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ABSTRACT

In the discrete-time Envelope-Constrained filtering problem,
the gain of the filter is minimised subject to the constraint
that the filter output to a prescribed input fits into a given en-
velope. In this paper, a novel adaptive algorithm for solving
this problem based on stochastic optimisation is presented.
The algorithm is simple to implement on-line and conver-
gence is demonstrated in numerical examples. Under mild
regularity assumptions convergence follows from standard
stochastic approximation results.

1. INTRODUCTION

The (discrete-time) Envelope-Constrained (EC) filtering prob-
lem involves the design of a linear time-invariant (LTI) filter
such that the response � to a specified excitation � fits into
a prescribed template or envelope, ��, �� [1] as shown in
Figure 1. The envelopes can arise either from practical con-
siderations or from the standards set by certain regulatory
bodies. For example, in pulse-compression for radar, the
envelopes are selected to suppress side lobes while keep-
ing the main lobe above a certain threshold [1]; in telecom-
munications pulse shapes used in transmission systems are
specified using templates issued by standard bodies such as
CCITT or ANSI (see e.g. [2]-[4]). For a technically ori-
ented survey of the subject the reader is referred to [5].
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Fig. 1. Envelope Constrained Filter

The EC problem was formulated for FIR filters in [1]
and IIR filters in [6]. The resulting optimisation problem
can be solved off-line by Quadratic Programming (QP) via
active set strategy [5]. Direct use of this algorithm would be
inappropriate in applications where the parameters of the
underlying signal model are either not known or varying
with time. In such cases, it may be necessary to employ
an adaptive filter with parameters that can be adjusted to
their optimum value (see Figure 2). In the most common
procedure, a test or training signal corrupted by noise �� is
periodically used as the filter input. The filter response ��
(to the training signal ��) is checked against the boundaries
��, �� of the template. The result of the comparison is
then processed in some way and fed back to adjust the fil-
ter coefficients. This process is repeated until, for practical
purposes, convergence has occurred and the filter is ready
to process data. Additional test pulses are then inserted into
the data stream at regular intervals so that the filter can con-
tinue to be adjusted.

Adaptive algorithms for EC filters have been proposed
in [7] and [8] based on the dual formulation. In [7] the prob-
lem was converted to an unconstrained non-smooth dual
problem, which was then solved using subgradients, while
in [8] the smooth constrained dual problem was solved us-
ing gradient flow. In [9], a modified penalty technique was
used to approximate the primal problem as a smooth uncon-
strained problem which can be solved using descent meth-
ods. These algorithms converge under noise-free condition,
however, for noisy input signals, no useful results on con-
vergence has been established.

In this paper, we propose an adaptive EC filtering al-
gorithm based on standard stochastic approximation tech-
niques where convergence can be established under mild
regularity assumptions using standard stochastic approxi-
mation results as in [10]. The proposed algorithm is based
on solving the dual problem using stochastic gradient ascent
with projection. Our algorithm is simple to implement and
exhibits good convergence characteristic in our numerical
examples.
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ŝi n– 1+

k( )

(weights: u1
k( ) … un

k( )
), ,

εi
+

εi
−

… …

ψ̂i
k( )

Adaptive update mechanism

Fig. 2. An adaptive configuration for EC filter.

2. BACKGROUND

Let � � ���� ���� ���
�
� �� denote the vector of tap coeffi-

cients of the FIR filter, and � � ���� ���� ���
�
� �� denote

the vector representing a finite support input signal. The re-
sponse � � ���� ���� �� �� � �� � � � 	 � 
 � �� of the
FIR filter � to the input � is given by

� �� ���� (1)

where � ��� is the following Toeplitz matrix
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� � � � � � ��

�������������
(2)

The mapping � �� � ��� is linear in �. Hence, for a noise
corrupted input� � �� �� the filter output is � ������ ����.
In EC filtering, for a given signal � the noise-free response,
� ����� is required to fit in a prescribed envelope. Using the
filter norm for the cost function, the EC filtering problem
can be posed as the following QP problem [1]

	
�
����

���� � ��� (3)

subject to 
� � � ���� � 
�

where 
�� 
� � �� are the upper and lower boundaries of
the mask. Problem (3) involves a strictly convex cost and
convex constraint, hence the solution is unique if one exists.

