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ABSTRACT

Thispaperpresentsanew analysisfor theconvergenceof theLMF
(LeastMeanFourth) adaptive algorithm. The analysisimproves
previous resultsbecauseit explicitly shows how the stability of
thealgorithmdependson theinitial conditionsof theweights,i.e.,
theanalysisis alsovalid whenthealgorithmis initialized far from
theoptimumweightvector. Analytical expressionsarederivedre-
lating the limiting valuesof the adaptationconstantand the ini-
tial weight errorvector. Theanalysisassumesa white zero-mean
Gaussianreferencesignalandawhitemeasurement noisewith any
even probabilitydensityfunction (p.d.f.) andfindsconditions for
convergencein themeansquaresense.

1. INTRODUCTION

Thereareseveralapproaches to analyzetheconvergenceof adap-
tive algorithms: deterministic(worst-case)andstochastic(in the
mean,in themean-square,andalmost-sure)[1]. WalachandWi-
drow [2] studiedthe convergence properties(in the mean-square
sense)of the LMF algorithm. Their analysiswas restrictedto
steady-state,and the stability limit wasnot expressedasa func-
tion of the initial conditions,even though the reportedsimulati-
on resultsindicatedthis dependence. In [3], the ODE methodis
usedto analyzegeneralfixed-stepadaptive algorithms(including
LMF). However, noanalyticalexpressionis givenfor theLMF sta-
bility conditions.In [4], theauthorscommenton thedependence
of LMF’s stability on its initial conditions.An expressionis pro-
videdfor themaximumadaptationconstant for convergencein the
mean. However, the analysisin [4] assumesthat both the input
signalandthemeasurementnoiseto beGaussian.

More recently, [5] hasshown thatthestabilityof theLMF algo-
rithm dependson theinitial conditions.However, suchdependen-
cewasnot explicitly determined.

This paperpresentsa new convergenceanalysis(in the mean-
squaresense)of the LMF algorithm, consideringa white zero-
meanGaussianreferencesignal and a white zero-meanmeasu-�
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rementnoisewith any even probability densityfunction (p.d.f.).
The dependenceon the initial conditionsis explicitly shown th-
roughanalyticalexpressions. Thealgorithmis consideredstableif
themean-squareerror(MSE)remainsstableduringtheadaptation
process, and convergesto a steady-statevalue. Sincewe requi-
re mean-squarestability, our conditionsaremorerestrictive (and
moreusefulin practice)thanthosepresentedin otherworks.

2. DEFINITION OF THE PROBLEM

Figure 1 shows a block diagramof the problem studied here.���
	�� 
������
��� ����������
������� is theimpulseresponsevectorof a line-
ar system,

���! #"$	%� 
 � �! #"&��
 � �! #"&���������'
 � �! #" � � is the adaptive
weight vector, ( �! #" is assumedstationary, white, zero-meanand
Gaussianwith variance) �* , + �! #"$	,� ( �! #"&� ( �! .-0/1"&��������� ( �! .-2435/1" � � is theobserveddatavector, 6 �! #" is theadaptivefilter out-
put, and 7 �! #" is the error signal. 8 �! #" is the measurement noise,
assumedstationary, white, zero-meanwith variance) �9 andinde-
pendentof any othersignal.Moreover, it is assumedthat 8 �! #" can
have any distribution with anevenp.d.f.
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Fig. 1. LMF appliedfor SystemIdentification.

3. TRACE OF THE WEIGHT ERROR
AUTOCORRELATION MATRIX

Though theconditionsfor convergencein themeancanprovideso-
meinsight,secondmoment stability is farmoreimportantin deter-
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mining conditionsfor algorithm’s convergence. Thus,we restrict
this analysisto the studyof conditions for secondordermoment
convergence.

For white inputs,thesecond ordermomentsof theweightsare
relatedto theMSEthrough[2]= �! #">	 ) �9 3 ) �*@? � A � �! #"�A5�! #" � � (1)

where
A5�! #">	0���! #"B-C� �

is theweighterrorvector. Hence,the
MSEconvergencecanbestudiedthroughtheconvergenceproper-
tiesof ? � A � �! #"�A5�! #" � .

