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ABSTRACT

Theimplementatiorof existing methoddor blind identificationof

single-inputmultiple-output(SIMO) systemss limited in practice
sincethey aredifficult to executein an adaptve modeandarein

generalcomputationallyintensve. We extendour previous study
into the frequeny domainandproposean unconstrainedgormal-
ized multi-channelfrequeng-domainLMS (UNMCFLMS) algo-
rithm. Numericalsimulationsshav that the UNMCFLMS algo-
rithm performsaswell as(for a SIMO systemwith relatively short
channeimpulseresponseg)r betterthan(for aSIMO systermwith

long channelimpulseresponsesits time-domaincounterparand
thecross-relatiofCR) batchmethodin practicalsituations.

1. INTRODUCTION

Blind identificationof single-inputmultiple-output(SIMO) sys-
temshasattractedconsiderablettentionrecently becauseof its
extensve applicationsin signal processingand communications.
Approacheshasedon second-ordestatistics(SOS) of system$
outputg1], [2], [3], [4], [5] aredeemednoreattractive, becausef
their fastconvergence thanhigherorderstatistics HOS) methods
[6]. However, existing SOSmethodsare not satishictorybecause
they aredifficult to implementin anadaptve modeandarein gen-
eralcomputationallyintensie [7].

In an earlier study [8], we found a systematicway to con-
structanerrorsignalexploiting the crossrelationshetweerdiffer-
entchannelsand proposedwo time-domainadaptve algorithms.
It wasshavn thatthey corverge in the meanto the real channel
impulse responses.But they are eitherslow in corvergenceor
complicatedn computationIn this paperwe continueour explo-
ration of this problemin the frequeng domainandtry to develop
animprovedefficientadaptve filter. An unconstrainedormalized
multi-channelfrequeng-domainLMS (UNMCFLMS) algorithm
is proposedand experimentalresultsshav somepromisefor its
success.

2. SSIGNAL MODEL AND PROBLEM FORMULATION
In anFIR SIMO linearsystemthes-th channebutputsignalz;(n)
is theresultof alinearconvolution betweerthesourcesignals(n)
andthe correspondingrue (subscript) channelimpulseresponse
h+,;, corruptedby anadditive backgroundhoiseb; (n):

zi(n) = hes * s(n) +bi(n), i =1,2,..., M, @)
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where x standsfor linear corvolution and M is the numberof
channelsin vectorform, (1) canbeexpresseds:

xi(n) = Hy,; - s(n) + bi(n), 2
where
xi(n) = J[zi(n) zi(n—1) -+ zi(n—L+ 1)]T,
hy,i,0 hei—1 - 0
A I T
0 coo hego h,i,L—1
s(n) = [s(n) s(n—1) --- s(n—2L+2)]",
bi(n) = [bi(n) bi(n—1) --- bi(n— L+ 1),

L is setto thelengthof the longestchannelimpulseresponséy
assumptionand(-)” denotes/ector/matrixtransposeThe chan-
nel parametematrix Hy ; is of dimensionL x (2L — 1) andis
constructedrom thechannels impulseresponse:

hei = [hei0 hein o0 heiz—1] (3)

Moreover, theadditive noisecomponentén differentchannelsare
assumedo beuncorrelateavith thesourcesignaleventhoughthey
might be mutuallydependent.

A blind systemidentificationalgorithmis to estimatehechan-
nelimpulseresponse#; (i = 1,2,..., M) from the obsenrations
x; without utilizing the sourcesignals(n). The following two
assumptionsremadethroughouthis paperto guaranteeniden-
tifiable systemusingonly the second-ordestatisticq4]:

1. Thepolynomialsformedfrom hs;,7 = 1,2,...M, areco-
prime, i.e., the channeltransferfunctions Hy ;(z) do not
shareary commonzeros;

2. Theautocorrelatiomatrix R.s = E {s(n)s” (n)} of the
sourcesignalis of full rank.

3. THE PRINCIPLE OF ADAPTIVE BLIND SYSTEM
IDENTIFICATION

Basically amulti-channebystencanbeblindly identifiedbecause
of thechannetiversitywhich makestheoutputsof differentchan-
nelsdistinctthoughrelated.By following thefactthat

zi(n) * hyj = s(n) * hyy; * hej = 25(n) * hy g, 4

a cross-relatiorbetweenthe i-th and j-th channeloutputs,in the
absenc®f noise,canbeformulatedas

xi (n)he; = x; (N)hyi, 4,j=1,2,.., M, i #j.  (5)
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Whennoiseis presentor the channelimpulseresponsesreim-
properlymodeledtheleft andright handsidesof (5) aregenerally
not equalandtheinequalitycanbe usedto defineana priori error
signalasfollows[8]:

x;i (n+ 1)h;(n) — xj (n + hi(n)
Ih(»)]| ’

whereh; (n) is themodelfilter for the<-th channelttime n and
T
h(n) = [ hi(n) hi(n) ---hi;(n) | .

