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ABSTRACT

Most analytical results on affine projection algorithms assume spe-
cial regression models or Gaussian regression data. The avail-
able analyses also treat different affine projection filters separately.
This paper provides a unified treatment of the transient perfor-
mance of a family of affine projection algorithms. The treatment
relies on energy conservation arguments and does not restrict the
input data to being Gaussian or white. Simulation results illustrate
the analysis and the derived performance expressions.

1. INTRODUCTION

The normalized least mean-squares (NLMS) algorithm is among
the most widely used adaptive filters due to its computational sim-
plicity and ease of implementation. However, colored input sig-
nals can deteriorate its convergence speed appreciably. To address
this problem, Ozeki and Umeda [1] developed the basic form of
an affine projection algorithm (APA) using affine subspace projec-
tions. While NLMS updates the weights based only on the current
input vector, APA updates the weights based on K previous input
vectors. Since [1], many variants of APA have been devised inde-
pendently from different perspectives such as the regularized APA
(R-APA), the partial rank algorithm (PRA) [2], and NLMS with
orthogonal correction factors (NLMS-OCF) [3]. We shall refer to
all these algorithms as belonging to the APA family.

The transient behavior of affine projection algorithms is not as
widely studied as that of NLMS. The available results have pro-
gressed more for some variations than others, and most analyses
assume particular models for the regression data. For example,
in [4] convergence analyses in the mean and in the mean-square
senses are presented for the binormalized data-reusing LMS (BNDR-
LMS) algorithm. Although the results show good agreement with
simulations, the arguments are based on a particular model for the
input signal and are applicable only to second-order APA. Like-
wise, the convergence results in [3] focus on NLMS-OCF and rely
on a special model for the input signal vector. A convergence anal-
ysis given in [5] allows the evaluation of learning curves assuming
a Gaussian autoregressive input model.

In this paper, we provide a unified treatment of the transient
performance of the APA family. In particular, we derive expres-
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sions for the mean-square error and learning curves, as well as
conditions on the step-size for mean-square stability. Our deriva-
tion relies on energy conservation arguments [6]–[10] and it does
not restrict the regression data to being Gaussian or white. Simu-
lations at the end of the paper illustrate the derived results.

2. DATA MODELS AND APA FAMILY

Consider reference data {d(i)} that arise from the linear model

d(i) = uiw
◦ + v(i) (1)

where w
◦ is an unknown column vector that we wish to estimate,

v(i) accounts for measurement noise, and ui denotes 1 × M row
input (regressor) vectors with a positive-definite covariance ma-
trix, Ru = E [u∗

i ui]. In this paper, we focus on a general class of
affine projection algorithms for estimating w

◦ of the form:

wi = wi−1−α(K−1) + µU∗
i (εI + UiU

∗
i )−1

ei (2)

where ei = di − Uiwi−1−α(K−1), wi is an estimate for w
◦ at

iteration i, µ is the step-size and

Ui =











ui

ui−D

...
ui−(K−1)D











, di =











d(i)
d(i − D)

...
d(i − (K − 1)D)











Different choices of the parameters {K, ε, α, D} result in different
affine projection algorithms. Table 1 defines the parameters for
some special cases. For example, the choices ε = 0, α = 0, and
D = 1 result in the standard APA:

wi = wi−1 + µU∗
i (UiU

∗
i )−1

ei

For NLMS-OCF, it is further assumed that ui−jD is orthogonal to
ui,ui−D, · · · ,ui−(j−1)D . For PRA, it is understood that wm =

Table 1. APA family where {α, K, D} are integers.
Algorithm K ε α D

APA K ≤ M ε = 0 α = 0 D = 1
BNDR-LMS K = 2 ε = 0 α = 0 D = 1

R-APA K ≤ M ε 6= 0 α = 0 D = 1
PRA K ≤ M ε 6= 0 α = 1 D = 1

NLMS-OCF K ≤ M ε = 0 α = 0 D ≥ 1
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wi−K , for m = i−1, · · · , i−K, i.e., the weight vector is updated
once every K iterations. In our discussions, K can be greater
than M and the only restriction on K is K > 0, although most
algorithms assume K ≤ M .

3. TRANSIENT ANALYSIS OF APA

We now study the transient (i.e., learning curves, steady-state be-
havior and stability) performance of the APA family. To do this,
we rely on energy conservation arguments.