A recursive expression for the behavior of ? � A � �! #"�A5�! #" �
could be easilyobtainedby taking the traceof the recursionde-
rived in [6] for the weight error correlation matrix D �! #"�	? � A5�! #"�A � �! #" � of the LMF algorithm. However, termsneglec-
ted in [6], which werenot significantfor theanalysismadethere,
becomeimportant in an analysis1 consideringlarge valuesof E
and,consequently, for a stability analysis.Therefore,a recursive
expressionfor ? � A � �! :"�AF�! #" � , mustbedeterminedstartingfrom
theLMF weighterrorupdatingequation[2]AF�! 53G/1">	0A5�! #"H3 E#71I �! #" + �! #"&� (2)

Pre-multiplying(2) by its transpose, taking the expectedvalue
andusingthestatisticalpropertiesof 8 �! #" (oddmomentsequalto
zeroandindependentof any othersignal),leadsto? � A � �! J3K/L"�A5�! F3M/L" � 	 ? � A � �! #"�AF�! #" �-ON E ? ��� + � �! #"�AF�! :"�"QP � -SR E ? � 8 � �! #" � ? ��� + � �! #"�A5�! #"�" � �3 E � ? ��� + � �! #"�A5�! #"�"QT + � �! #" + �! #" �3G/LU E � ? � 8 � �! #" � ? ��� + � �! #"�A5�! #"�" P + � �! #" + �! #" �3G/LU E � ? � 8 P �! #" � ? ��� + � �! #"�A5�! #"�" � + � �! #" + �! #" �3 E � ? � 8 T��! #" � ? � + � �! #" + �! #" �

(3)

In thefollowing analysis,we assumethattheeffectsof thesta-
tistical dependenceof + �! #" and

AF�! :"
canbeneglected.Theex-

pectedvaluesof (3) arecalculatedasfollows:
Expected Value 1: ? ��� + � �! #"�AF�! :"�" P �
As + �! #" is Gaussianandindependentof

AJ�! #"
, + � �! :"�AF�! #"

is alsoGaussianwhenconditionedon
A5�! #"

. Therefore,we can
write ? ��� + � �! #"�AF�! :"�" ��VBW AF�! #" �	 ? ��� + � �! :"�AF�! #"�" �@W A5�! #" � V VXY�Z � �[N1\]-^/L" (4)

and ? ��� + � �! #"�A5�! #"�"QP W A5�! :" �	K_ ? � ��� + � �! #"�A5�! #"�" ��W AF�! :" �	K_a` ? � A � �! #" + �! #" + � �! #"�AJ�! #" W Ab�! #" �dc �	K_ ` A � �! #"Qe$A5�! #" c � 	0_ ` ) �* A � �! :"�AF�! #" c �	K_ ) P* A � �! #"�AF�! :"�A � �! #"�AF�! :"
(5)

1The matrix fCgihkj in [6] was derived neglecting the termsl$m g�n � g�hoj[pqg�hoj[j ��V nCg�hoj!n � g�hojsr for tSu � , andconsidering small v
andlargenumberof weights.

Averaging (5) over
A5�! #"

requiresextra approximations,since
the p.d.f. of

AF�! #"
is unknown. The following approximation is

used.

? � A � �! #"�AF�! :"�A � �! #"�AF�! #" �xw ? � A � �! #"�AF�! :" � ? � A � �! :"�AF�! #" �
(6)

Approximation(6) assumesthatthevarianceof
A � �! #"�A5�! #" is

muchsmallerthan its meanvalue(this canbe consideredreaso-
nablein the beginning of the adaptationprocess).In steady-state
the higher-ordermomentsof the weightscanbe neglected(sinceAF�! :"

should be small in steady-state).Extensive simulationre-
sultshave shown that this approximation2 leadsto goodaccuracy
in determiningthestability conditions.

Usingthis (6), (5) becomes

? ��� + � �! #"�AF�! #"�" P � 	K_ ) P*@? � A � �! #"�AF�! :"�A � �! #"�AF�! :" �w _ ) P*@? � A � �! #"�AF�! :" � ? � A � �! :"�AF�! #" � (7)

Expected Value 2: ? ��� + � �! #"�A5�! #"�" � �
? ��� + � �! #"�AF�! #"�" �@W A5�! #" � 	 ? � A � �! :" + �! :" + � �! #"�A5�! #" W A5�! #" �	0A � �! #" ? � + �! :" + � �! #" W AF�! #" � A5�! #"	0A � �! #"Qe$AJ�! #">	 ) �* A � �! #"�AF�! #"

(8)

Averaging over
AF�! #"

, (8) gives

? ��� + � �! #"�A5�! #"�" � � 	 ) �*�? � A � �! #"�AF�! #" � (9)

Next, weevaluatetheexpectedvaluesthataremultiplied by E �
in (3). They arederivedusingthesamemethodology presentedin
[6] and[7], andalsousingapproximationssimilar to (6).