Assuming feasibility of primal problem, the dual prob-
lem is also a QP problem (see [1], [5], [8])

	�

�����

���� � ������ ���� ��� (4)

subject to � � �

where for 	�� � ��

��	��� � �
�

�

�
��

���

	
� �	�� � ������ ���� �(5)

� �

�
�
�


�

	
(6)

For a fixed dual point �, the corresponding primal solu-
tion which minimises the Lagrangian is given by

������ �
�

�
� � ������ ���� �� (7)

If �� is an optimal solution to Problem (4), then the optimal
solution to Problem (3) is ������� Both the primal (3) and
dual (4) problems can be solved off-line using standard tools
such as QP via active set strategy [5].

3. STEEPEST ASCENT

Consider the general constrained problem

	�

���

���� (8)

where � 	 �� is a closed convex set. Let �� denote the
projection operator that maps every point � � �� onto the
unique point � � ����� � � defined as the closest point in
� to �. The projected steepest ascent algorithm to solve (8)
generates the following iterates:

������ � ��



���� � ����
������ �

�
(9)

where ������ is a positive sequence known as the step-size
and 
� is the gradient. The step-size sequence satisfies
���� � �, ���� � �,

�
���� � 
. Typically, ������ �

���. The parameter ���� is updated in the direction of in-
crease of �� followed by a projection into the feasible do-
main. Under suitable regularity conditions, the sequence
������ converges to the maximizer of � in � [10].

In the context of Problem (4) the gradient is given by


���� � ����� ���� � (10)

Note from (1), (7) and (5) that the gradient can be expressed
in terms of the filter output and the envelope boundaries:


���� �

�
� ��������� 
�


� � � ��������

	
(11)

The projection � ��	�
�����, where the max operator is
taken component wise, can be easily implemented in hard-
ware using simple circuitries.

The primal-dual update equations are then

���� � �
�

�
� � ������ ���� ����� (12)

������ � 	�



���� � ����
���������

�
(13)

Since ������ converges to ��� it is clear that ������ con-
verges to �������
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4. ADAPTIVE ALGORITHM

In an on-line scenario, exact knowledge of the noise-free
signal � is not available. Adaptive algorithms periodically
use noisy observations of � as training inputs to adjust the
weights of the filter to solve Problem (3). One way of achiev-
ing this is to solve Problem (4) based on a stochastic coun-
terpart of the primal–dual update equations (12) and (13).

A stochastic counterpart to (9) would correspond to the
case where one does not have access to
� but only random
unbiased observations 

�������, i.e.


�

�������� � 
��������

We may relax the condition of unbiasedness to a condition
concerning the convergence of the bias to zero. When (9)
is iterated with 

������� instead, we still have convergence
[10] (under suitable regularity conditions) to maximizer of
�.

When the �th training pulse is sent, the actual input to
the EC filter can be modelled as ������ �� ����, where ����

is a zero-mean i.i.d. noise process. Below, we describe 2
different techniques to estimate the gradient 
�, using the
noisy training signals ������

From (10) and (11), we see that gradient is known ex-
cept for the terms involving the matrix � ���� � ���. Hence,
an estimator for the desired gradient can be found once we
estimate � ���. Each time a noise corrupted training pulse����� arrives, we have an unbiased observation � ������� of the
matrix � ���. Let

� ������� � �

�
�

�

��
	��

���	�� �
�

�

��
	��

� ����	�� (14)

be the empirical average, where ������ � �
�

��

	�� ���	�� Then,

by the Law of Large Numbers �
	��� � ������� � � ���
almost surely (a.s.). Hence,

�
	
���

� �������� � ������� � � ���� � ��� a.s.

and the gradient estimator



������� � ������������������� � � (15)

is asymptotically unbiased. The estimation of � ��� in (14)
can be implemented by the following recursion:

