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ABSTRACT

We address the problem of confidence interval estimation of spec-
tral densities using the bootstrap. Of specia interest is the choice
of the kernel global bandwidth. First, we investigate resampling
based techniques for the choice of the bandwidth. We then address
the question of whether the accuracy of the distributional bootstrap
estimation is influenced by using the resample version, rather than
the sample version of an empirical bandwidth. Aligned with recent
results on non-parametric probability density estimation, we found
that varying an empirical bandwidth across resamples is largely
unnecessary and thus, the computational burden is greatly reduced
while maintaining estimation accuracy.

1. INTRODUCTION

Non-parametric spectral density estimation has been extensively
investigated in the signal processing as well as the statistical lit-
erature. However, assessing accuracy when little is known about
the statistical distributional properties of the signal or when only a
small number of observations is available and large sample theory
does not apply has found only little coverage. Theissueisof great
importance because many signals encountered in real-life appli-
cations are non-Gaussian and/or non-stationary. Non-stationarity
can be relaxed by limiting the number of observations to a small
one and assuming (quasi) stationarity within the observation inter-
val. Thisleads to the problem of spectral resolution and thus, the
choice of the kernel bandwidth becomes fundamental. Although
this has been largely investigated [1, 2], most results are asymp-
totic and inapplicable when the signal is non-Gaussian.

The objective in this paper is to propose an automatic choice
of bandwidth in kernel spectral density estimation using the boot-
strap [3, 4]. Further, we propose the construction of confidence
intervals under the above conditions. We address the question of
whether the accuracy of the confidence intervals found using the
bootstrap areinfluenced by using the resample version, rather than
the sample version of an empirical bandwidth. The approach we
use in the latter has been motivated by the recent work by Hall et
al. [5] in the context of kernel probability density estimation.

The paper is organised as follows. In Section 2, we present
the data model and define the problem. In Section 3, we discuss
confidence interval estimation for spectral densities, using aresid-
ual based method, rather than a block method. In Section 4, we
address the problem of bandwidth selection and highlight its im-
portance in view of accuracy of distributional properties of kernel
spectral densitiesin Section 5, before we conclude.
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2. DATA MODEL

Let X1,..., X7 beobservationsfrom areal-valued, discrete-time,
zero-mean, stationary signal Xy, t € Z, whose variance is finite
and has spectral density
1 - —jwT
Cxx(w):% Z EXoX‘.,-‘e 7 , —oo<w<oo.

T=—00

Denote the periodogram by

T
2 :Xtefjwt
t=1

A kernel spectral density estimateis given by
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where the kernel K (-) is a known symmetric, non-negative, real-
valued function, h isits bandwidth and NV denotes the largest in-
teger less than or equal to 7'/2. The discrete frequencies wy, are
givenbywy, =27 k/T,—N <k < N.

The performance of Cx x (w; h) depends on the kernel band-
width h; this dependence is stressed in the notation in Eq. (1).
The objective in thiswork is to assess the accuracy of C'x x (w; h)
when the distribution of X;, ¢ € Z, is unknown and T is small.
Further, we wish to optimise the parameter h and investigate its
effects on the distributional approximation of C'x x (w; k).

) Ixx(wr), (1)

3. BOOTSTRAPPING SPECTRAL DENSITIES

There exist several methods for approximating the distribution of
spectral density estimates and confidence intervals for Cx x (w)
based on an estimate C'x x (w; k). One approach uses the blocks
of blocks bootstrap, which was developed for weakly dependent
and stationary observations [6]. Alternate methods for bootstrap-
ping dependent data [7] may also be used. The difficulty with
these techniques, however, is the choice of parameters that define
ablock. Throughout the paper wewill use aresidual based method
for bootstrapping spectral density estimates, see for example [8].
We explore the fact that the spectral density is a scale parameter
of the asymptotic distribution of Ix x(w). Thus, we interpret the
spectral estimation problem as an approximate multiplicative re-
gression problem, where

