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ABSTRACT " Noise:n(k) pesired Signal
A Variable Step-size (VS) algorithm is proposed based on the Pre-- o | y(k) b4 d(k)
Filter Bank (PFB) Adaptive algorithm, first introduced by Courville L]

and Duhamel [4]. The proposed algorithm adjusts the step-sizes of
the subbands by using a simplified version of the Benveniste pro- |
cedure [5]. As the filter banks are commonly narrow-band filters,
their non-decimated outputs are highly correlated. This correlation
allows us to approximate the subband autocorrelation matrices by
single rank matrices, thus permitting us to simplify and reduce the
computational complexity of the VS procedures. The proposed
inexpensive algorithm is very efficient in terms of tracking capa-
bilities and initial learning for environments with colored additive

ZM—1,N Lrr—1,N

noise and colored input signal. ! M=1 dprq SM—1

€M -1

1. INTRODUCTION

A common problem often encountered in many applications of the ~ Fig. 1. The structure of an adaptive filter using filter bank.

LMS algorithm is that it suffers from slow convergence when the

input signal to the adaptive filter is correlated. A pre-filter structure

is introduced in [3] to solve this problem by applying a decorrela- The remainder of the paper is organized as follows. Section
tion filter jointly to the pair of input-outputs to jointly whiten the 2 briefly states the structure and procedures of the pre-filter bank
additive noise and the input signal. This structure operates basecglgorithm. The new VS pre-filter bank algorithm is proposed in
on filtered signals to make the algorithm faster and to reduce the Section 3.1, and Section 3.2 derives its simplified version. These
Mean-Square Error (MSE). One may use different decorrelation algorithms are compared with some simulations in Section 4. In
filters, either in parallel like a filter bank or in serial, to obtain Section 5, the conclusions of the paper are drawn.

different estimates of the optimal weight targ&t, and then com-

bine these estimates. If we apply appropriate downsamplersthe re- 2. PRE-FILTER BANK ALGORITHM
sult can be viewed as the subband adaptive algorithm as proposed

in [4]. In particular, this PFB algorithm minimizes a weighted Figure 1 shows the block diagram of the new adaptive approach us-
criterion of squared errors in subbands. The step size of each subing an analysis filter bank. A group of linear filtefs, } 5! is ap-
band must be adjusted to obtain fast convergence, at the expensgjied jointly to the input and desired signals followed by downsam-
of some minor increase in computatlor_lal com_plexn)_/. ~ plers with a factor of¥/. Suppose that the tap-weight vector has
The performance of the LMS algorithm using a fixed step-size |ength NV, each filter in the filter bank has lengih and} is the
may not be satisfactory in some environments involving colored number of bands. The signals , (k) andd; (k) are the outputs of
noise, colored input signal and/or time-varying plant, for instance, the analysis filter banks, and ,, ands;(k) are the signals before
for a time-varying communication channel or when the additive the downsamplers. In this paper, the underline notagignk) is
noise is colored and non-stationary. To deal with this problem, a .4 to denote the vectpy(k), y(k — 1), -, y(k — N+ )7
number of VS algorithms have been developed, [6, 7]. In this where the subscrigh’ is the vécytor Iengt7h Y '
paper in the context of PFB, we employaset_ of time-varying stgp From the Pre-Filter Theorem given in [3], we can conclude
sizes as proposed fo_r the_ ?tar.‘dafd LMS_welght update Fecursionyat if n(k) andz, (k) are uncorrelated, the Wiener filter ob-
Ejo ea(k:)h su(tj)ban(rj]. AS|mpI|f|hcat|on ||s_ thefn r|1ntrodttjt§:eddtc_) this p_rocel- tained from each subband paifd;(k), z, ,(k)} and from the
ure based on the near orthogonality of the subband input signa S'pair {d(k),z (k)} are identical. This means that the informa-
Computational complexity is reduced without any perceptible loss tion from all subbands points to a unique optimal Wiener solution.

in performance. Therefore, the outputs of all analysis filters can be used to obtain
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Table1l. Summary of the filter bank adaptive algorithm [4].

Table 2. The proposed VSPFB Adaptive Algorithm.

Filtering: forl =0,--- ,N—1,andi =0, --- , M —1,

2i(kM — 1) = Y72 hejo(kM — 1 — j),
di(k) = si(kM) = 37 hijd(kM = j),
yi(k) = Wiz, n(k),

Error estimation:
ei(k) = di(k) — yi(k),

Tap-weight vector adaptation:

Wk 1) = W)+ Y g, ()l ().

Step-size adaptation:

U, (k)
pi(k)

Tap-weight vector adaptation:

alik—1)+ef(k— I)QH

z,N(k - 1)7
pi(k — D1+ piRe{ei(k)z) y (k) ¥i(k)}.

W 1) = W)+ Y mlk)el (R, (k).

