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ABSTRACT

Theimplementationof existingmethodsfor blind identificationof
single-inputmultiple-output(SIMO) systemsis limited in practice
sincethey aredifficult to executein an adaptive modeandarein
generalcomputationallyintensive. We extendour previous study
into the frequency domainandproposeanunconstrainednormal-
izedmulti-channelfrequency-domainLMS (UNMCFLMS) algo-
rithm. Numericalsimulationsshow that the UNMCFLMS algo-
rithm performsaswell as(for aSIMO systemwith relatively short
channelimpulseresponses)or betterthan(for aSIMO systemwith
long channelimpulseresponses)its time-domaincounterpartand
thecross-relation(CR)batchmethodin practicalsituations.

1. INTRODUCTION

Blind identificationof single-inputmultiple-output(SIMO) sys-
temshasattractedconsiderableattentionrecentlybecauseof its
extensive applicationsin signalprocessingandcommunications.
Approachesbasedon second-orderstatistics(SOS) of system’s
outputs[1], [2], [3], [4], [5] aredeemedmoreattractive,becauseof
their fastconvergence,thanhigher-orderstatistics(HOS)methods
[6]. However, existing SOSmethodsarenot satisfactorybecause
they aredifficult to implementin anadaptive modeandarein gen-
eralcomputationallyintensive [7].

In an earlier study [8], we found a systematicway to con-
structanerrorsignalexploiting thecrossrelationsbetweendiffer-
ent channelsandproposedtwo time-domainadaptive algorithms.
It wasshown that they converge in the meanto the real channel
impulse responses.But they are either slow in convergenceor
complicatedin computation.In this paper, we continueourexplo-
rationof this problemin thefrequency domainandtry to develop
animprovedefficientadaptivefilter. An unconstrainednormalized
multi-channelfrequency-domainLMS (UNMCFLMS) algorithm
is proposedandexperimentalresultsshow somepromisefor its
success.

2. SIGNAL MODEL AND PROBLEM FORMULATION

In anFIR SIMOlinearsystem,the � -th channeloutputsignal �����	��

is theresultof a linearconvolutionbetweenthesourcesignal �
�	��

andthecorrespondingtrue(subscriptt) channelimpulseresponse����� � , corruptedby anadditive backgroundnoise�����	��
 :� � �	��
�� � ��� ��� �
�	��
���� � �	��
�� �!�#"$�&%'�)(*(+(+��,-� (1)

where � standsfor linear convolution and , is the numberof
channels.In vectorform, (1) canbeexpressedas:. �/�	��
��10 ��� ��2)3
�	��
���45�/�	��
�� (2)
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�AXBY�> is setto the lengthof the longestchannelimpulseresponseby
assumption,and ��2 
 B denotesvector/matrixtranspose.Thechan-
nel parametermatrix 0 ��� � is of dimension>[ZO�\%]>T9[")
 andis
constructedfrom thechannel’s impulseresponse:^���� ���_7 ����� � � G`����� � � K 2�2)2 ����� � � HJI�K A B ( (3)

Moreover, theadditive noisecomponentsin differentchannelsare
assumedtobeuncorrelatedwith thesourcesignaleventhoughthey
mightbemutuallydependent.

A blindsystemidentificationalgorithmis to estimatethechan-
nel impulseresponseŝ � ( �a�b"$��%'��(+(+(*�=, ) from theobservations. � without utilizing the sourcesignal 3
�	��
 . The following two
assumptionsaremadethroughoutthis paperto guaranteeaniden-
tifiable systemusingonly thesecond-orderstatistics[4]:

1. Thepolynomialsformedfrom
^���� �����c�b"Q��%d��(+(+( ,-� areco-

prime, i.e., the channeltransferfunctions e ��� � �gf

 do not
shareany commonzeros;