3.1. Weighted Energy Relation

We shall assume, without loss of generality, that α = 0. Then (2)
becomes

w̃i = w̃i−1 − µU∗
i (εI + UiU

∗
i )−1

ei (3)

In the following analysis if we substitute w̃i−1 by w̃i−1−K′ , then
the results for α 6= 0 would be obtained. If we multiply both sides
of the above recursion by UiΣ from the left, for any Hermitian pos-
itive matrix Σ, we find that the a priori and a posteriori estimation
errors {eΣ

p,i,e
Σ
a,i} are related via:

e
Σ
p,i = e

Σ
a,i − µUiΣU∗

i (εI + UiU
∗
i )−1

ei (4)

where e
Σ
p,i = UiΣw̃i and e

Σ
a,i = UiΣw̃i−1. Solving for ei and

substituting into (3), we get

w̃i + U∗
i (UiΣU∗

i )−1
e
Σ
a,i = w̃i−1 + U∗

i (UiΣU∗
i )−1

e
Σ
p,i (5)

On each side of this identity we have a combination of a priori and
a posteriori errors. If we equate the weighted Euclidean norms of
both sides of (5) we find that

‖w̃i‖
2
Σ + e

∗Σ
a,i (UiΣU∗

i )
−1

e
Σ
a,i =

‖w̃i−1‖
2
Σ + e

∗Σ
p,i (UiΣU∗

i )
−1

e
Σ
p,i (6)

where ‖w̃i‖
2
Σ = w̃

∗
i Σw̃i. The important fact to emphasize is

that no approximations have been used to establish the energy re-
lation (6); it is an exact relation that shows the energies of the
weight-error vectors at two successive iterations. are related to the
weighted energies of the a priori and a posteriori estimation er-
ror. Relation (6) is an extension to the APA case of the energy
conservation relation originally derived in [6] in the context of ro-
bustness analysis and subsequently used in [7]–[10] in the context
of steady-state and transient performance analysis.

3.2. Weighted Variance Relation

In transient analysis we are interested in the time evolution of
E‖w̃i‖

2
Σ, for some desirable choices of Σ (e.g., Σ = I or Σ =

Ru). Under the often realistic assumption that

A.1 The noise v(i) is i.i.d. and statistically independent of the
regression matrix {Ui}

neglecting the dependency of w̃i−1 on past noises, expressing
{ea,i, eΣ

a,i, e
Σ
p,i} in terms of w̃i−1 and taking expectations of both

sides, relation (6) becomes

E
[

‖w̃i‖
2
Σ

]

= E
[

‖w̃i−1‖
2
Σ′

]

+ µ2E
[

v
∗
i AΣ

i vi

]

(7)

where

Σ′ ∆
= Σ − µΣU∗

i (εI + UiU
∗
i )−1Ui

−µU∗
i (εI + UiU

∗
i )−1UiΣ + µ2

(

U∗
i AΣ

i Ui

)

and

AΣ
i

∆
= (εI + UiU

∗
i )−1UiΣU∗

i (εI + UiU
∗
i )−1

The expectation E
[

‖w̃i−1‖
2
Σ′

]

in (7) is difficult to evaluate due
to the dependence of Σ′ on Ui and of w̃i−1 on prior regressors.
One common way to overcome this difficulty is to introduce an
independence assumption on the regressor sequence Ui, namely,
to assume that

A.2 The matrix sequence {Ui} is independent and identically
distributed.

This assumption guarantees that w̃i−1 is independent of both Σ′

and Ui. Clearly, A.2 is a strong assumption (it is actually stronger
than the usual independence assumption, which only requires the
{ui} to be i.i.d.). Observe from the expansion for Σ′ that it is
sufficient for our purposes to require

A.2’ w̃i−1 is independent of U∗
i (εI + UiU

∗
i )−1Ui

which is a weaker assumption and more likely to hold. In this way,
recursion (7) reduces to

E
[

‖w̃i‖
2
Σ

]

= E
[

‖w̃i−1‖
2
Σ′

]

+ µ2E
[

v
∗
i AΣ

i vi

]

(8)

where now

Σ′ = Σ − µΣE
[

U∗
i (εI + UiU

∗
i )−1Ui

]

−µE
[

U∗
i (εI + UiU

∗
i )−1Ui

]

Σ + µ2E
[

U∗
i AΣ

i Ui

]

with expectations appearing in Σ′. Also taking expectations of
both sides of (3) and using assumption A.1, we obtain the follow-
ing result for the evolution of the mean of the weight-error vector:

E [w̃i] = E
[

I − µU∗
i (εI + UiU

∗
i )−1Ui

]

E [w̃i−1] (9)

Relations (8) and (9) can be used to derive conditions for mean-
square stability, as well as expressions for the steady-state MSE
and mean-square deviation (MSD) of the APA family.