Expected Value 3: ? ��� + � �! #"�A5�! #"�" T + � �! :" + �! :" �
? ��� + � �! :"�AF�! #"�"QT + � �! #" + �! #" �	GyQzB{ ? � + � �! #"�AF�! #"�"QT + �! #" + � �! :" �d|	��Q/1U}2~3��@�@" ):�* ? I � A � �! #"�A5�! #" � (10)

Expected Value 4: ? ��� + � �! #"�AJ�! #"�" P + � �! #" + �! #" �
? ��� + � �! #"�AJ�! #"�" P + � �! #" + �! #" �	���_@2�3K/LN@" ) T* ? � � A � �! #"�AF�! :" � (11)

Expected Value 5: ? ��� + � �! #"�A5�! #"�" � + � �! :" + �! :" �
? ��� + � �! #"�A5�! #"�" � + � �! #" + �! #" � 	���2~3�N�" ) P*�? � A � �! #"�AF�! #" �

(12)
Expected Value 6: ? � + � �! #" + �! #" �
? � + � �! #" + �! #" W A5�! #" � 	 ? � + � �! #" + �! #" � 	 ) �* 2 (13)

2To be exact, one should use
l$m p � gihkjdp$gihkjdp � g�hoj[p$g�hojsr��l � m p � g�hoj[pqg�hojsrH�^� ����:���@�s�����@� , where � ����:���@�s�����@� is the variance

of p � g�hoj[p�gihkj , which cannot becalculatedas p�g�hoj hasunknown p.d.f.
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Usingtheexpectedvalues1-6 in equation(3), resultsanexpres-
sionfor ? � A � �! F3M/1"�AF�! F3M/1" � .� �! J3M/L"�	��Q/�-4�B" � �! #":-4� � � �! #"#3�� � I �! #"#3 ; (14)

where:� �! #"�	 ? � A � �! #"�AF�! #" � ;��	K� � E -4� � E � ;��	K� � E -O� � E � ;�
	0� E � ;; 	K� E � ;� � 	KR ) �9 ) �* ;� � 	�/LU ? � 8 P �! #" � ) P* ��2~3�N�"
;� � 	KR ) P* ;� � 	�/LU ) �9 ) T* ��_@2�3G/1N�" ;�0	 ) �* �Q/LU�2]3�����"

;��	 ? � 8 T �! :" � ) �* 2 .

4. STABILITY ANALYSIS

Expression(14) isanonlineardifferenceequation.Itsconvergence
depends in generalon the initial condition � ���@"�	,A � ����"�AF����" ,
thesquaredEuclideannormof theinitial weighterrorvector.

To proceedwith the determinationof the stability conditions,
weneedto find theequilibriumpointsof (14). Writing � �! �3./1"�	� �! #"�	 ��� , we obtain� �! J3K/L">	��Q/�-��B" � �! #":-4� � � �! #"#3�� � I �! #"H3 ; 	 � �! :"�	 � �

(15)
and � I� - � � � �� - � � ��� 3 ; � 	K� (16)

Equation(16) hasthreeroots,which represent the equilibrium
points.Theserootscanbeexpressed in analyticalform asfollows.

� � � 	��[� � 3 � � "x3 �_}�
� � � 	�- /N �[� � 3^� � "H3 �_�� 3¢¡¤£ _N �[� � -S� � "
� I � 	�- /N �[� � 3^� � "H3 �_�� - ¡ £ _N �[� � -S� � "

(17)

where� � 	¦¥Lz§3©¨ ª I 3�z ��«�¬­ , � � 	¦¥�z�-G¨ ª I 3�z �&«�¬­ ;ª�	�-^®IQ¯ -±°d²³ ¯ ² , z$	
�T ¥ ®L°¯ ² - IQ´¯ « 3µ° ­��¶ ¯ ­ .

Depending on thevaluesof
ª

and
z

threecasescanoccur:· Case1:
ª I 3�z ��¸ � (only realroots)

In this case,(16) has threereal negative roots (out of the
region of interest,because� �! :" is a normandcannotbene-
gative) or two real positive rootsandonereal negative root
(thenegative root hasagainno physicalsense).Figure2 il-
lustratesthecaseof onenegative andtwo positive roots,re-
presentedby � ��¹»º , � ¯ and � ����" Y ® * . Root � ¯ correspondsto
the stableequilibrium point andalsorepresentsthe steady-
statepoint ? � A � �[¼^"�AJ�[¼ " � . Root � ����" Y ® * correspondsto
an unstablepoint, which givesthe maximumvalueof � ���@"
thatguarantees thestability of (14) for a specificvalueof E .

