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ABSTRACT

Inthediscrete-time Envel ope-Constrained filtering problem,
the gain of the filter is minimised subject to the constraint
that thefilter output to aprescribed input fitsinto agiven en-
velope. In this paper, anovel adaptive algorithm for solving
this problem based on stochastic optimisation is presented.
The agorithm is simple to implement on-line and conver-
gence is demonstrated in numerical examples. Under mild
regularity assumptions convergence follows from standard
stochastic approximation results.

1. INTRODUCTION

The (discrete-time) Envel ope-Constrained (EC) filtering prob-
lem involvesthe design of alinear time-invariant (LTI) filter
such that the response v to a specified excitation s fits into
a prescribed template or envelope, e ™, ¢~ [1] as shown in
Figure 1. The envelopes can arise either from practical con-
siderations or from the standards set by certain regulatory
bodies. For example, in pulse-compression for radar, the
envelopes are selected to suppress side lobes while keep-
ing the main lobe above a certain threshold [1]; in telecom-
munications pulse shapes used in transmission systems are
specified using templates issued by standard bodies such as
CCITT or ANSI (see eg. [2]-[4]). For atechnicaly ori-
ented survey of the subject the reader isreferred to [5].
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Fig. 1. Envelope Constrained Filter
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The EC problem was formulated for FIR filters in [1]
and IR filters in [6]. The resulting optimisation problem
can be solved off-line by Quadratic Programming (QP) via
active set strategy [5]. Direct use of thisalgorithm would be
inappropriate in applications where the parameters of the
underlying signal model are either not known or varying
with time. In such cases, it may be necessary to employ
an adaptive filter with parameters that can be adjusted to
their optimum value (see Figure 2). In the most common
procedure, a test or training signal corrupted by noise s is
periodically used as the filter input. The filter response zZ
(to the training signal ) is checked against the boundaries
€™, e~ of the template. The result of the comparison is
then processed in some way and fed back to adjust the fil-
ter coefficients. This processis repeated until, for practical
purposes, convergence has occurred and the filter is ready
to process data. Additional test pulses are then inserted into
the data stream at regular intervals so that the filter can con-
tinue to be adjusted.

Adaptive algorithms for EC filters have been proposed
in[7] and [8] based on the dua formulation. In[7] the prob-
lem was converted to an unconstrained non-smooth dual
problem, which was then solved using subgradients, while
in [8] the smooth constrained dual problem was solved us-
ing gradient flow. In[9], a modified penalty technique was
used to approximatethe primal problem as a smooth uncon-
strained problem which can be solved using descent meth-
ods. These algorithms converge under noise-free condition,
however, for noisy input signals, no useful results on con-
vergence has been established.

In this paper, we propose an adaptive EC filtering al-
gorithm based on standard stochastic approximation tech-
niques where convergence can be established under mild
regularity assumptions using standard stochastic approxi-
mation results asin [10]. The proposed algorithm is based
on solving the dual problem using stochastic gradient ascent
with projection. Our algorithm is simple to implement and
exhibits good convergence characteristic in our numerical
examples.
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Fig. 2. An adaptive configuration for EC filter.

2. BACKGROUND

Letu = [uy, ...,un]T € R" denote the vector of tap coeffi-
cientsof the FIR filter, and x = [z, ...,xm]T € R™ denote
the vector representing a finite support input signal. There-
sponse tp = [1hy, ..., n]" € RN, N =m +n — 1, of the
FIR filter u to theinput x is given by

¥ =Y (x)u ()

where Y (x) is the following Toeplitz matrix

z1 O v 00 T
. o .
Ty - 0
Y(X) = 0 T, 0 (2)
0 0 I
0 0 0 pm |

The mapping x — Y (x) islinear in x. Hence, for anoise

corruptedinputx = s + n, thefilter outputisY (s)u+Y (n)u.