Using the following property of the Kronecker product of ma-
trices,

vec{PΣQ} = (QT ⊗ P )vec(Σ)

and introducing the vector notations σ′ = vec{Σ′} and σ =
vec{Σ}, we find that1

σ′ = Fσ (10)

where the coefficient matrix F is M 2 × M2 and given by

F = I − µ(E[P T
i ] ⊗ I + I ⊗ E[Pi]) + µ2E[P T

i ⊗ Pi] (11)

with
Pi = U∗

i (εI + UiU
∗
i )−1Ui

We can rewrite the recursion for E
[

‖w̃i‖
2
Σ

]

in (7) by using the
vectors {σ′, σ} instead of the matrices {Σ′, Σ} as follows

E
[

‖w̃i‖
2
vec{σ}

]

= E
[

‖w̃i−1‖
2
vec{σ′}

]

+ µ2σ2
v(γT σ) (12)

1The vec(·) operation stacks the columns of a matrix into a vector.
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where, for the last term, we used the fact that

Tr
(

E
[

(εI + UiU
∗
i )−1UiΣU∗

i (εI + UiU
∗
i )−1]) = γT σ

where γ = vec{E
[

U∗
i (εI + UiU

∗
i )−2Ui

]

}. For compactness of
notation, we drop the vec{·} notation from the subscripts and keep
the vectors, so that the above is simply rewritten as

E
[

‖w̃i‖
2
σ

]

= E
[

‖w̃i−1‖
2
Fσ

]

+ µ2σ2
v(γT σ) (13)

Also we obtain the following result for the evolution of the mean
of the weight-error vector:

E [w̃i] = (I − µE[Pi])E [w̃i−1] (14)

Recursion (13) shows that in order to evaluate E
[

‖w̃i‖
2
σ

]

we need
to know E

[

‖w̃i−1‖
2
Fσ

]

, with a weighting matrix whose entries
are determined by Fσ. Now the quantity E

[

‖w̃i‖
2
Fσ

]

can be in-
ferred from (13) by writing the recursion for Fσ, i.e.,

E
[

‖w̃i‖
2
Fσ

]

= E
[

‖w̃i−1‖
2
F2σ

]

+ µ2σ2
v(γT Fσ)

We again find that in order to evaluate E
[

‖w̃i‖
2
Fσ

]

we need to
know E

[

‖w̃i−1‖
2
F2σ

]

. Fortunately, as in [9], this procedure ter-
minates. This is because any matrix F satisfies p(F ) = 0 where

p(x) = det(xI − F )

denotes its characteristic polynomial, say

p(x) = xM2

+ pM2−1x
M2−1 + · · · + p1x + p0

Theorem 1 [Transient performance] Under assumptions A.1
and A.2, the transient performance of the APA family (2) for α = 0
is described by the state recursion

Wi = FWi−1 + µ2σ2
vY

where

F =















0 1 . . . . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−p0 −p1 −p2 . . . −pM2−1















Wi =



















E
[

‖w̃i‖
2
σ

]

E
[

‖w̃i‖
2
Fσ

]

...

E
[

‖w̃i‖
2

F M2
−2σ

]

E
[

‖w̃i‖
2

F M2
−1σ

]



















,Y =

















γT σ
γT Fσ

...
γT F M2−2σ

γT F M2−1σ

















Observe that the eigenvalues of F coincide with those of F .

3.3. Learning Curves

The learning curve of an adaptive filter describes the time evolu-
tion of the variance E|ea(i)|2. Now if the {ui} are assumed to be
i.i.d., then

E|ea(i)|2 = E[|uiw̃i−1|
2] = E[‖w̃i−1‖

2
Ru

]

the learning curve can be evaluated by computing E[‖w̃i−1‖
2
Ru

]
for each i. This task can be accomplished recursively from relation
(13) by iterating it and setting r = vec(Ru). This yields

E
[

‖w̃i‖
2
r

]

= E
[

‖w̃−1‖
2
F ir

]

+ µ2σ2
v

(

γT (I + · · · + F i−1)r
)

(15)
That is,

E
[

‖w̃i−1‖
2
r

]

= E
[

‖w̃−1‖
2
fi−1

]

+ µ2σ2
vg(i − 1) (16)

where the vector fi and scalar g(i) satisfy the recursions

fi−1 = F fi−2

g(i − 1) = g(i − 2) + γT
fi−1

with initial condition f0 = r and g(−1) = 0.

