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ABSTRACT

Possible solutions for noncausal filter implementation are consid-
ered. Detailed calculation of the performance parameters asso-
ciated with each possible solution is provided. Such calculation
shows that the number and the position of the system poles af-
fect the performance of each solution. This can have a profound
impact over many linear-filtering applications where the designed
filter is periodically adapted without constraining the poles to lie
inside the unit circle and, at each adaptation step, the structure for
its implementation has to be automatically chosen.

1. INTRODUCTION

In the class of linear time-invariant systems a very important po-
sition is held by those with Infinite Impulse Response (IIR) which
present a limited number of poles and zeros. Such filters present
limited computational complexity with respect to the classical Fi-
nite Impulse Response (FIR) filters when recursive implementa-
tion in time-domain is adopted [1]. Such an implementation is,
however, very simple to be achieved only when all the system
poles lie inside the unit circle, i.e., with reference to causal and
stable filters.

Stable filters with poles lying also outside the unit circle are
difficult to be approximatively implemented in practice also when
processing delay is tolerable. For such a reason, the constraint that
the system poles be inside the unit circle is often introduced in the
filter-design procedure. This constraint, however, limits the poten-
tial performance of the obtained filter and renders more complex
the design procedure; both these limitations may be significant in
many real-word signal processing scenarios. When such a con-
straint is not imposed at the aim of simplifying the design proce-
dure and avoiding potential performance loss, we are faced with
the problem of realizing a filter with poles outside the unit circle.
Since the constraint of stability of the obtained filter has to be nec-
essarily imposed, a noncausal filter has to be realized; in practice,
it means that a processing delay has to be tolerated.

In this paper we assume that a design procedure has already
been performed and a linear filter with poles outside the unit circle
has to be implemented. We consider in detail this often neglected
problem by introducing all its possible solutions; we also provide
quantitative calculation of all the parameters specifying the quality
of each possible solution (i.e., the computational complexity and
the processing power needed for real-time processing, the required

memory and, obviously, the accepted delay) in dependence of the
system characteristics.

2. IMPLEMENTATION OF A DESIRED FILTER

Let us assume that we need to implement a given digital filter. The
desired filter may be known in terms of its transfer function in the
Z-domain:

Hd(z) =

nz∑
k=0

bkz−k

1 +

np∑
k=1

akz−k

, (1)

and/or in terms of its impulse responsehd(n). The set of zeros
and poles of the system to be implemented are assumed to be de-
termined by a design procedure which does not impose that poles
and zeros are inside the unit circle. Therefore, we assume that the
filter may be non-causal, but it is stable, i.e., the region of con-
vergence (ROC) forHd(z) is an annular region including the unit
circle. This means that in the transfer function, out of thenp poles,
those that possibly lay outside the unit circle, are to be associated
with the anticausal part of the filter [1]. More specifically, suppose
that the set ofnp poles are partitioned into two sets ofns poles
inside the unit circle andnu outside (np = ns + nu); denote with
nz the number of zeros. For the considerations that will follow it is
useful to assume that the stable noncausal impulse response can be
considered negligible outside the range{−na, ..., nb}. Such quan-
tities mainly depend on the position ofpext andpint, wherepext is
the “dominant” external pole (i.e., the external pole closest to the
unit circle) andpint is the “dominant” internal pole (i.e., the in-
ternal pole closest to the unit circle): roughly,na = K/ log |pext|
andnb = K/ log(1/|pint|) whereK is a constant which depends
on the quality of the implementation.

A designer faced with the problem of implementing such a
filter has essentially three major choices:

1. Approximate a time-delayed version of the filter with a cau-
sal FIR filter (FIR approximation);

2. Approximate a time-delayed version of the filter with a cau-
sal and stable IIR filter (IIR approximation);

3. Represent the noncausal IIR filter by interconnecting smal-
ler subfilters; each subfilter is required to be causal or anti-
causal (Decomposition).
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When FIR approximation is adopted, the designer has differ-
ent choices, such as:

1.a Determine the approximating causal FIR filter by truncating
the delayed impulse response of the desired filter;

1.b Determine the approximating causal FIR filter by adopting
a least-mean square criterion in the frequency domain.