In EC filtering, for a given signal s the noise-free response,
Y (s)u, isrequired to fit in aprescribed envelope. Using the
filter norm for the cost function, the EC filtering problem
can be posed as the following QP problem [1]
- T
in f(u) = u'u €)
subjecttoe” < Y(s)u <€t
wheree™, et € R are the upper and lower boundaries of
the mask. Problem (3) involves a strictly convex cost and
convex constraint, hence the solution is uniqueif one exists.
Assuming feasibility of primal problem, the dual prob-
lemisalso a QP problem (see[1], [5], [8])

max ¢(p) = pTA(s,s)p+p’b 4

p€R2N
subjecttop > 0

whereforw,x € R™
1

A(w,x) = _Z{

—€

o ] V(W)Y () [In, ~In)E)

+
b = (6)

For afixed dual point p, the corresponding primal solu-
tion which minimises the Lagrangian is given by

w(p)= ¥ ($)lIn, ~Inlp @

If p? isan optimal solution to Problem (4), then the optimal
solution to Problem (3) is u?(p°). Both the primal (3) and
dual (4) problemscan be solved off-line using standard tool s
such as QP via active set strategy [5].

€

3. STEEPEST ASCENT

Consider the general constrained problem
max (6) 8

where ® C R? is aclosed convex set. Let mg denote the
projection operator that maps every point x € R < onto the
unique point § = 7o (x) € O defined as the closest point in
O to x. The projected steepest ascent algorithm to solve (8)
generates the following iterates:

9u+) = rg (9(]’) n a(i)v¢(9()j)) 9)

where {a(/)} is a positive sequence known as the step-size
and V¢ is the gradient. The step-size sequence satisfies
al) > 0, al) = 0, Z a¥) = . Typicaly, alU—1) =
1/j. The parameter #9) is updated in the direction of in-
crease of ¢, followed by a projection into the feasible do-
main. Under suitable regularity conditions, the sequence
{69)} convergesto the maximizer of ¢ in © [10].
In the context of Problem (4) the gradient is given by

Vé(p) = 2A(s,s)p +b (10)

Notefrom (1), (7) and (5) that the gradient can be expressed
in terms of the filter output and the envelope boundaries:

Y(s)u’(p) — e*
\Y =| _ o 11
o(p) e —Y(s)u°(p) (11)
The projection p — max(p, 0), where the max operator is
taken component wise, can be easily implemented in hard-
ware using simple circuitries.
The primal-dual update equations are then

al) = —%YT(S)[IN, ~Ilp" (12)

pUt) = max (po’) + aDve(p), 0) (13)
Since {p¥)} convergesto p?, it is clear that {u)} con-

vergesto u®(p°).
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4. ADAPTIVE ALGORITHM

In an on-line scenario, exact knowledge of the noise-free
signal s is not available. Adaptive agorithms periodically
use noisy observations of s as training inputs to adjust the
weights of thefilter to solve Problem (3). Oneway of achiev-
ing thisis to solve Problem (4) based on a stochastic coun-
terpart of the primal—dual update equations (12) and (13).

A stochastic counterpart to (9) would correspond to the
case where one does not have accessto V ¢ but only random
unbiased observations V¢ (@), i.e.

E{V$(99))} = Ve(§).

We may relax the condition of unbiasedness to a condition
concerning the convergence of the bias to zero. When (9)
isiterated with V(919 ) instead, we still have convergence
[10] (under suitable regularity conditions) to maximizer of
0.

When the jth training pulse is sent, the actual input to
the EC filter can be modelled ass/) = s 4+ n(/), wheren?)
is a zero-mean i.i.d. noise process. Below, we describe 2
different techniques to estimate the gradient V¢, using the
noisy training signals /).

From (10) and (11), we see that gradient is known ex-
cept for the terms involving the matrix Y (s)Y % (s). Hence,
an estimator for the desired gradient can be found once we
estimate Y'(s). Each time a noise corrupted training pulse
5U) arrives, we have an unbiased observation Y (8(9)) of the
matrix Y (s). Let

J J
YEW) =Y (1, Z§<i>> = %ZY(?“) (14)
i=1

J i=1

be the empirical average, where sU)) = : 7_, 8. Then,
by the Law of Large Numbers lim;_,, Y (39)) = Y(s)
amost surely (a.s.). Hence,

lim YEYYTEY) =y (s)YT(s) as.
j—00
and the gradient estimator
Vo(pW) = 243D, 30)pl) + b (15)

is asymptotically unbiased. The estimation of Y (s) in (14)
can be implemented by the following recursion:

YE) =[G - DYEYU ) +YED) a6
J
The stochastic primal-dual update equations are then
1 o .
—§YT(S(J))[IN, —Inp¥ 17

pUt) = max <P(j)+a(j)%(j)(l>(j))’0> (49

Asin [7] and [8] we could also use the following un-
biased estimator of the gradient which requires 2 training
pulsess(Vand 8'(4) per iteration:

Vo) = 24@E'0),30))p0) +b (19)
Unbiasedness follows since the noise components of the
training pulsess(9) ands'(Y) areindependent. Moreover, the
gradient estimate can be obtained from the filter output, i.e.
no explicit computation of the matrix ¥ (8'?))Y” (s()) in
(19) isrequired. On arrival of (), thefilter ul?) is updated
by cross-correlating s¢) with [T, —In]p'?), i.e.