The modelfilter is normalizedin orderto avoid a trivial solution
whoseelementsare all zeros. Basedon the error signal defined
here,acostfunctionattimen + 1 is givenby

Z Z elj(n+1). )

i=1 j=i+1

eij(n+1) = (6)

J(n+1)

An adaptve algorithmis thenderivedto efficiently determinethe
model filter h; that minimizesthis cost function and therefore
would beagoodestimateof he ; /||h¢|| i = 1,2, ..., M).

4. A FREQUENCY-DOMAIN ADAPTIVE ALGORITHM

The time-domainadaptve algorithmsproposedn [8] are either
slow in corvergence(the multi-channelLMS algorithm)or ineffi-
cient(themulti-channeNewtonalgorithm).Here,wewill develop
anadaptve blind channeldentificationalgorithmin thefrequeng
domainto seekfor a goodbalancebetweenfastconvergenceand
low computationatompleity. In the following derivation, matri-
cesandvectorsin the frequeng domainare representedespec-
tively by uppercasealligraphicandlowercasebold italic letters,
andavectoris furtheremphasizedby anunderbar

To begin, we defineanintermediatesignaly;; 2 x; * h;, the
cornvolutionresultof thei-th channebutputz; andthe j-th model
filter h;. In vectorform, ablock of suchasignalcanbe expressed
in thefrequeny domainas

(m+ 1) = Wikor Do (m + 1)W2L><Lh (m), (8)
where
Wihior = FLxL[ Orxrz Inxr ]FQ_legL,
Dy, (m+1) = diag{Farxor - xi(m+ 1)2rx1},
Wilkr = FzszL[ Inxz Orxr ]TFZiL,
h;(m) = Frxrh;(m),

[ z;(mL) z;(mL+1)
z;(mL +2L—1)]", (9)

xi(m+1)arx1 =

Foxr andF}, arerespectiely the FourierandinverseFourier
matricesof size L x L, andm is the block time index. Thena
block of the error signalbasedon the cross-relatiorbetweenthe
i-th andthe j-th channelin the frequeng domainis determined
as:

Y, (m+1)
WOlezL [ z; (m+ 1)W2L><Lﬂj(m)—
D.;(m+1)W3ixh;(m)]. (10)

(m+1)

g;(m+1) =

Continuing, we constructa (frequeng-domain) cost function at
the (m + 1)-th block asfollows:

Ji(m+1) = Z Z efl(m+1e;(m+1), (11)
i=1 j=i+1
where(-)? denotesHermitiantransposeTherefore by minimiz-

ing themeanvalueof J¢(m + 1), themodelfilter in thefrequeny
domaincanbeupdatedas:

0Js(m + 1)

Bufm+ 1) O (m)

:Ek(m)_uf k=152;7Ma (12)

where(-)* standgor complex conjugateandys is asmallpositive
stepsize. It canbe shavn that
0Je(m+1)
Oh; (m) -

Z WszLD (m+ 1)W2L><L] e;(m+1), (13)
Substituting(13)into (12)yieldsamulti-channefrequeng-domain
LMS (MCFLMS) algorithm:

By (m + 1) = hy (m)—

M
W Bor Y Di (m+1)Wsirey(m+1), (14)

i=1

where
10 -1
Wiker = Fixp[ Iixr Onxz |Fil.op,
o1 T 1
Wiixr = Foxor [ Ooxr Iixe | Fryg.

Theconstrainensuringhattheadaptve algorithmwould notcon-
verge to a trivial solutionwith all zeroelementswill be applied
afterevery stepof updation.

The MCFLMS is computationallymoreefficient comparedo
amulti-channetime-domainblock LMS algorithm.However, the
convergenceof the MCFLMS algorithmis still slow becauseof
nonuniformcorvergenceratesof thefilter coeficientsandcross-
coupling betweenthem. To accelerateorvergence,we will use
Newton’'smethodto developanormalizedMCFLMS (NMCFLMS)
method.