When IIR approximation (i.e., option 2) is adopted, a crite-
rion which minimizes the error in the frequency domain has to be
adopted. When decomposition (i.e., option 3) is adopted, the anti-
causal subfilters, which may be obviously implemented by adopt-
ing FIR or IIR approximation, can also be realized backward in
time (backward filtering) according to the recursive equation which
defines each subfilter.

3. FIR SOLUTION

The most straightforward approach to the implementation of the
desired filter is the option 1.a: truncate the impulse response to its
non-negligible values and introduce a delay. The resulting causal
FIR filter is hF (n) = hd(n − na) for n = 0, . . . , na + nb, and
zero otherwise. In such a case, as reported in Tab. I, the number
of multiplications per output sample required by a direct-form im-
plementation of the approximated FIR filter isna + nb + 1 (these
multiplications have to be performed in a single time-step), the re-
quired memory isna +nb signal samples and the processing delay
(introduced to satisfy causality constraint) isna. The numbersna

andnb need to be sufficiently large so that all the significant values
of the causal and anticausal parts of the impulse responsehd(n)
are included in the finite response of the filter.

When the FIR filter implementation is based on the Fast Fourier
Transform (FFT), the computational complexity may be strongly
reduced. In fact, in such a case, the number of complex multi-
plications per output sample of a causal FIR system withn tap is

[1]
log2(2H)

1 − n−1
H

whereH > n is the length of the input blocks on

which the FFT is performed; this is also the maximum number of
complex multiplications per output sample needed to satisfy the
real-time processing constraint; the required memory isH and the
delay is stillH . Therefore, as reported in Tab. I, the FFT imple-

mentation of the FIR approximation requires
log2(2H)

1 − na+nb
H

complex

multiplications per output sample; this is also the maximum num-
ber of complex multiplications per output sample needed to satisfy
the real-time processing constraint; the required memory isH and
the delay isH + na (H > na + nb + 1).

The efficiency of such an implementation depends clearly on
the total length of the filter which is really determined by how close
to the unit circle the system poles are located. The main advantage
of such a solution is the inherent stability of the obtained FIR filter.
The main disadvantage is that, when either|pint|, or |pext| is close
to one, the values ofna andnb may be quite large. This may im-
ply considerable computational complexity of this solution when
compared with those considered in the following subsections.

4. OPTIMUM CAUSAL AND STABLE IIR FILTER

We can find an IIR causal and stable approximation of the de-
layed causal impulse responsehI(n) = hd(n − n0), n ≥ 0
(hI(n) = 0, n < 0). The delay can be chosen asn0 = na, or

sufficiently large to allow the causal impulse responsehI(n) to
include most of the total energy of the desired response. In such
a way, all the values ofhd(n) for n < −n0 are considered irrel-
evant, and, therefore, ignored. We have to note that our success
in finding a good causal IIR approximation of the desired filter is
dependent on the capability of an IIR filter to match an impulse
response that may peak somewhere far from the sampleh(0) and
that typically corresponds to a non-minimum phase system.

As far as finding the coefficients of a stable IIR filter, many
techniques can be devised [1]. We point here to one quite popular
that matches the desired impulse responsehI(n) to a stable causal
IIR filter in the frequency domain (on the unit circle). The cost
function is:

N−1∑
k=0

∣∣∣∣∣∣∣∣∣∣∣

Hd(e
jωk)e−jωkn0 −

Nz∑
i=0

bie
−jωki

Np∑
i=0

aie
−jωki

∣∣∣∣∣∣∣∣∣∣∣

2

, (2)

where{ωk} (k = 0, . . . , N − 1) is a set of frequency samples and
Nz andNp are the number of zeros and poles in the approximating
causal IIR filter, respectively.