2. Theautocorrelationmatrix hSi�ij�_k1lm3
�	��
�3 B �	��
)n of the
sourcesignalis of full rank.

3. THE PRINCIPLE OF ADAPTIVE BLIND SYSTEM
IDENTIFICATION

Basically, amulti-channelsystemcanbeblindly identifiedbecause
of thechanneldiversitywhichmakestheoutputsof differentchan-
nelsdistinctthoughrelated.By following thefactthat�����	��
 � ����� o �-�
�	��
 � ����� � � ����� o �1� o �	��
 � �m��� ��� (4)

a cross-relationbetweenthe � -th and p -th channeloutputs,in the
absenceof noise,canbeformulatedas. B� �	��
 ^ ��� o � . Bo �	��
 ^ ��� � �8����pq�<"Q�&%d�)(+(+(+��,-���sr�;p$( (5)
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Whennoiseis presentor the channelimpulseresponsesare im-
properlymodeled,theleft andright handsidesof (5) aregenerally
notequalandtheinequalitycanbeusedto defineana priori error
signalasfollows [8]:t � o �	�S�u")
Y� . B� �	�S�u"P
 ^Jo �	��
59 . Bo �	�S�u"P
 ^ �&�	��
v ^ �	��
 v � (6)

wherê �/�	��
 is themodelfilter for the � -th channelat time � and^ �	��
w�yx ^ B K �	��
 ^ B z �	��
{2�2�2 ^ B | �	��
@} B (
Themodelfilter is normalizedin orderto avoid a trivial solution
whoseelementsareall zeros. Basedon the error signaldefined
here,a costfunctionat time �~�1" is givenby� �	���1")
�� | I�K� �C� K |�o ���X� K t z� o �	�S�u"P
�( (7)

An adaptive algorithmis thenderivedto efficiently determinethe
model filter

^ � that minimizes this cost function and therefore
would bea goodestimateof

^���� �\� v ^�� v ( �5�#"$�/%d�)(+(+(*��, ).

4. A FREQUENCY-DOMAIN ADAPTIVE ALGORITHM

The time-domainadaptive algorithmsproposedin [8] are either
slow in convergence(themulti-channelLMS algorithm)or ineffi-
cient(themulti-channelNewtonalgorithm).Here,wewill develop
anadaptiveblind channelidentificationalgorithmin thefrequency
domainto seekfor a goodbalancebetweenfastconvergenceand
low computationalcomplexity. In thefollowing derivation,matri-
cesandvectorsin the frequency domainarerepresentedrespec-
tively by uppercasecalligraphicandlowercasebold italic letters,
andavectoris furtheremphasizedby anunderbar.

To begin, we defineanintermediatesignal �$� oS��[��� � �'o , the
convolution resultof the � -th channeloutput � � andthe p -th model
filter

�'o
. In vectorform, a blockof suchasignalcanbeexpressed

in thefrequency domainas� � o �	���u")
Y�W� G=KH�� z H��`�)� �	���W"P
�� K\Gz H��mH�� o �	�V
�� (8)

where � G=KH�� z H � � H���H x�� H��mH ��H���H } � I�Kz H�� z H ����)� �	���1")
�� diag �P�sz H�� z H 2 . ���	���W"P
�z H���K�� �� K\Gz H���H � � z H�� z H x �=H��mH � H��mH } B � I�KH��mH �� o �	�@
�� � H���H ^ o �	�V
��. ���	���W")
�z H���K � x �����	�:>�
������	�@>V�W"P
{2�2�2�����	�@>V�;%Q>U9O"P
�A B � (9)� H���H and � I�KH���H arerespectively theFourierandinverseFourier
matricesof size >#Z?> , and � is the block time index. Thena
block of the error signalbasedon the cross-relationbetweenthe� -th andthe p -th channelin the frequency domainis determined
as:� � o �	���W"P
6� � � o �	�_�1")
59 � o � �	���u"P
� � G=KH�� z H x ���)� �	���1")
�� K\Gz H���H�� o �	�@
�9� ��� �	���W"P
�� K\Gz H��mH � � �	�V
�}�( (10)

