
AN ADAPTIVE VARIABLE STEP-SIZE PRE-FILTER BANK ALGORITHM FOR COLORED
ENVIRONMENTS

Ting Liu and Saeed Gazor

Dept. of Electrical and Computer Engineering
Queen's University

Kingston, Ontario, Canada K7L 3N6

ABSTRACT

A Variable Step-size (VS) algorithm is proposed based on the Pre-
Filter Bank (PFB) Adaptive algorithm, first introduced by Courville
and Duhamel [4]. The proposed algorithm adjusts the step-sizes of
the subbands by using a simplified version of the Benveniste pro-
cedure [5]. As the filter banks are commonly narrow-band filters,
their non-decimated outputs are highly correlated. This correlation
allows us to approximate the subband autocorrelation matrices by
single rank matrices, thus permitting us to simplify and reduce the
computational complexity of the VS procedures. The proposed
inexpensive algorithm is very efficient in terms of tracking capa-
bilities and initial learning for environments with colored additive
noise and colored input signal.

1. INTRODUCTION

A common problem often encountered in many applications of the
LMS algorithm is that it suffers from slow convergence when the
input signal to the adaptive filter is correlated. A pre-filter structure
is introduced in [3] to solve this problem by applying a decorrela-
tion filter jointly to the pair of input-outputs to jointly whiten the
additive noise and the input signal. This structure operates based
on filtered signals to make the algorithm faster and to reduce the
Mean-Square Error (MSE). One may use different decorrelation
filters, either in parallel like a filter bank or in serial, to obtain
different estimates of the optimal weight targetWo, and then com-
bine these estimates. If we apply appropriate downsamplers the re-
sult can be viewed as the subband adaptive algorithm as proposed
in [4]. In particular, this PFB algorithm minimizes a weighted
criterion of squared errors in subbands. The step size of each sub-
band must be adjusted to obtain fast convergence, at the expense
of some minor increase in computational complexity.

The performance of the LMS algorithm using a fixed step-size
may not be satisfactory in some environments involving colored
noise, colored input signal and/or time-varying plant, for instance,
for a time-varying communication channel or when the additive
noise is colored and non-stationary. To deal with this problem, a
number of VS algorithms have been developed,e.g., [6,7]. In this
paper in the context of PFB, we employ a set of time-varying step
sizes as proposed for the standard LMS weight update recursion
to each subband. A simplification is then introduced to this proce-
dure based on the near orthogonality of the subband input signals.
Computational complexity is reduced without any perceptible loss
in performance.
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Fig. 1. The structure of an adaptive filter using filter bank.

The remainder of the paper is organized as follows. Section
2 briefly states the structure and procedures of the pre-filter bank
algorithm. The new VS pre-filter bank algorithm is proposed in
Section 3.1, and Section 3.2 derives its simplified version. These
algorithms are compared with some simulations in Section 4. In
Section 5, the conclusions of the paper are drawn.

2. PRE-FILTER BANK ALGORITHM

Figure 1 shows the block diagram of the new adaptive approachus-
ing an analysis filter bank. A group of linear filtersfhig

M��
i�� is ap-

plied jointly to the input and desired signals followed by downsam-
plers with a factor ofM . Suppose that the tap-weight vector has
lengthN , each filter in the filter bank has lengthL, andM is the
number of bands. The signalsxi�N �k� anddi�k� are the outputs of
the analysis filter banks, andz i�N andsi�k� are the signals before
the downsamplers. In this paper, the underline notationy

N
�k� is

used to denote the vector�y�k�� y�k � ��� � � � � y�k � N � ���T ,
where the subscriptN is the vector length.

From the Pre-Filter Theorem given in [3], we can conclude
that if n�k� andxN �k� are uncorrelated, the Wiener filter ob-
tained from each subband pairsfdi�k�� xi�N �k�g and from the
pair fd�k�� xN�k�g are identical. This means that the informa-
tion from all subbands points to a unique optimal Wiener solution.
Therefore, the outputs of all analysis filters can be used to obtain
unbiased estimators for the unknown plantWo.