By usingNewton’s method ,we updatethe modelfilter coefi-
cientsaccordingto:

hy(m+1) = hy(m)—
—1
e Ta (9Jf(1zl +1) 6Jf(111 +1) . (@15
dhi (m) | Ohy(m) Oh;(m)
wherethe Hessiarmatrix canbe evaluatedas
0 0Js(m + 1) —wio .
Ohi (m) | Ohi(m) bk
M
> [Dim+ DYWL or Dy (m+ 1) Wil 1, (16)
i=1,i#k
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and

01 A 01 01
Wirxer = WoarxiWixer
= ForvorL Orxz OrxL -1
- X
0L><L ILxL 2LX2L)»

whoseelementson its main diagonaldominateas shavn in [9].
WhenL islarge,2W53: ;. canbewell approximatedy theiden-
tity matrix

2W(2)},><ZL ~ InLx2r. @an

ThereafterEq. (16) becomes

d |:an(m +1)

~ Lo y
AhT(m) | Oh;(m) :|~2WLx2LPk(m+1)W2LxL,

(18)
where

M
Pr(m+1)= Y D (m+1)Da(m+1), k=1,2,.., M.
i=1,i#k
Substituting(13) and (18) into (15) and multiplying by W19,
produceghe constrained NMCFLMS algorithm:
R’ (m+1) = by’ (m)—
M

W xor Py (m+1) Y Dl (m+1)

i=1

eg; (m +1),(19)

where
hi’(m) = Wiiirhi(m),
Q?li(m*'l) = ngLngik(m+1)a
Wé%XZL = WéOLxLWILOXZLy

andtherelation

-1
WéoLxL {W}Joxu'Pk (m+ I)Wé(l)/xL} Wiosz
= Wil Py (m+1)

canbe justified by post-multiplyingboth sidesof the expression
by Px(m+1)W3Y, ; andrecognizinghatWil . ., W%, =
Wil

If thematrix2W3? . ,; is approximatedy theidentity matrix
similar to (17), we finally deducethe unconstrained NMCFLMS
algorithm:

B, (m +1) = b} (m)—
M
PR (m+1) Y Di (m+1ef (m+1), (20)

i=1

wherethe normalizationmatrix P (m + 1) is diagonalandit is
straightforvardto find its inverse.Again, the unit-normconstraint
will beenforcedonthe modelfilter coeficientsafterevery stepof
updation.

IntheMCFLMS algorithm thecorrectionappliedto themodel
filter in eachupdateis approximatelyproportionalto the power
spectruntP(m + 1); this canbe seenby substituting(10) into
(13) andusingthe approximation(17). Whenthe channeloutputs
arelarge, gradientnoiseamplificationmay be experienced.With

the normalizationof the MCFLMS correctionby P (m + 1) in
the NMCFLMS algorithm,this noiseamplificationproblemis di-
minishedand the variability of the convergenceratesdueto the
changeof signallevel is eliminated. In orderto estimatea more
stablepower spectruma recursve schemds emplagyed in imple-
mentation:

Pr(m+1) = APr(m)+
M
(1=X) Y Di(m+1)Dy(m+1), (21)
i=1,i#k
k=1,2,.., M,

where X is a forgetting factor that may appropriatelybe set as
A = [1 — 1/(3L)]* for the NMCFLMS algorithm. Although
the NMCFLMS algorithm bypasseshe problemof noiseampli-
fication, we facea similar problemthat occurswhenthe channel
outputshecomegoo small. An alternatve, therefore,is to insert
a small positive numbers into the normalizationwhich leadsto
thefollowing modificationto theunconstrainedNMCFLMS algo-
rithm:

R (m+ 1) = b’ (m) — pe [Pr(m) + 0Tarxor] " -
M
Y Di(m+Def(m+1), k=1,2,.., M. (22)

i=1
5. SSIMULATIONS

To evaluatethe performancef the proposedilgorithm,we carried
out Monte Carlo simulationsfor blind identificationof a random
three-channebIMO systenof orderL = 16. For comparisonthe
crossrelation (CR) batchmethod[4] andthe time-domainmulti-
channeNewton (MCN) algorithm[8] arealsostudied.