This problem is usually solved by a classical optimization meth-
od under the constraint of stability of the overall filter, i.e.|pj | < 1

j = 1, . . . , Np with pj zeros of
∑Np

�=0 a�z
−�. The matlab rou-

tine invfreqz implementing this method utilizes as optimization al-
gorithm a damped Gauss-Newton method [3], initialized with the
values{ai, bi} which minimize the following unconstrained cost
function:

N−1∑
k=0

∣∣∣∣∣ Hd(e
jωk )e−jωkn0

Np∑
i=0

aie
−jωki −

Nz∑
i=0

bie
−jωki

∣∣∣∣∣
2

The minimum of such a quadratic cost function can be easily de-
termined by solving a linear system.

Unfortunately, as already pointed out, many free parameters
need to be fixed for the algorithm to be applied, such as the number
of zeros and the number of poles of the approximating filter, the
numberN of the numerical frequencies utilized in the cost func-
tion and the already mentioned delayn0 introduced to improve the
quality of the approximation. The optimum choice of the delayn0

under this approach has been considered in [2] where an algorithm
for optimum selection ofn0 is proposed. Moreover, to ran the al-
gorithm we need to choose also the number of iterations, constraint
tolerance, etc. Furthermore, the implemented filter may not pro-
vide a sufficiently good approximation of the desired one unless a
large number of poles and zeros is used. Note that the algorithm
for IIR approximation considered here can also be utilized for FIR
approximation (option 1.b) by specializing to zero the number of
poles of the approximating structure (Np = 0).

5. DECOMPOSITION-BASED IMPLEMENTATIONS

When the overall noncausal filter is decomposed in a intercon-
nected structure involving only causal and anticausal elements,
two kinds of problems need to be solved:

a) how to decompose the structure of the overall filter utilizing
only causal and anticausal elements;

b) how to implement the anticausal elements of the structure.

These issues will be addressed in the following subsections.
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5.1. Decomposing the overall filter

There are three main basic ways for interconnecting different sys-
tems: parallel, series and feedback. All these tools can be utilized
for obtaining the required decomposition and many special struc-
tures may be conceived. However, when feedback is introduced,
stability of the overall system does not follow from stability of
each subsystem. For such a reason, we do not consider feedback
in the interconnecting structures. We therefore have three funda-
mental structures utilizing only causal and anticausal elements:

1 A cascade of two elements where the first filter contains all
thens poles that lie inside the unit circle while to the second
element of the structure are assigned all thenu poles that lie
outside the unit circle. The zeros of the overall filter may be
partitioned in all the possible ways among the two elements
of the cascade.

2 This second structure can be obtained from the first one by
inverting the order of the two subsystems in the structure 1.

3 A parallel of two filters: the first one contains the poles that
lie inside the unit circle and the second one contains those
outside the unit circle.

When a cascade decomposition is adopted, there are2nz dif-
ferent ways of splitting the zeros between the two subsystems;
since different partitions may produce different lengths of the im-
pulse responses of the two elements of the cascade (in, particular,
that of the anticausal system), proper allocation of zeros represents
a significant issue. We propose, here, to consider the polepext and
minimize the amplitude of the component of the impulse response
associated with this pole. Let us note, however, that the optimum
partition can be determined whennz is sufficiently small by eval-
uating the length of the two impulse responses in correspondence
of each of the2nz possible alternatives.

5.2. Implementing the anticausal filters

Once decomposed in causal and anticausal subfilters, the imple-
mentation of the causal component can be realized by utilizing a
classical recursive structure [1]. The problem of implementing the
anticausal subfilter admits two possible approach:

1 This problem can be seen as a special case of the general
problem of implementing a noncausal filter; therefore, the
previously considered solutions (FIR and IIR approxima-
tions) can also be adopted for implementing the anticausal
component.