The idea of the approach in [4] is to adaptively updateW �k�
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Table 1. Summary of the filter bank adaptive algorithm [4].

Filtering: for l � 	� � � � �N��, andi � 	� � � � �M��,

zi�kM � l� �
PL��

j�� hi�jx�kM � l � j��

di�k� � si�kM� �
PL��

j�� hi�jd�kM � j��

yi�k� � WH
k xi�N �k��

Error estimation:

ei�k� � di�k�� yi�k��

Tap-weight vector adaptation:

W �k � �� � W �k� �
M��X

i��

�ixi�N �k�e
�
i �k��

to minimizeJ �
PM��

i�� �iE�jei�k�j
��, where�i is the weight for

each subband, which is a positive number, leading to the following
recursion equation:

W �k � �� � W �k� �
PM��

i�� �ixi�N �k� e�i �k��

� W �k� �
PM��

i�� �izi�N �kM� e�i �k��
(1)

wherezi�N �kM� � �zi�kM� zi�kM��� � � � zi�kM�N����
is the signal in subbands before the downsampler,� i � ��i is the
step size of each subband, and��� � is the conjugate operation. This
adaptive filter bank algorithm is summarized in Table 1.

3. VS PRE-FILTER BANK ADAPTIVE ALGORITHMS

3.1. VS Pre-filter Bank Algorithm (VSPFB)

To get better performance for the non-stationary environment, we
introduce the proposed simplified version of Benveniste's algo-
rithm [5] to each subband LMS adaptation, and derive the corre-
sponding VS pre-filter bank algorithm based on Benveniste's ap-
proach (VSPFB). In each subband, using the definition
 i�k� �
�W �k�
��i�k�

as in [5], we have


i�k� � �
i�k � �� � e�i �k � ��xHi�N �k � ��� (2)

�i�k� � �i�k� ���� � �iRefei�k�x
H
i�N �k�
i�k�g�� (3)

where� is a constant positive number which is smaller than but
close to�. This� is used to replace�I���n���x�n���xH �n�
��� in Benveniste's algorithm [5].
 i can be initialized as	 at the
beginning of the adaptation.�i is the step-size for the adaptation
of �i. Table 2 gives the adaptation procedures of this variable step
size algorithm.

If we use the normalized LMS algorithm instead of the LMS
algorithm, (3) becomes


i�k� � �
i�k� �� �
e�i �k � ��xHi�N �k � ��

kxi�N �k� ��k�
� (4)

Furthermore, to take more uniform control of the step size pa-
rameters, we can use the step-normalization technique [1], that is,
normalizing the parameter�i with respect to the estimate of the
corresponding gradient power. This is done by replacing� i with

Table 2. The proposed VSPFB Adaptive Algorithm.

Step-size adaptation:


i�k� � �
i�k � �� � e�i �k � ��xHi�N �k � ���

�i�k� � �i�k � ���� � �iRefei�k�x
H
i�N �k�
i�k�g��

Tap-weight vector adaptation:

W �k � �� �W �k� �
M��X

i��

�i�k�e
�
i �k�xi�N �k��

Table 3. The proposed NVSPFB Adaptive Algorithm.

Step-size adaptation:


i�k� � �
i�k � �� �
e�i �k���xHi�N �k���

kxi�N �k���k�
�

�i�k� � a�i�k� �� � ��� a�kxi�N �k�k
�

�i�k� � �i�k � ���� � �o
�i�k�

Refei�k�xHi�N �k�
i�k�g��

Tap-weight vector adaptation:

W �k � �� �W �k� �
M��X

i��

�i�k�e
�
i �k�xi�N �k��

�o��i�k�, i � 	� � � � �M��, where�o is a common constant, and
�i�k� is an estimate of the energy of the subband input signal. The
estimated energy�i�k� may be obtained by using the recursion
�i�k� � a�i�k � �� � �� � a�kxi�N �k�k�, wherea is a con-
stant number smaller than but close to�. Table 3 summarizes this
normalized variable step size pre-filter bank algorithm (NVSPFB).