Continuing,we constructa (frequency-domain)cost function at
the �	���W"P
 -th blockasfollows:�
� �	���W"P
w� | I�K� �C� K |�o ���X� K � �� o �	���1")
 � � o �	���u"P
�� (11)

where ��2 
 � denotesHermitiantranspose.Therefore,by minimiz-
ing themeanvalueof

�
� �	�[�;")
 , themodelfilter in thefrequency
domaincanbeupdatedas:�   �	�[��"P
�� �   �	�V
�9 ¡ �Q¢ �
� �	���W"P
¢ � £  �	�V
 �8¤��#"$��%d�)(+(+(+��,-� (12)

where ��2 
 £ standsfor complex conjugateand ¡ � is asmallpositive
stepsize.It canbeshown that¢ �'� �	���W"P
¢ � £  �	�V
 �|� �C� K x¥� G=KH�� z H�� �)� �	���W"P
�� K\Gz H���H } � � �   �	���u"P
�� (13)

Substituting(13)into (12)yieldsamulti-channelfrequency-domain
LMS (MCFLMS) algorithm:�   �	���1")
�� �   �	�@
�9¡ � � K\GH�� z H |� �X� K � £�)� �	�_�1")
�� G=Kz H���H � �   �	���W"P
�� (14)

where� K\GH�� z H � � H���H x �=H��mH � H��mH } � I�Kz H�� z H �� G=Kz H��mH � �¦z H�� z H x � H���H � H��mH } B � I�KH��mH (
Theconstraintensuringthattheadaptivealgorithmwouldnotcon-
verge to a trivial solutionwith all zeroelementswill be applied
afterevery stepof updation.

TheMCFLMS is computationallymoreefficient comparedto
a multi-channeltime-domainblock LMS algorithm.However, the
convergenceof the MCFLMS algorithm is still slow becauseof
nonuniformconvergenceratesof thefilter coefficientsandcross-
couplingbetweenthem. To accelerateconvergence,we will use
Newton’smethodtodevelopanormalizedMCFLMS (NMCFLMS)
method.

By usingNewton’s method,we updatethemodelfilter coeffi-
cientsaccordingto:�   �	���W"P
�� �   �	�V
�9¡ �5§ ¢¢ � B   �	�V
@¨ ¢ � � �	���W"P
¢ � £  �	�V
y©«ª I�K ¢ � � �	���W"P
¢ � £  �	�V
 � (15)

wheretheHessianmatrix canbeevaluatedas¢¢ � B   �	�@
 ¨ ¢ �'� �	���1")
¢ � £  �	�V
 © �W� K\GH�� z H 2|��X� K�� ��¬�   x � £�)� �	�_�1")
�� G=Kz H�� z H����)� �	���1")
�}�� K\Gz H��mH � (16)
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and � G=Kz H�� z H �� � G=Kz H���H � G=KH�� z H� � z H�� z H ¨ � H��mH � H���H� H��mH � H���H © � I�Kz H�� z H �
whoseelementson its main diagonaldominateasshown in [9].
When> is large, %]� G=Kz H�� z H canbewell approximatedby theiden-
tity matrix %]� G=Kz H�� z H:­ � z H�� z H ( (17)

