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ABSTRACT

This paperpresentsnew analysisfor the corvergenceof theLMF
(LeastMean Fourth) adaptie algorithm. The analysisimproves
previous resultsbecauset explicitly shavs how the stability of
thealgorithmdepend on theinitial conditionsof theweights,i.e.,
theanalysiss alsovalid whenthealgorithmis initialized far from
the optimumweightvector Analytical expressionsarederivedre-
lating the limiting valuesof the adaptationconstantand the ini-
tial weighterrorvector The analysisassumes white zero-mean
Gaussiameferencesignalandawhite measuremet noisewith ary
even probability densityfunction (p.d.f.) andfinds conditiors for
convergercein themeansquaresense.

1. INTRODUCTION

Thereareseveral approacheto analyzethe corvergenceof adap
tive algorithms: deterministic(worst-case)and stochastiqin the
mean,in the mean-sqare,andalmost-sure]1]. WalachandWi-
drow [2] studiedthe corvergene properties(in the mean-square
sense)of the LMF algorithm. Their analysiswas restrictedto
steady-stateand the stability limit was not expressedas a func-
tion of the initial conditions,even thoudh the reportedsimulati-
on resultsindicatedthis dependace. In [3], the ODE methodis
usedto analyzegeneralfixed-stepadaptve algorithms(including
LMF). However, noanalyticalexpressioris givenfor the LMF sta-
bility conditions.In [4], the authorscommenton the depen@nce
of LMF’s stability on its initial conditions. An expressionis pro-
videdfor the maximumadaptatiorconstamfor corvergencein the
mean. However, the analysisin [4] assumeghat both the input
signalandthe measurementoiseto be Gaussian.

More recently [5] hasshowvn thatthe stability of theLMF algo-
rithm depemson theinitial conditions.However, suchdepemlen-
cewasnotexplicitly determined.

This paperpresentsa new corvergenceanalysis(in the mean-
squaresense)of the LMF algorithm, consideringa white zero-
mean Gaussiarreferencesignal and a white zero-meanmeasu-
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rementnoisewith ary even probalility densityfunction (p.d.f.).

The depenénceon the initial conditionsis explicitly shavn th-

roughanalyticalexpressios. Thealgorithmis consideedstableif

themean-squarerror(MSE) remainsstableduringthe adaptation
process and corvergesto a steady-statezalue. Sincewe requi-

re mean-squarstability, our conditionsare morerestrictive (and
moreusefulin practice)thanthosepresentedn otherworks.

2. DEFINITION OF THE PROBLEM

Figure 1 shaws a block diagramof the problem studied here.
WO = [w}, wy, ..., w¥]" istheimpulseresponseectorof aline-
ar system,W (n) = [wi(n), w2(n), ..., wn (n)]” is the adaptie
weightvector z(n) is assumedstationary white, zero-mearand
Gaussiarwith variances?, X (n) = [z(n),z(n — 1), ...,z(n —

N+1)]% istheobsereddatavector o(n) is theadaptiefilter out-
put, ande(n) is the errorsignal. z(n) is the measuremet noise,
assumedstationary white, zero-mearwith variances? andinde-
pendentof ary othersignal.Moreover, it is assumedhatz(n) can
have ary distribution with anevenp.d.f.

UNKNOWN
SYSTEM
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WO

ADAPTIVE
FILTER

!

LMF
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Fig. 1. LMF appliedfor Systemidentification.

3. TRACE OF THE WEIGHT ERROR
AUTOCORRELATION MATRIX

Thoudh theconditionsfor corvergencen themeancanprovide so-
meinsight,secondnomeri stability is farmoreimportantin deter
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mining conditionsfor algorithm’s corvergene. Thus,we restrict
this analysisto the study of condtions for secondorder moment
convergerce.

For white inputs,the secom ordermomentsof the weightsare
relatedto the MSE through[2]

&(n) =0 + a2 E[VT (n)V (n)], @)

whereV (n) = W(n) — W° is theweighterrorvector Hence the
MSE corvergencecanbe studiedthroughthe corvergenceproper
tiesof E[VT (n)V (n)].

A recursve expressio for the behaior of E[VT(n)V (n)]
could be easily obtainedby taking the traceof the recursionde-
rived in [6] for the weight error correlation matrix K(n) =
E[V(n)VT (n)] of the LMF algorithm. However, termsneglec-
tedin [6], which werenot significantfor the analysismadethere,
becomeimportantin an analysi$ consideringlarge valuesof u
and, consequatly, for a stability analysis. Therefore,a recursve
expressiorfor E[V7T (n)V (n)], mustbe determinedstartingfrom
the LMF weighterrorupdatingequation[2]

V(n+1) = V(n)+ pe’(n)X(n). (2)

Pre-multiplying(2) by its transposgtaking the expectedvalue
andusingthe statisticalpropertief z(n) (odd momentsequalto
zeroandindepenentof ary othersignal),leadsto

ElVT(n+1)V(n+1)] = E[VT(n)V(n))]

— 2uE[(X" (n)V(n))"] — 6pE[2* ()| E[(X"
+ P2 E[(XT (n)V(n)° X" (n) X (n)]