3.2. Simplified VSPFB (SVSPFB) Adaptive Algorithm

For each subband in the algorithm described in Table 2, it is re-
quired to perform��N � �� multiplications to update�i�k�. For
the normalized version, we need�N � 
� extra multiplications.
This increase in the computational complexity is a significant bur-
den. To make the algorithm more practical, some simplification
is needed. Suppose	 i is the dominant eigenvalue ofRi, which is
related to the maximum value of the power spectral density of the
subband input signal. If the subband input signal is smooth enough
in its pass-band (which can be achieved by adjusting the number
of bands and the range of pass-bands), we can approximate

Ri � 	iviv
H
i � (5)

wherevi is the eigenvector corresponding to the biggest eigen-
value	i. Since the filters have different pass-bands, we can argue
that
 vi� vj �� 	 if i �� j. This approximation allows us to do
the projection to reduce the computational complexity. Under this
assumption, we have

xi�N �k� � �i�k�vi� (6)

where�i � vHi xi�N �k� is the projection ofxi�N onto the vector
vi. Actually by simulation we will see in section 4 that the appli-
cation of this approximation has a markable beneficial effect even
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Table 4. The proposed SVSPFB Adaptive Algorithm.

Step-size adaptation:


i�k� � vHi e
�
i �k�xi�N �k��

�i�k� � ��i�k � �� � 
i�k � ���
�i�k� � �i�k � ���� � �Ref
�i �k��i�k�g��

Tap-weight vector adaptation:

W �k � �� � W �k� �
M��X

i��

�i�k�e
�
i �k�xi�N �k��

if the eigenvalues ofRi do not differ a lot in practice. The orthog-
onal vectorsvi are to be predetermined after the design of the filter
banks by eigen-decomposition ofRi for a white input noise or for
some real data available.

In detail, we first approximatee�i �k� xi�N using

e�i �k�xi�N � 
i�k�vi� (7)

where


i�k� �
 e�i �k�xi�N � vi � � (8)

From (3), we can conclude that
i�k� should converge in the same
direction asxi�N �k�. We can approximate


i�k� � �i�k�vi� (9)

Substitute (7) and (9) into (3), yielding

�i�k�vi � ��i�k � ��vi � 
i�k � ��vi� (10)

By multiplying (10) from the left byvHi , we get

�i�k� � ��i�k � �� � 
i�k � ��� (11)

In the same way, the step size adaptation equation is also simplified
to the following form:

�i�k� � �i�k� ���� � �Ref
�i �k��i�k�g�� (12)

Drawing from all of the above, the proposed simplified VSPFB
(SVSPFB) algorithm is summarized in Table 4. Once again,
applying the same technique to the normalized version and defin-
ing �i�k� � vHi xi�N �k�, the Simplified Normalized VS Pre-Filter
Bank (SNVSPFB) algorithm is summarized in Table 5.

Consider the algorithm in Table 4. In each step to get a new
step size in each subband we need a total of�N � �� multipli-
cations, reducingN multiplications from the VSPFB algorithm.
Also, for the simplified normalized case, we get the same amount
of complexity reduction. It is apparent that the complexity is re-
duced by almost half.

4. SIMULATION RESULTS

In this section, three examples are considered. In each of exam-
ple, the length of the plant is fixed atN � ��. The filter bank we
use has three bands with length��. The time constant, the Mean

Table 5. The proposed SNVSPFB Adaptive Algorithm.

Step-size adaptation:


i�k� � vHi e
�
i �k�xi�N �k��

�i�k� � vHi xi�N �k��

�i�k� � ��i�k � �� � �i�k���

��
i
�k���

�

�i�k� � a�i�k � �� � ��� a���i �k�
�i�k� � �i�k � ���� � �o

�i�k�
Ref
�i �k��i�k�g��

Tap-weight vector adaptation:

W �k � �� �W �k� �
M��X

i��

�i�k�e
�
i �k�xi�N �k��
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Fig. 2. Example�: MSCE using traditional PFB algorithm (dot-
ted), VSPFB algorithm (dashdot) and its simplified version (solid).