Thereafter, Eq.(16)becomes¢¢ � B   �	�@
V¨ ¢ � � �	���1")
¢ � £  �	�@
®© ­¯"% � K\GH�� z H�°   �	���1")
�� K\Gz H���H �
(18)

where°   �	��� ")
5� |��X� K�� ��¬�   � £�)� �	�?� "P
 �R�)� �	�?� "P
��j¤��#"Q�&%d�)(+(+(+��,-(
Substituting(13) and(18) into (15) andmultiplying by � K\Gz H���H
producestheconstrained NMCFLMS algorithm:� K\G  �	���W"P
w� � K\G  �	�@
�9%)¡ � � K\Gz H�� z H�° I�K  �	���1")
 |� �X� K � £�)� �	���W"P
 � G=K�   �	���W"P
�� (19)

where � K\G  �	�@
6� � K\Gz H���H �   �	�V
��� G=K�   �	���1")
�� � G=Kz H���H � �   �	���u")
��� K\Gz H�� z H � � K\Gz H���H � K\GH�� z H �
andtherelation� K\Gz H��mH l±� K\GH�� z H�°   �	���W"P
�� K\Gz H��mH n I�K � K\GH�� z H� � K\Gz H�� z H ° I�K  �	���1")

canbe justified by post-multiplyingboth sidesof the expression
by
°   �	�;�:"P
�� K\Gz H���H andrecognizingthat � K\Gz H�� z H � K\Gz H���H �� K\Gz H��mH .
If thematrix %P� K\Gz H�� z H is approximatedby theidentitymatrix

similar to (17), we finally deducethe unconstrained NMCFLMS
algorithm:� K\G  �	���1")
w� � K\G  �	�V
�9¡ � ° I�K  �	���W"P
 |� �X� K � £� � �	���1")
 � G=K�   �	���W"P
�� (20)

wherethenormalizationmatrix
°   �	�²�["P
 is diagonalandit is

straightforwardto find its inverse.Again,theunit-normconstraint
will beenforcedon themodelfilter coefficientsaftereverystepof
updation.

In theMCFLMS algorithm,thecorrectionappliedto themodel
filter in eachupdateis approximatelyproportionalto the power
spectrum

°   �	�³�#")
 ; this canbe seenby substituting(10) into
(13) andusingtheapproximation(17). Whenthechanneloutputs
arelarge,gradientnoiseamplificationmay beexperienced.With

the normalizationof the MCFLMS correctionby
°   �	�´�<")
 in

theNMCFLMS algorithm,this noiseamplificationproblemis di-
minishedand the variability of the convergenceratesdue to the
changeof signal level is eliminated. In orderto estimatea more
stablepower spectrum,a recursive schemeis employed in imple-
mentation:°   �	���W"P
��¶µ °   �	�V
����"a9?µ�
 |��X� K�� ��¬�   � £�)� �	���W"P
 � �)� �	���W"P
�� (21)¤��<"Q��%d��(+(+(+��,-�
where µ is a forgetting factor that may appropriatelybe set asµ²�·7+"�9_")�±�g¸Q>�
�A H for the NMCFLMS algorithm. Although
the NMCFLMS algorithmbypassesthe problemof noiseampli-
fication, we facea similar problemthat occurswhenthechannel
outputsbecomestoo small. An alternative, therefore,is to insert
a small positive number ¹ into the normalizationwhich leadsto
thefollowing modificationto theunconstrainedNMCFLMS algo-
rithm:� K\G  �	�_�1")
Y� � K\G  �	�V
!9R¡ � 7 °   �	�V
��;¹ � z H�� z H A I�K 2|� �X� K � £�)� �	���1")
 � G=K�   �	���W"P
��:¤~�#"Q��%d��(+(+(+��,1( (22)

5. SIMULATIONS

To evaluatetheperformanceof theproposedalgorithm,wecarried
out MonteCarlo simulationsfor blind identificationof a random
three-channelSIMO systemof order >��#")º . For comparison,the
crossrelation(CR) batchmethod[4] andthe time-domainmulti-
channelNewton (MCN) algorithm[8] arealsostudied.