2 A stable and anticausal filter can be implemented by re-
cursively filtering backward in time the difference equation
that defines it, provided that a sufficiently large number of
input samples is stored. In such a way, processing delay and
system memory can be traded-off with the required compu-
tational complexity.

5.2.1. Decomposition plus FIR or IIR approximation

When we utilize an approximating FIR filter for implementing
only the anticausal elements of the chosen structure, we can over-
come one of the shortcomings of FIR approximation, i.e., the fact
that an internal pole close to the unit circle leads to a large com-
putational complexity. In particular,nb taps (due to the causal part
of the overall filter) present in the pure FIR approximation are re-
placed fromns + zs elements required by an IIR implementation

of the causal component of the overall system wherezs denotes
the number of zeros assigned to the causal element of the struc-
ture. The length of FIR filter approximating the anticausal ele-
ment of the structure is therefore roughly equal to the length of the
anticausal filter; it can be roughly estimated withna. Therefore,
as reported in Tab. I, when the direct-form implementation of the
FIR filter is considered, the number of multiplications per output
sample isna + ns + zs + 2 (these multiplications have to be per-
formed in a single time-step), the required memory isna +ns +zs

signal samples and the processing delay (introduced to satisfy the
constraint of causality) is stillna.

When the FIR filter implementation is based on the Fast Fourier
Transform (FFT), the computational complexity may be strongly
reduced. As reported in Tab. I, the FFT implementation with a de-
composition and an FIR approximation of the anticausal compo-

nent requires
log2(2H)

1 − na
H

+ns+zs complex multiplications per out-

put sample (H > na); this is also the maximum number of com-
plex multiplications per output sample needed to satisfy the real-
time processing constraint; the required memory isH + ns + zs

and the processing delay isH + na.

5.2.2. Backward filtering

The anticausal nature of the subfilter can be exploited to implement
it in a recursive fashion. In fact, knowledge of its poles and zeros
is equivalent to knowledge of a discrete-time difference equation
that describes the behavior of the system:

y(n) =

zu∑
k=0

dkx(n − k) −
nu∑

k=1

cky(n − k) (3)

Such an equation can be re-written innu + 1 different ways:

y(n−i)=

zu∑
k=0

dk

ci
x(n−k)−

i−1∑
k=0

ck

ci
y(n−k)−

nu∑
k=i+1

ck

ci
y(n−k) (4)

with i = 0, . . . , nu and c0
�
= 1. By choosingi = 0 in (4),

we obtain relation (3). When1 ≤ i ≤ nu − 1, the relation (4)
cannot be used to implement any system because the output at time
k depends on the output samples at time instantsk − 1 andk +
1. Finally, since all system poles lie outside the unit circle, the
system realized according to the recursive relation (4) withi = nu

represents the desired anticausal and stable system provided that
zu ≤ nu.

Such an anticausal system can be realized provided that the
input signal is recorded and is utilized backward in time according
to its anticausal nature. Such a processing has to be realized in a
block-by-block fashion by utilizing, in a time-reversed structure,
the classical methods for implementing IIR filters [1].

A particular characteristic of backward filtering is that the out-
put at timek depends on the future outputs. Since the first output
sample of the block to be calculated is the last one in temporal or-
der, we are unable to correctly calculate it. For such a reason, we
need to set the initial conditions in backward-filtering to dummy
values and to discard the incorrectly obtained output samples until
the transient behavior due to the incorrect initial conditions ex-
tinguishes; we may estimate withna the length of this transient
behavior. Alternatively, we can also estimate the unknown initial
conditions of the backward filter (or exactly determine them by
using FIR approximation).
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A block of lengthB > na (containing the input samples in
the time-instants(k, k + B − 1)) is taken in input and a block of
lengthB − na (containing the overall output samples in the time-
instants(k, k + B − na − 1)) is provided in output; then, the next
block contains the input samples in the interval(k + B − na, k
+2B − na − 1) and the output block contains the values in the
time interval(k + B − na, k + 2B − 2na − 1), and so on.