+15p” B[2° ()] B[(XT (n)V (n))* X (n) X (n)]
+15p° E[z* ()| E[(XT (n)V (n))* X (n) X (n)]
+ 2 B2° () E[XT (n) X (n)]

(m)V (n))’]

®3)

In the following analysiswe assumehatthe effectsof the sta-
tistical deperdenceof X (n) andV (n) canbe neglected. The ex-
pectedvaluesof (3) arecalculatedasfollows:

Expected Value 1: E[(X7 (n)V (n))*]

As X (n) is Gaussiarandindepementof V(n), X (n)V(n)
is also Gaussiarwhen conditionedon V' (n). Therefore,we can
write

E[(XT (n)V (n))** |V (n)]

(4)

k
= E[(XT(n)V(n)’ V()" [] @2m —1)

and
E[(XT (n)V (n))"|V(n)]
=3E°[(X" (n)V (n))’ |V (n)]
=3{E[V" ()X (n)X" (n)V (n>|V(n>]}2 5)
= S{V (n)RV( n)} = 3{% )V ( n)}

=30,V ()V(n)V" (n)V (n)
1The matrix K(n) in [6] was derived neglecting the terms

E[(XT(n)V(n))?* X (n)XT (n)] for k > 1, and consideing small
andlarge numberof weights.

Averagng (5) over V(n) requiresextra appraimations,since
the p.d.f. of V(n) is unknown. The following approXmation is
used.

(WIE[VT (n)V (n)]
(6)

Approximation (6) assumeghatthevarianceof V7 (n)V (n) is
much smallerthanits meanvalue (this can be consiceredreaso-
nablein the beginning of the adaptatiorprocess).In steady-state
the higherorder momentsof the weightscanbe neglected(since
V(n) shodd be smallin steady-state) Extensve simulationre-
sultshave shavn thatthis approximatiof leadsto goodaccurag
in determiningthe stability conditions.

Usingthis (6), (5) becomes

EVT()V(n)VT(n)V(n)] = E[VT (n)V

E[(X"(n)V(n))"] = 30 E[V" ()V ()V" (n)V (n)] @)
)

~ 302 E[VT (n)V(n)E[VT (n)V (n)]
Expected Value2: E[(X” (n)V (n))?]

E[(X" (n)V(n))’|V(n)] = E[V" ()X (n) X" (n)V (n)|V (n)]
=V () E[X () X" (n)|[V(n)]V (n)

=VT(n)RV(n) = o2V (n)V(n)
(8)
Averagng over V' (n), (8) gives
E[(X" (m)V(n)*] = a7 EV" (n)V (n)] 9)

Next, we evaluatethe expectedvaluesthataremultiplied by p
in (3). They arederived usingthe samemethodolog presentedn
[6] and[7], andalsousingapproximationsimilarto (6).

Expected Value 3: E[(XT (n)V (n))®XT (n)X (n)]

E[(XT(n)V(n))° X" (n) X (n)]
_ tr{ Bl XT(n)V(n))6X(n)XT(n)]} (10)
(n)V(n)]

Expected Value 4: E[(XT (n)V(n))* X T (n) X (n)]

= (15N +90)o S E3[V”

E[(XT (n)V(n))" X" (n) X (n)]

11)
= (3N + 12)aSE’[VT (n)V (n)]
Expected Value5: E[(XT (n)V(n))>X T (n) X (n)]
E[(X"(m)V(n))’ X" (n)X (n)] = (N +2)o, B[V (n)V (n)]
12)

Expected Value 6: E[X7T (n)X (n)]

M|V (n)] =

°To be exad, one should use E[VT(n)V(n)VT(n)V(n)] =

E2[VT(n)V(n)] + U%/T(n)v(n), where oy .,y 1S the variance

of VT (n)V(n), which cannd be calculaiedasV (n) hasunknawn p.d.f.

E[XT(n)X E[XT(n)X(n)] =0.N  (13)
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Usingtheexpectedvaluesl-6in equation(3), resultsanexpres-
sionfor E[VT (n + 1)V(n + 1)].

y(n+1) = (1 —a)y(n) —by’(n) +cy’(n) +d  (14)
where:
y(n) = B[V (0)V ()]
a=Ap— A2M )
b= DBy — lel )
c=Cu?;
d = Dp?;

A, =60202;

Ay = 15E[z4(n)]a§(N +2);
B1 = 60'90,

B; = 150;03(3N +12);

C = 05(15N + 90);

D = E[5(n)]o2N

4. STABILITY ANALYSIS

Expressior(14)is anonlineardifferencesquation Its corvergence
depend in generalon the initial conditiony(0) = VT (0)V (0),
thesquareduclideannormof theinitial weighterrorvector

To proceedwith the determinationof the stability condtions,
we needto find theequilibriumpointsof (14). Writingy(n+1) =
y(n) = yoo, We obtain

y(n+1) = (1 —a)y(n) — by*(n) + cy®(n) + d = y(n) =(@1050)
and b p
Yo — ¥ — Sy + 5 =0 (16)

Equation(16) hasthreeroots,which representhe equilibrium
points. Theserootscanbeexpressd in analyticalform asfollows.