Table 3. The proposed NVSPFB Adaptive Algorithm.

to minimizeJ = 3-M =" A E[|ei(k)|?], where), is the weight for
each subband, which is a positive number, leading to the following
recursion equation:

Wik+1) =Wk + 320" piz, (k) el (k),
= W(k) + 32005 iz (kM) e (k)

Whel’e€i7N(kM) =[z;(kM) z(kM—-1) -+ z;(kM—-N+1)]
is the signal in subbands before the downsamplee- p); is the

1)

Step-size adaptation:

el (b=1)ally (k=1)

Ui(k) = aVik—-1)+ e N =D
¢i(k) = adi(k—1)+(1—a)llz; y(*)|
pi(k) = ik = D+ FoayRefei(k)zlly (k) Ti(k)}]-

Tap-weight vector adaptation:

Wk +1) = W)+ 3 kel (B, ().

step size of each subband, gnd* is the conjugate operation. This
adaptive filter bank algorithm is summarized in Table 1.

3. VSPRE-FILTER BANK ADAPTIVE ALGORITHMS

3.1. VSPrefilter Bank Algorithm (VSPFB)

po/¢i(k),i=0,---,M—1, wherep, is acommon constant, and
¢i(k) is an estimate of the energy of the subband input signal. The
estimated energy; (k) may be obtained by using the recursion
bi(k) = agi(k — 1) + (1 — a)|lz; 5 (k)||*, wherea is a con-
stant number smaller than but closeltoTable 3 summarizes this

To get better performance for the non-stationary environment, we normalized variable step size pre-filter bank algorithm (NVSPFB).

introduce the proposed simplified version of Benveniste's algo-
rithm [5] to each subband LMS adaptation, and derive the corre-
sponding VS pre-filter bank algorithm based on Benveniste's ap-
proach (VSPFB). In each subband, using the definifioiik) =

%%} asin [5], we have

Ti(k) = aWi(k — 1) +ef (b — Dz (k — 1), 2)
pi(k) = pi(k — D)[1 + p:Re{e:(k)z "y (B)T:(k)}], (3)

wherea is a constant positive number which is smaller than but
close tol. Thisa is used to replacl — ji(n — 1)z(n— 1)z (n —
1)] in Benveniste's algorithm [5]¥ ; can be initialized a$ at the

beginning of the adaptation; is the step-size for the adaptation

of u;. Table 2 gives the adaptation procedures of this variable step

size algorithm.
If we use the normalized LMS algorithm instead of the LMS
algorithm, (3) becomes

ef(k — l)ng(k -1
llz; (k= 1)

Furthermore, to take more uniform control of the step size pa-

\If,(k) = Oz\If,‘(k — 1) —+

(4)

3.2. Simplified VSPFB (SVSPFB) Adaptive Algorithm

For each subband in the algorithm described in Table 2, it is re-
quired to perform2N + 4) multiplications to update; (k). For

the normalized version, we neé¢d’ + 3) extra multiplications.
This increase in the computational complexity is a significant bur-
den. To make the algorithm more practical, some simplification
is needed. Supposg is the dominant eigenvalue ét;, which is
related to the maximum value of the power spectral density of the
subband input signal. If the subband input signal is smooth enough
in its pass-band (which can be achieved by adjusting the number
of bands and the range of pass-bands), we can approximate

Ri ~ &0y, (5)
wherey, is the eigenvector corresponding to the biggest eigen-
value¢;. Since the filters have different pass-bands, we can argue
that< v;, v, >= 0if ¢ # j. This approximation allows us to do

the projection to reduce the computational complexity. Under this
assumption, we have

LN(k) ~n(k)u,, (6)

H

rameters, we can use the step-normalization technique [1], that iswheren; = v;” 2, (k) is the projection ofz, , onto the vector

normalizing the parameter; with respect to the estimate of the
corresponding gradient power. This is done by replagingvith

v,. Actually by simulation we will see in section 4 that the appli-
cation of this approximation has a markable beneficial effect even
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Table4. The proposed SVSPFB Adaptive Algorithm.
Step-size adaptation:

Bi(k) = wlfel(k)z; x(k),
'Yz(k) = oz’y,‘(k—l)‘Fﬁi(k_l)v
pik) = ik = D[+ pRe{B] (k)vi(k)}].

Tap-weight vector adaptation:

Wk 1) = W)+ 3 i (R)el (B, o (4).

if the eigenvalues oR?; do not differ a lot in practice. The orthog-
onal vectorg, are to be predetermined after the design of the filter
banks by eigen-decomposition Bf; for a white input noise or for
some real data available.

In detail, we first approximate (k) z, y using

ei(k)z; = Bi(k)y;, ™

where

Bi(k) =< ei(k)z,; y,uv; > . ®

From (3), we can conclude thétt; (k) should converge in the same
direction ase, , (k). We can approximate

Wi (k) = vi(k)y,. 9)
Substitute (7) and (9) into (3), yielding
vilk)y; = avi(k — Dy, + Bi(k — Dy, (10)
By multiplying (10) from the left by™, we get
vilk) = ayi(k —1) 4 Bi(k = 1). (11)

Table5. The proposed SNVSPFB Adaptive Algorithm.
Step-size adaptation:

Bitk) = ofel(k)z; n(k),

G k) = Uflﬁi,N(k)v

w(k) = amik— 1)+ ZTE,

pi(k) = adi(k—1)+(1—a)i(k)

piltk) = pi(k = D1+ F5Re {8 (k)7i(k)}]

Tap-weight vector adaptation:

Wik +1) = W)+ 3 kel (B), ().
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Fig. 2. Examplel: MSCE using traditional PFB algorithm (dot-
ted), VSPFB algorithm (dashdot) and its simplified version (solid).