W0 = LYTE Iy, ~Ixp? (20

When the accompanyingtraining pulse 8'(7) arrives, the out-
put of ut) istp) = v (5'9))ul?), which can be written as

o0 = _%y(’s\'(j))yT(’s\(j))[ In,~Inlp? (1)
Hence, the gradient estimate (19) can be written as
— b)) _ et
Wy — | P =€
Vo(p') = [ = _'éb(j) ] (22)

Even though the sequence of dual iterates converges to an
optimal dual solution p° a.s. (and hence the primal solu-
tion u®(p°) is optimal), the primal iterate u'’) has a very
small probability of being feasible. Thisis because the opti-
mal solution u?(p?) lies on the boundary of the feasible set
and is obtained using s in (7), whereas the primal iterateis
obtained by using 8¢/) # s in (20).

To overcomethisdifficulty, theempirical averagein (14)
is used in the calculation of the primal iterate u?), but the
gradient is obtained from the response (9 of the updated
filter u¥) to the pulses'¥). More concisely, u?, V(p¥)
are computed according to (17) and (22) respectively. Un-
der this update scheme, (22) can be written as

Vo(pW) =243E,50))pl) 4b, (23)

which is clearly an unbiased estimator since the noise com-
ponents of all the pulses s(),58(), ..., 5% and §'9) arein-
dependent.

To track variations in the noise-freeinput s, windowing
techniques can be incorporated in the estimation Y (5(9)),
e.g. aforgetting factor. Here we assume that the variation
in s isslow in comparison with the convergence speed. We
remark that a.s. convergence of the proposed a gorithm can
be establised under mild regularity conditionsasin [10].

5. NUMERICAL STUDY

Consider a pulse compression example where the filter out-
put to a Barker coded signal

s=[1,1,1,1,1,-1,-1,1,1,-1,1,—-1,1]"
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isrequired to fit in an envel opewith amainl obe peak of 0.69
+ 0.075 and sidelobe levels of +£0.025, i.e.

et = 0.001[25,...,25,765,25, ...,25]
N —— N——
19 19
e~ = 0.001[-25,...,—25,615, 25, ..., —25]T
1‘5 19

The training signal is corrupted by additive Gaussian i.i.d.
noise with a standard deviation of 0.4, i.e. asignal to noise
ratio, SNR = 10 log[(peak signal)? /(noise variance)], of less
than 8 dB.

The problem is solved using the 2 proposed adaptive
algorithms with the stepsize sequence {1/(2{)}. Figure 3
plots the squared error between the adaptive filters and the
optimal filter against the number of iterations. The filters
responses to the noise-free signals after 1000 iterations are
shown in Figure 4.

Observethat algorithm 1, which involves (17), (18) con-
verges faster than algorithm 2 which involves (17) and (22)
(using 2 test pulses per iteration). However, algorithm 2 has
the advantage that the gradient estimate is given by the fil-
ter outputs and hence very little computation is required in
the update. Both algorithms show significant improvement
over those proposed in [7] and [8] in which the primal up-
date does not converge at all.

— Algorithm 2
-~ Algorithm 1

10°

squared error from optimal filter

o 100 200 300 400 500 600 700 800 900 1000
iteration number

Fig. 3. Convergence.

6. CONCLUSION

An adaptive agorithm for solving the EC filtering problem
using noisy training signals has been proposed. The algo-
rithm is based on solving the dual problem using stochastic
optimisation techniques. An attractive feature of the pro-
posed algorithm is the surprisingly simple implementation.
Our examples have demonstrated good convergence char-
acteristics. On amoretheoretical note, convergencefollows
from standard stochastic approximation results[10].
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Fig. 4. EC filter outputs.
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