=(s1+s )+i
Yloo 1 2 3¢

1
Y200 = 5(31 + s2) + = + M (s1 — s2) 17
1 b J\/—
Y300 = — 5(31+82)+—C—TS—32)
where , L
31=< 3+r>3 —( w/q3+r2)3,
_ _a b2 _ 1 ab 3d b3
9=—3 ~ 32 "T=gla 7)1 s

Dependimg on thevaluesof q andr threecasesanoccur:

e Casel: ¢° + 2 < 0 (only realroots)

In this case,(16) hasthreereal negative roots (out of the
region of interestbecausey(n) is anormandcannotbe ne-
gative) or two real positive rootsand one real negative root
(the negative root hasagainno physicalsense).Figure2 il-
lustrateshe caseof onenegative andtwo positive roots, re-
presentedy yneg, Yo andy(0)mq. ROOty, correspodsto
the stableequilibrium point and alsorepresentshe steady-
statepoint E[V7T (c0)V (00)]. ROOty(0)max COrrespadsto
an unstablepoint, which givesthe maximumvalue of y(0)
thatguarantesthe stability of (14) for a specificvalueof p.

Thesmallerthevalueof p, thelargerthevaluefor y(0)maz-
As . — 0, Yy(0)maz — 00. ROOty,e, iS alwaysnegative,
becasey(n + 1) is athird-degreepolynomial of y(n), with
d>0,andy(n+1) - —oo if y(n) - —oo.

e Case2: ¢> + r? = 0 (only realroots,andtwo of themare
equd andnonzero)
Equation(16) hastwo realandequd roots(y. andy(0)maqz)-
Thecure f(y(n)) = y(n + 1) is tangentto theline y(n +
1) = y(n) atthepointy, = y(0)ma= (Figure3). Thereis
onerealnegative root, representeddy yneg -
This caseallows usto find themaximumvalueof p. Writing
q® + r? asafunctionof a, b, c andd, yields

q+’"_{ 3c 902} {( - )+2l;13}2

729 5 (3ac+b2)
+ 72306 <_ be = 27d +b3)

(18)

As (18)is equalto zerofor case2, we concluce that

3 2
4(3ac+*)" = (9abc — 27de> +2°) " (19)
Writing (19) in polynomial form, and substitutingthe varia-
blesa, b, c andd asfunctionsof A1, A2, B1, B2, C, D and
I, results

P4p4+P3u3+P2/L2+P1/L+P0=0 (20)

where:

Py = —4A3C+ A3B3 +18A>B,CD —4B3D—27C*D?;
Py = 124, A3C — 2(A1A2B3 + A}B1B>) — 18(A1Bs +
A;B,)CD +12B, B3D;

P, = —12A7A,C + AiBj + A3B} + 441A:B1B> +
184:B:CD — 12B} B, D;

Py = 4A3C — 2(A1A2 B} + A1B1By) + 4B} D;

Py = A?B}.

The smallestpositive andreal root uo of (20) givesthe ma-
ximum valueof y thatguarantesstability.

e Case3: ¢® + r? > 0 (two comple roots)

In this casethereare onereal root and two comple& roots.
Thereis no pointin commonbetweenf(y(n)) = y(n + 1)
andtheliney(n+1) = y(n) for y(n) > 0. Thereforethere
is no value of y(0) > 0 which canguaranteehe stability
of (14). This case representeth Figure4, occurswhenthe
valueof y is greaterthanthelimit valuegivenby .

Theseresultsallow the explicit determinationof the stability
condtions for the LMF algorithmwhenappliedto the systemin
Fig. 1 with a known W°. Giventhe systemparametersthe ma-
ximum value of u (uo) canbe determinedrom (20). Then, for
ary g < po, Y(0)maz canbe determinedrom the solutionsof
(16). This procedue requiresprior knowledge of the systemto be
identifiedin a designsituation.Thisis a propertyof thealgorithm,
not a flaw in the analysis. Given someprior estimateof W¢, the
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analysiscanthenbe usedto studythe robustnesof the algorithm
in solvingthe practicalproblemfor a givenerrorin the estimate.

Thetheoreticakesultshave beenextensvely tested Predictions
of u, matchedhesimulationresultswithin +£10%. Predictionsof
y(0) maz Were,on average 130%above the valuesdeterminedoy
simulation. Theseerrorsareexpecteddueto thecompleity of the
problemand the simplificationsused. However, the predictions
cansene asgoodguidancen a conserative design.

5. CONCLUSION

This paperpreseted a new corvergence analysisfor the LMF

adaptve algorithm. The analysismprovespreviousresultsin that
thedependenceof thestability ontheinitial conditionsis explicitly

shavn. Theresultsreveal arelationshipbetweertheinitial condi-
tions andthe stepsizein determiningcorvergence. The smaller
thevalueof u, thelargertheallowablevaluesfor theinitial weight
errorvector Simulationshave shovn thatthe theoreticalpredicti-
onscanbeusefulfor designpurposes
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