� ������� � �

�
��� � ��� ��������� � � �������� (16)

The stochastic primal-dual update equations are then

���� � �
�

�
� � ���������� ���� ����� (17)

������ � 	�


�
���� � ����

������������� (18)

As in [7] and [8] we could also use the following un-
biased estimator of the gradient which requires 2 training
pulses �����and ������ per iteration:

������� � ���������������������� (19)

Unbiasedness follows since the noise components of the
training pulses ����� and ������ are independent. Moreover, the
gradient estimate can be obtained from the filter output, i.e.
no explicit computation of the matrix � ��������� � ������� in
(19) is required. On arrival of �����, the filter ���� is updated
by cross-correlating ����� with ��� ���� ������ i.e.

���� � �
�

�
� � ���������� ���� ����� (20)

When the accompanying training pulse ������ arrives, the out-
put of ���� is ����� � � ������������, which can be written as

����� � �
�

�
� ��������� � ���������� ���� ����� (21)

Hence, the gradient estimate (19) can be written as



������� � � ����� � 
�


� � �����
�

(22)

Even though the sequence of dual iterates converges to an
optimal dual solution �� a.s. (and hence the primal solu-
tion ������ is optimal), the primal iterate ���� has a very
small probability of being feasible. This is because the opti-
mal solution ������ lies on the boundary of the feasible set
and is obtained using � in (7), whereas the primal iterate is
obtained by using ����� �� � in (20).

To overcome this difficulty, the empirical average in (14)
is used in the calculation of the primal iterate ����� but the
gradient is obtained from the response ����� of the updated
filter ���� to the pulse ������� More concisely, ����, 

�������
are computed according to (17) and (22) respectively. Un-
der this update scheme, (22) can be written as

������� � ����������������������� (23)

which is clearly an unbiased estimator since the noise com-
ponents of all the pulses ������������ ��������� and ������ are in-
dependent.

To track variations in the noise-free input �� windowing
techniques can be incorporated in the estimation � �������,
e.g. a forgetting factor. Here we assume that the variation
in � is slow in comparison with the convergence speed. We
remark that a.s. convergence of the proposed algorithm can
be establised under mild regularity conditions as in [10].

5. NUMERICAL STUDY

Consider a pulse compression example where the filter out-
put to a Barker coded signal

� � ��� �� �� �� �������� �� ����� ����� ��
�
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is required to fit in an envelope with a mainlobe peak of 0.69
� 0.075 and sidelobe levels of �0.025, i.e.


� � ��������� ���� ��� �� �
��

� ���� ��� ���� ��� �� �
��

��


� � ���������� �������� �� �
��

� �������� �������� �� �
��

��

The training signal is corrupted by additive Gaussian i.i.d.
noise with a standard deviation of 0.4, i.e. a signal to noise
ratio, SNR = �� �����peak signal)��(noise variance)�� of less
than 8 dB.

The problem is solved using the 2 proposed adaptive
algorithms with the stepsize sequence ��������. Figure 3
plots the squared error between the adaptive filters and the
optimal filter against the number of iterations. The filters
responses to the noise-free signal� after 1000 iterations are
shown in Figure 4.

Observe that algorithm 1, which involves (17), (18) con-
verges faster than algorithm 2 which involves (17) and (22)
(using 2 test pulses per iteration). However, algorithm 2 has
the advantage that the gradient estimate is given by the fil-
ter outputs and hence very little computation is required in
the update. Both algorithms show significant improvement
over those proposed in [7] and [8] in which the primal up-
date does not converge at all.
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Fig. 3. Convergence.

6. CONCLUSION

An adaptive algorithm for solving the EC filtering problem
using noisy training signals has been proposed. The algo-
rithm is based on solving the dual problem using stochastic
optimisation techniques. An attractive feature of the pro-
posed algorithm is the surprisingly simple implementation.
Our examples have demonstrated good convergence char-
acteristics. On a more theoretical note, convergence follows
from standard stochastic approximation results [10].
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Fig. 4. EC filter outputs.
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