The processing delay changes in the different positions of the
block. The maximum value is the delay of the first element of the
block; it includes the lengthB of each block and the discrete-time
mp needed to process it. Note that, to satisfy real-time-processing
constraint,mp must be smaller than the discrete-timeB − na

needed to collect the remaining part of the next block. The mem-
ory needed for implementing such a structure is roughly an input
and output block ofB samples and thens +nu +nz values in the
two recursive structures. We have also determined the number of
complex multiplications per each output sample and the minimum
number of complex multiplications per each discrete-time instant
required by the processor and we have reported them in Tab. I for
two possible implementations of the anticausal filters, the direct-
form and the parallel-form implementation.

The calculation for direct-form implementation follows from
the following observations: the causal filter calculatesB−na out-
put samples per block and requiresns +zs +1 multiplications per
sample; the anticausal element determineB output samples per
block and requiresnu + zu + 1 multiplications per sample; the
overall outputs per block isB − na; structure 2, differently from
the alternative ones, cannot start working before the input block is
completely collected. Note also that, in the parallel-form imple-
mentation, the transient behaviors of the subfilters associated with
the external poles have different lengthsni. This affects the com-
plexity expecially when the transient is relevant (excessive delays
are not acceptable).

6. CONCLUSIONS

We have considered the problem of noncausal filter implementa-
tion; a detailed calculation of the performance parameters of each
solution has been provided. Such a calculation shows that sig-
nificant advances can be achieved by recursive time-backward fil-
tering when there are external poles very close to the unit circle.
Not always, however, this is the best choice. For such a reason,
the quantitative study about noncausal filter implementation, re-
ported in Tab. I, can have a profound impact on a very large vari-
ety of applications where linear filtering constitutes an important
tool. In the literature, in fact, the advantages of unconstrained fil-
ter design (i.e., complexity of the design procedure and potential
performance improvements) are often neglected and, also when
considered, filter design is strictly associated with a particular fil-
ter implementation which, as shown in the paper, cannot be the
best one for different positions of the poles. This is very relevant
in adaptive scenarios (where, at each adaptation step, a different
linear system has to be automatically implemented) and it affects
the overall advantage of utilizing unconstrained filter design.
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FIR Approx.
+ direct-form

Computational Complexity
filter delay
Maximum Required

memory
Real-time constraint

(# of mult. per each output) (max # of mult. per time step )

na + ns + zs + 2

log2(2H)

1 − na+nb
H

Decomposition +

Decom. + FIR (or
IIR) in direct-form

2B + np + nz

na + nb + 1 na na + nb na + nb + 1

log2(2H)

1 − na+nb
H

;H > na + nb + 1 na + H 2H

na na + ns + zs na + ns + zs + 2

na + ns + zs + 2 na na + ns + zs na + ns + zs + 2

backward filtering B
B−na

(nu+zu+1)+ns+zs+1

ns+zs+1+2nu + 2
∑nu

i=1 ni

B−na

max(ns + zs + 1,
2nu(B−na)+2

∑nu
i=1 ni

mp
)

B + mpbackward filtering

max
(
ns+zs+1, B

mp
(nu+zu+1)

)

max
(
ns+zs+1, B

mp
(nu+zu+1)

)
Str. 3

(B−na)(ns+zs+1)+2nu(B−na)+2
∑nu

i=1 ni

mp

Str. 1

in direct-form

max(ns + zs + 1,
2nu(B−na)+2

∑nu
i=1 ni

mp
)

mp≤B−na

B(nu+zu+1)+(B−na)(ns+zs+1)
mp Str. 2

2

3

in parallel form

Decomposition +

2B + np + nz

FIR Approx.

IIR Approx.

+ FFT

1

mp≤B−na

B + mp

Decom. + FIR
with FFT

log2(2H)

1 − na
H

+ ns + zs
log2(2H)

1 − na
H

+ ns + zsH + ns + zsna + H

mp > 0

mp > 0

Tab. I: Performance parameters of each possible solution.
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