3.4. Mean-Square Stability

From (14) the convergence in the mean of the APA family is guar-
anteed for any µ satisfying

µ <
2

λmax(E[Pi])
(17)

Moreover, recursion (13) is stable if, and only if, the matrix F is
stable. Thus let C = E[P T

i ]⊗I+I⊗E[Pi] and D = E[P T
i ⊗Pi]

so that F = I − µC + µ2D. The following holds (see [9].

Theorem 2 [Stability] The convergence in the mean-square
sense of the APA family is guaranteed for any µ in the range

0 < µ < min

{

1

λmax(C−1D)
,

1

max(λ(H) ∈ <+)

}

where H =

[

1
2
C − 1

2
D

I 0

]

. The above condition on µ is in

terms of the largest positive eigenvalue of H when it exists. By
combining (17) and Theorem 2, a bound on the step-size for both
mean and mean-square stability is obtained.

3.5. Steady-State Behavior

Assuming the step-size µ is chosen to guarantee filter stability,
recursion (13) becomes in steady-state

E
[

‖w̃∞‖2
σ

]

= E
[

‖w̃∞‖2
Fσ

]

+ µ2σ2
v(γT σ) (18)

which is equivalent to

E
[

‖w̃∞‖2
(I−F )σ

]

= µ2σ2
v(γT σ) (19)

Assume that we select σ as the solution to the linear system of
equations (I−F )σ = vec{I}. In this case, the weighting quantity
that appears in (19) reduces to the vector of unit entries. Then the
left-hand side of (19) becomes the filter MSD and (19) leads to

MSD = µ2σ2
vγT (I − F )−1vec{I} (20)
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Fig. 1. Learning curves of the APA family for colored Gaussian
input using µ = 1.0 and D = 8 (a) K = 1 (b) K = 2 (c) K = 4
(d) K = 8
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Fig. 2. Learning curves of the APA family for colored uniform
input using µ = 1.0 and D = 8 (a) K = 1 (b) K = 2 (c) K = 4
(d) K = 8

In a similar way, since

E|ea(i)|2 = E
[

‖w̃i−1‖
2
Ru

]

we can determine the EMSE by evaluating E
[

‖w̃∞‖2
r

]

, where
the weighting factor is r = vec{Ru}. Assume we select σ as the
solution to the linear system of equations (I − F )σ = r. In this
case, the weighting quantity that appears in (19) reduces to Ru.
Then the LHS of (19) becomes the filter EMSE and (19) leads to
the desired result

EMSE = µ2σ2
vγT (I − F )−1vec(Ru) (21)

4. SIMULATION RESULTS

We illustrate the theoretical results presented in this paper by car-
rying out computer simulations in a channel estimation scenario.
The unknown channel has 16 taps. Two different types of sig-
nals, viz., Gaussian and uniformly distributed signals, are used
for the input signal, u(i), viz., u(i) = τu(i − 1) + ρ(i)which

is a first-order autoregressive (AR) process with a pole at τ . For
the Gaussian case, ρ(i) is a white, zero-mean, Gaussian random
sequence having unit variance and τ is set to 0.9. As a result,
a highly colored Gaussian signal is generated. For the uniform
case, ρ(i) is a uniform random sequence between −1.0 and 1.0
and τ is set to 0.9. The signal-to-noise ratio (SNR) is calculated
by SNR = 10 log(E[y2(i)]/E[v2(i)]) where y(i) = uiw

◦. The
measurement noise v(i) is added to y(i) such that SNR = 30dB.
The adaptive filter and the unknown channel are assumed to have
the same number of taps. All adaptive filter coefficients are initial-
ized to zero. Also, the regularization parameter ε is set to 0.001.
We set α = 0, µ = 1.0 and D = 8. The simulation results shown
are obtained by ensemble averaging over 200 independent trials.
Fig.1–2 shows the learning curves for both the theoretical and the
simulation results.

5. CONCLUSIONS

Using energy conservation arguments, the paper analyzed the steady-
state and transient performances of the APA family and derived
stability conditions without restricting the regression data to being
Gaussian or white.
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