Thenormalizedroot meansquareprojectionmisalignment
(NRMSPM)in dB is usedasa performanceneasuref estimation
accuray in this paperandis givenby

1
NRMSPM 2 20 log,, Tl
t

N

1 L

&2 lle@”] . (23)
i=1

whereN is thenumberof Monte-Carloruns,(-)®) denotesavalue
obtainedfor thei-th run,ande = h, — [(h7h)/(h”h)]h is apro-
jectionerrorvector By projectingh; ontoh anddefiningaprojec-
tion error, we take only the misalignmentf the channelestimate
into accounf10].

For acommonfloating-pointimplementatiorof analgorithm,
the floating-pointoperationgflops) dominatethe calculationand
thenumberof flopsis aconsistenmeasuref thealgorithm’s com-
putationalcompleity, independenbf what machineit runson.
The flops per setof multi-channeloutputsare counted. The ab-
solutenumberof flopsfor the studiedadaptve algorithmsarenot
particularlymeaningful but their relative valuesillustratethegreat
efficieng of thefrequeng-domainapproaches.

In the simulations the sourcesignalis anuncorrelatedinary
phase-shift-kying (BPSK) sequence.The additive noiseis i.i.d.

zero-mearGaussiarandthe specifiedSNR s definedasSNR, =
101log,,[o2|/hs||” /(M a?)], wherea? ando; arethe signaland
noisepowers,respectiely.
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A simpleinitialization wasemployedfor all conductedexper
iments.In thetime domain thechannelmpulserespons«nf thek-
th channelis setashy,(0) = [1/vVM 0 --- 07,k =1,2,..., M.
Sincethe initial channelestlmatesare|dent|cal,a non- zeroerror
signalcanbe guarantee@ndhencethe channelffilter coeficients
will beproperlyadapted.

For the CR method, 120 samplesof obsenationsfrom each
channelvereutilized. FortheMCN andMCFLMS algorithms the
stepsizep = 0.95 andps = 4 x 10~* werefixed, respectiely.
For the NMCFLMS algorithm, the stepsize us = 0.8 wasused
andthe regularizationfactord wasinitially setasonefifth of the
total power over all channelsat thefirst block. For eachspecified
SNRvalue,theNRMSPMwascalculatedy averagingtheresults,
aftercorvergence of N = 200 MonteCarloruns.

As seenin Fig. 1, theNRMSPMsof all studiedalgorithmsde-
creasesteadilyasthe SNR increases.Fig. 2 shavs the learning
cunesof theseadaptve algorithms,amongwhich the MCN algo-
rithm cornvergesfastestbut, on the otherhand,the varianceof its
costfunctionis alsothe largestafter corvergence.Although both
theMCFLMS andNMCFLMS algorithmscorvergesteadilyto the
desiredchanneimpulseresponsesgpparentljthe NMCFLMS al-
gorithm performsbetter achieving a good compromisebetween
fastconvergencespeedandlow estimatevariance.Fig. 3 givesa
comparisornof computationatompleity amongthe investigated
algorithms. Clearly, the frequeng-domainapproachesire much
moreefficient.
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Figurel: Comparisorof convergedNRMSPMvs. SNRamongthe
CR,MCN, MCFLMS, andNMCFLMS algorithmsfor therandom
three-channedystemexcited by arandomBPSK sequence.
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Figure2: Comparisorof corvergenceamongthe MCN (— + —),
MCFLMS (—A-), and NMCFLMS (—o—) algorithmsfor the
randomthree-channebkystem, excited by a randomBPSK se-
guence. Trajectoriesof (a) the costfunction J(n), and (b) the
normalizedprojectionmisalignmen(NPM) ||e(n)||/||h]| vs.time
n areshawn for onetypical run of thethreealgorithms.
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Figure 3: Comparisonof computationalcompleity per set of
multi-channelbutputsamongthe MCLMS, MCN, MCFLMS, and
NMCFLMS algorithmsfor the randomthree-channesystemof
differentorder(L), excited by arandomBPSK sequence.

6. CONCLUSIONS

Blind identificationof SIMO systemss examinedandtheissuesf
corvergence adaptvity, andefficiency of a satishctoryapproach
are addressedrom a practical point of view. An adaptve al-
gorithm using channelcross-relations implementedin the fre-
gueng domain. As the experimentalresultssupportedthe pro-
posedmethodachieresbothfastcorvergenceandgreatefficiengy.
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