Square Coefficients Error (MSCE)W, — W,||*> of all three al-
gorithms are computed and listed in Table 6 for comparison. All
results presented are based on an ensemble averagéofepen-

In the same way, the step size adaptation equation is also simplifieddent simulation runs.

to the following form:
pi(k) = pi(k — D[ + pRe{B] (k)vi(k)}].

Drawing from all of the above, the proposed simplified VSPFB
(SVSPFB) algorithm is summarized in Table 4.

(12)

Once again,

Example 1: In this example, the noise is white Gaussian with
variance 0.1, and the input sign&lk) is colored and follows the
AR(1) model:

z(k) = e(k) — 0.98z(k — 1),

applying the same technique to the normalized version and defin-wheree(k) is a Gaussian noise with varian¢eThe time-varying

ing ¢i(k) = nggin(k), the Simplified Normalized VS Pre-Filter
Bank (SNVSPFB) algorithm is summarized in Table 5.

Consider the algorithm in Table 4. In each step to get a new

step size in each subband we need a total6f+ 4) multipli-
cations, reducingV multiplications from the VSPFB algorithm.

tap-weight vectof¥,(k) is chosen to be a multivariate random-
walk process characterized by the difference equation

Wolk +1) = Wo(k) + x(k),

where x(k) is an i.i.d. random process vector. The sequences

Also, for the simplified normalized case, we get the same amountn(k)’ x(k) and z(k) are independent zero-mean and stationary

of complexity reduction. It is apparent that the complexity is re-
duced by almost half.

4. SIMULATION RESULTS

random processes. From Figure 2 and Table 6 we find both the
VSPFB and its simplified version outperform the traditional pre-
filter bank algorithm. The VSPFB converges somewhat faster than
its simplified version, but its MSCE is slightly higher. Considering
the complexity reduction resulting from the use of the simplified

In this section, three examples are considered. In each of exam-VSPFB, we conclude that the SVSPFB algorithm is preferred.

ple, the length of the plant is fixed &t = 11. The filter bank we
use has three bands with length The time constant, the Mean

Example 2: In many applications such as in the case of echo
cancellation, the signal and noise have almost similar power spec-
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Fig. 3. Example2: MSCE using traditional PFB algorithm (dot-
ted), VSPFB algorithm (dashdot) and its simplified version (solid).
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Fig. 4. Example3: MSCE using traditional PFB algorithm (dot-
ted), VSPFB algorithm (dashdot) and its simplified version (solid).

tra. In this example, the noise we use follows the same model as 2]

the input signal. We have

n(k)
(k)

en(k) —0.98n(k — 1),
ex(k) —0.98x(k — 1),

wheree, (k) ande, (k) are i.i.d. zero-mean Gaussian sequences
with variance0.1 and2, respectively. The tap-weight vector is
still time varying as in Example 1. The learning curves are plotted
in Figure 3. It is obvious that the three algorithms have almost the
same MSCE, but the VSPFB and its simplified version have much
faster convergence.

Example 3: As opposed to the second example, in this ex-
ample, the noise and the input signal are both colored, but with
dissimilar power spectral densitiése., the signalz(k) is high-
pass and noise(k) has a lowpass power spectrum. The signals
are generated by

n(k)
z(k)

en(k) +0.98n(k — 1),
= ex(k)—0.98z(k —1),

wheree,, (k) ande. (k) are same as in Example Again, using

the time varying plant as in the two previous examples, we get
Figure 4. The convergence rate of the simplified algorithm lies
between those of the PFB and the VSPFB. The MSCE of the sim-
plified algorithm is almost the same as the PFB's, but the MSCE

VI -

Table6. Performance comparison of the PFB, VSPFB and its sim-
plified version.

Time Constant Wy — Wo|?
(# of iterations) (in dB)
PFB VSPFB SVSPFB PFB VSPFB SVSPFB
Ex.1 | 87 45.0 54 224 -21.0 -22.4
Ex.2 | 151 68 79 -22.0 211 -21.8
Ex.3 | 147 124 133 -6.2 4.1 -6.1

in the VSPFB algorithm is slightly higher and seems somewhat
unstable.

5. CONCLUSIONS

The VS pre-filter bank algorithm (VSPFB) introduced in Section
3 speed up the initial convergence compared to the traditional pre-
filter bank algorithm by making the step sizes in each subband
adaptive, but the computational complexity is also increased at the
same time. By using a projection, approximating the vector com-
putations by scalar computations, we propose a simplified version
of the VSPFB (SVSPFB), which reduces by almost half the com-
plexity in the step-size adaptation without apparent performance
compromise. From simulations, we conclude that the proposed
simplified VS adaptive algorithm is a very efficient algorithm for
environments in which the signals involved are colored and the
plant is non-stationary.
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