be BIBO stable for all values of the constituent
variable digital multiplier mv .
Proof:The proof is at once established by taking into account The-
orems 3 and 6 together with the properties of the bilinear frequency
transformation (as pointed out before).

5. APPLICATION EXAMPLE

Let us consider the design of a fourth-order bandpass elliptic VA
WD equalizer satisfying the following specifications.

h = 4.00 p = 3.5 q = 1.5

fp1 = 8.00 Hz fp2 = 10.00 Hz

fa1 = 6.00 Hz fa2 = 12.00 Hz 1/T = 32.00 Hz

Then, Ap1 = 1.249387366 dB, Aa1 = 28.753975887 dB, and
Ap2 = 0.089548426 dB, Aa2 = 16.798711857 dB. Conse-
quently,

d10 = 0.99016629597150 d20 = 1.0

d11 = 30.78043908024169 d21 = 71.50269599061528

d12 = 13160.26562996701 d22 = 15832.27752922151

d13 = 188687.0835399217 d23 = 438318.4767617985

d14 = 37208559.89697220 d24 = 3757809.172899097

Then, the variation of the magnitude-frequency response of the
corresponding VA WD equalizer as a function of the variable re-
sistor rv can be obtained as shown in Fig. 5. From Fig. 5, the
V A WD equalizer magnitude-frequency response exhibits the de-
sirable arithmetically symmetric variations (around 0 dB) for geo-
metrically symmetric variations in rv values.

Finally, the root locus branches for the poles pi (for i =
1, 2, 3, 4) of the analog prototype equalizer transfer function Tv(s)

as a function of the variable resistor rv are as shown in Fig. 6. From
Fig. 6, the poles of Tv(s) remain in the left half of the complex s-
plane, rendering Tv(s) as BIBO stable for the entire range of values
0 ≤ rv ≤ of the variable resistor rv .
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