Square Coefficients Error (MSCE),kWk �Wok
� of all three al-

gorithms are computed and listed in Table 6 for comparison. All
results presented are based on an ensemble average of�� indepen-
dent simulation runs.

Example 1: In this example, the noise is white Gaussian with
variance 0.1, and the input signalx�k� is colored and follows the
AR(�) model:

x�k� � ��k�� 	���x�k� ���

where��k� is a Gaussian noise with variance�. The time-varying
tap-weight vectorWo�k� is chosen to be a multivariate random-
walk process characterized by the difference equation

Wo�k � �� �Wo�k� � ��k��

where��k� is an i.i.d. random process vector. The sequences
n�k�, ��k� andx�k� are independent zero-mean and stationary
random processes. From Figure 2 and Table 6 we find both the
VSPFB and its simplified version outperform the traditional pre-
filter bank algorithm. The VSPFB converges somewhat faster than
its simplified version, but its MSCE is slightly higher. Considering
the complexity reduction resulting from the use of the simplified
VSPFB, we conclude that the SVSPFB algorithm is preferred.

Example 2: In many applications such as in the case of echo
cancellation, the signal and noise have almost similar power spec-
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Fig. 3. Example�: MSCE using traditional PFB algorithm (dot-
ted), VSPFB algorithm (dashdot) and its simplified version (solid).
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Fig. 4. Example
: MSCE using traditional PFB algorithm (dot-
ted), VSPFB algorithm (dashdot) and its simplified version (solid).

tra. In this example, the noise we use follows the same model as
the input signal. We have

n�k� � �n�k�� 	���n�k � ���
x�k� � �x�k�� 	���x�k � ���

where�n�k� and�x�k� are i.i.d. zero-mean Gaussian sequences
with variance	�� and�, respectively. The tap-weight vector is
still time varying as in Example 1. The learning curves are plotted
in Figure 3. It is obvious that the three algorithms have almost the
same MSCE, but the VSPFB and its simplified version have much
faster convergence.

Example 
: As opposed to the second example, in this ex-
ample, the noise and the input signal are both colored, but with
dissimilar power spectral densities,i.e., the signalx�k� is high-
pass and noisen�k� has a lowpass power spectrum. The signals
are generated by

n�k� � �n�k� � 	���n�k � ���
x�k� � �x�k�� 	���x�k � ���

where�n�k� and�x�k� are same as in Example�. Again, using
the time varying plant as in the two previous examples, we get
Figure 4. The convergence rate of the simplified algorithm lies
between those of the PFB and the VSPFB. The MSCE of the sim-
plified algorithm is almost the same as the PFB's, but the MSCE

Table 6. Performance comparison of the PFB, VSPFB and its sim-
plified version.

Time Constant
(# of iterations)

kWk �Wok�

(in dB)
PFB VSPFB SVSPFB PFB VSPFB SVSPFB

Ex. � 87 45.0 54 -22.4 -21.0 -22.4
Ex. � 151 68 79 -22.0 -21.1 -21.8
Ex. 
 147 124 133 -6.2 -4.1 -6.1

in the VSPFB algorithm is slightly higher and seems somewhat
unstable.

5. CONCLUSIONS

The VS pre-filter bank algorithm (VSPFB) introduced in Section
3 speed up the initial convergence compared to the traditional pre-
filter bank algorithm by making the step sizes in each subband
adaptive, but the computational complexity is also increased at the
same time. By using a projection, approximating the vector com-
putations by scalar computations, we propose a simplified version
of the VSPFB (SVSPFB), which reduces by almost half the com-
plexity in the step-size adaptation without apparent performance
compromise. From simulations, we conclude that the proposed
simplified VS adaptive algorithm is a very efficient algorithm for
environments in which the signals involved are colored and the
plant is non-stationary.
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