Thenormalizedrootmeansquareprojectionmisalignment
(NRMSPM)in dB is usedasaperformancemeasureof estimation
accuracy in this paperandis givenby»s¼¾½V¿±À�½ ��-%QLwÁ+Â$Ã K\G EF "v ^�� vÅÄÆÆÇ "È É� �C� K v�ÊdË �XÌ v z MN � (23)

where
È

is thenumberof Monte-Carloruns, ��2 
 Ë �CÌ denotesavalue
obtainedfor the � -th run,and

Ê � ^�� 9R7+� ^ B� ^ 
��d� ^ B ^ 
�A�Í^ is apro-
jectionerrorvector. By projectinĝ

�
onto

^
anddefiningaprojec-

tion error, we take only themisalignmentof thechannelestimate
into account[10].

For a commonfloating-pointimplementationof analgorithm,
the floating-pointoperations(flops) dominatethe calculationand
thenumberof flopsis aconsistentmeasureof thealgorithm’scom-
putationalcomplexity, independentof what machineit runs on.
The flops per setof multi-channeloutputsarecounted. The ab-
solutenumberof flopsfor thestudiedadaptive algorithmsarenot
particularlymeaningful,but their relativevaluesillustratethegreat
efficiency of thefrequency-domainapproaches.

In thesimulations,thesourcesignalis anuncorrelatedbinary
phase-shift-keying (BPSK) sequence.The additive noiseis i.i.d.

zero-meanGaussianandthespecifiedSNRis definedas
¿d»Î¼ ��")LwÁ+Â$Ã K\G 7 Ï zi v ^�� v z �±�\,1Ï zÐ 
�A\� where Ï zi and Ï zÐ are the signaland

noisepowers,respectively.
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A simpleinitialization wasemployedfor all conductedexper-
iments.In thetimedomain,thechannelimpulseresponseof the ¤ -
th channelis setas

^   �gL

«��7+")�
Ñ ,ÒL�2=2�2wL]A B �/¤8�_"$��%d�=(*(+(+�=, .
Sincethe initial channelestimatesareidentical,a non-zeroerror
signalcanbeguaranteedandhencethechannelfilter coefficients
will beproperlyadapted.

For the CR method,120 samplesof observationsfrom each
channelwereutilized. For theMCN andMCFLMS algorithms,the
stepsize Ó��bLd( Ô$Õ and ¡ � �×Ö:Z�"�L I�Ø werefixed, respectively.
For the NMCFLMS algorithm,the stepsize ¡ � �ÙL±( Ú wasused
andthe regularizationfactor ¹ wasinitially setasonefifth of the
total power over all channelsat thefirst block. For eachspecified
SNRvalue,theNRMSPMwascalculatedby averagingtheresults,
afterconvergence,of

È �-%QL$L MonteCarloruns.
As seenin Fig. 1, theNRMSPMsof all studiedalgorithmsde-

creasesteadilyas the SNR increases.Fig. 2 shows the learning
curvesof theseadaptive algorithms,amongwhich theMCN algo-
rithm convergesfastestbut, on theotherhand,thevarianceof its
costfunction is alsothelargestafterconvergence.Althoughboth
theMCFLMS andNMCFLMS algorithmsconvergesteadilyto the
desiredchannelimpulseresponses,apparentlytheNMCFLMS al-
gorithm performsbetter, achieving a goodcompromisebetween
fastconvergencespeedandlow estimatevariance.Fig. 3 givesa
comparisonof computationalcomplexity amongthe investigated
algorithms. Clearly, the frequency-domainapproachesaremuch
moreefficient.
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multi-channeloutputsamongtheMCLMS, MCN, MCFLMS, and
NMCFLMS algorithmsfor the randomthree-channelsystemof
differentorder( > ), excitedby a randomBPSKsequence.

6. CONCLUSIONS

Blind identificationof SIMO systemsis examinedandtheissuesof
convergence,adaptivity, andefficiency of a satisfactoryapproach
are addressedfrom a practical point of view. An adaptive al-
gorithm using channelcross-relationis implementedin the fre-
quency domain. As the experimentalresultssupported,the pro-
posedmethodachievesbothfastconvergenceandgreatefficiency.
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