Thesmallerthevalueof E , thelargerthevaluefor � ���@" Y ® * .
As EG½ �

, � ����" Y ® * ½ ¼
. Root � �@¹»º is alwaysnegative,

because � �! ¾3M/L" is a third-degreepolynomial of � �! #" , with;b¿ �
, and � �! F3M/1" ½ -�¼

if � �! #" ½ -�¼
.· Case2:

ª I 3Gz � 	~�
(only real roots,andtwo of themare

equal andnonzero)
Equation(16)hastwo realandequal roots( � ¯ and � ����" Y ® * ).
Thecurve À � � �! #"�"§	 � �! 53K/1" is tangentto theline � �! 53/1"$	 � �! #" at the point � ¯ 	 � ���@" Y ® * (Figure3). Thereis
onerealnegative root, representedby � ��¹»º .
Thiscaseallowsusto find themaximumvalueof E . Writingª I 3�z � asa functionof

�
,
�
,
�

and
;
, yields

ª I 3�z � 	Á{�- �_}� - � ��}� � | I 30{ /R ¥ �¤�� � - _ ;� « 3 � IN@Â1� I |
�

	�- /Â�N��}� T ¥L_��¤��3S� � « I3 /Â@N}��� T ¥ � N �¤�&�§- N�ÂN ; � � 3�� I « �
(18)

As (18) is equalto zerofor case2, we conclude thatÃ ¥ _}�Ä�>3�� � « I 	 ¥ ���¤�Å�§-SN@Â ; � � 3^N1� I « � (19)

Writing (19) in polynomial form, andsubstitutingthevaria-
bles

�
,
�
,
�

and
;

asfunctionsof
� �

,
� � , � � , � � , � ,

�
andE , resultsÆ P E P�3

Æ
I E I 3

Æ � E � 3
Æ � E 3

Æ � 	0� (20)

where:
Æ P 	�-�Ã�� I� �C3C� �� � �� 3Ç/�È@� � � � ����-JÃ�� I� � -FN@Â�� � � � ;Æ
I 	�/1N�� � � �� �G-ONÄ��� � � � � �� 3S� �� � � � � ":-�/LÈÄ��� � � � 3� � � � "�����3M/1N}� � � �� � ;
Æ � 	É-$/1N�� � � � � �Ê3�� � � � �� 3�� �� � �� 3�Ã�� � � � � � � � 3/LÈ�� � � � ���Á-^/LN�� ��1� � � ;
Æ � 	MÃ�� I � �M-SNÄ��� � � � � �� 3�� � � � � � � "x3�Ã�� I� � ;
Æ � 	K� � � � �� .
The smallestpositive andreal root E � of (20) givesthe ma-
ximum valueof E thatguaranteesstability.· Case3:

ª I 3�z � ¿ � (two complex roots)
In this casethereareonereal root and two complex roots.
Thereis no point in commonbetweenÀ � � �! #"�"§	 � �! 53©/L"
andtheline � �! �3O/1"Ë	 � �! #" for � �! #" ¿ � . Therefore,there
is no value of � ����"ÍÌ%�

which can guaranteethe stability
of (14). This case,representedin Figure4, occurswhenthe
valueof E is greaterthanthelimit valuegivenby E � .

Theseresultsallow the explicit determinationof the stability
conditions for the LMF algorithmwhenappliedto the systemin
Fig. 1 with a known

�©Î
. Given the systemparameters,the ma-

ximum valueof E ( E Î ) canbe determinedfrom (20). Then, for
any E ¸ E Î , � ����" Y ® * canbe determinedfrom the solutionsof
(16). This procedure requiresprior knowledge of thesystemto be
identifiedin adesignsituation.This is apropertyof thealgorithm,
not a flaw in the analysis.Given someprior estimateof

� Î
, the
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analysiscanthenbeusedto studytherobustnessof thealgorithm
in solvingthepracticalproblemfor a givenerrorin theestimate.

Thetheoreticalresultshavebeenextensively tested.Predictions
of E Î matchedthesimulationresultswithin Ï /L�@Ð . Predictionsof� ����" Y ® * were,on average,130%above thevaluesdeterminedby
simulation.Theseerrorsareexpecteddueto thecomplexity of the
problemand the simplificationsused. However, the predictions
canserve asgoodguidancein a conservative design.

5. CONCLUSION

This paperpresented a new convergence analysisfor the LMF
adaptive algorithm.Theanalysisimprovespreviousresultsin that
thedependenceof thestabilityontheinitial conditionsis explicitly
shown. Theresultsreveala relationshipbetweentheinitial condi-
tions andthe stepsize in determiningconvergence. The smaller
thevalueof E , thelargertheallowablevaluesfor theinitial weight
errorvector. Simulationshave shown thatthetheoreticalpredicti-
onscanbeusefulfor designpurposes.
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