Ixx(wk):CXx(wk)-Ek, ]{2:1,...,N.
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The read-valued residuals e, k = 1,..., N are, for large N, ap-
proximately independent and identically distributed [1]. We will
assume thisasymptotic result holdsand resamplefrome, ..., en.
For this, we will also need an initial estimate C'x x (w; hs), say, of
theform givenin Eq. (1) because the true spectral density C'x x (w)
is unknown. Its bandwidth h; is arbitrary and may not coincide
with h. In the resampling step, another kernel spectral density
estimate C'x x (w; g) is used to approximate the distribution of
Cx x(w; h). Itsformis equivalent to Eq. (1) and its “resampling”
bandwidth g may not be the same as h; or h. A discussion on the
spectral density bandwidth will be given in Section 4. In Table 1,
we give the single steps of the bootstrap procedure based on resid-
uals. We note that similarly to additive regression where we centre

Table 1. The Bootstrap procedure.

Step 0. Data Collection. Collect the data X1, . .
trend it by substracting the sample mean.
Step 1. Initial Estimate. Choose an h; > 0 and compute

N
1 _
hi > K (w h-Wk) Dex (o).
7 k=N i

Step 2. Compute Residuals. Calculate the residuals

., X7 and de-

Cxx(w; hi) =

Ixx (wr) b —
Cx x (wg; hi)7
Step 3. Rescaling. Rescale the empirical residualsto

N.

(L}

k= gy

1 N
k=1,...,N, é.:N;ék.

Step 4. Resampling.  Draw independent bootstrap residuals
€1, ...,&x fromthe empirical distribution of &,,...,éxn.
Step 5. Bootstrap Estimates. With a bandwidth g, find

Iix(wr) = Ixx(—wk)=Cxx(wk;g)én,
N
. 1 — .
Cxx(wih,g) = Th Z K(w hUJk)IXX(Wk)-
k=—N

Step 6. Confidence Bands Estimation. Repeat Steps 4-5 a large
number of timesand find ¢;; (and proceed similarly for c7)
such that

Pr. \/T_hcxx(“’;f%g) = Cxx(w;9) < | =a,
Cxx(ws;g)

thatis {1+c} (T h)~'/2}~*Cx x (w; h) isthe upper bound
of an (1 — 2a)%-confidence interval for Cx x (w).

residualsto avoid an additional bias[3], there-scaling of the resid-
uasin Step 3 has asimilar effect in multiplicative regression. We
will set in Step 5 I'x x (0) = 0, the periodogram at w, = 0 of a
mean corrected sample.

Under some regularity conditions, one can show that the Mal-
lows distance between the pivotal quantity

VTh{Cxx(w;h) — Cxx(w)}/Cxx(w)

and its bootstrap approximation,
VTh{Cxx (w;h, g) — Cxx(w; 9)}/Cxx(w; g),

approaches zero in probability [8]. We conclude this section with
an example.

Consider the autoregressive (AR) processes of order 5, X; and
Y: defined asX; =05X4—1—0.6X¢—2+0.3X;—3—04X;_4+
02X; 5+N;andY; =Y;_ 1 —0.7Y;_5—04Y; _3+0.6Y;_4 —
0.5Y:—5 + U;, where N; are independently standard normally dis-
tributed variates and U, are independently uniformly distributed
variates on the interval [—2.5,2.5). Let T = 256 and consider
the estimation of the spectral density of X; at frequencies w;, =
2wk /256 for k = 41,42,43, 66,67, 68, 83, 84, 85, which corre-
spond to two peaks and the trough between both peaks (see Fig-
ure 1). We ran the algorithm of Table 1 with a Bartlett-Priestley
kernel [2] for several values of h. A good globa bandwidth was
found to take a value somewhere around h = 0.1 (See Section 4).
The confidence interval approximation results are presented in Ta-
ble 2 and are based on 1000 replications. For the sake of compar-
ison, we also include the x? approximation, in which the 100a%
confidence interval for the spectral density is approximated by

2| T Cx x (w; h)

Xiwm (HTQ)

2| T | Cx x (w; )

< CXX(W) < - )
XéLth (T)

where x2(a) issuch that Pr(x2 < x2(a)) = « [1]. A typica
result of confidence bands of the spectral density of X; isshownin
Figure 1 along with the true density. We proceed similarly in the

Table 2. Performance of the residua based bootstrap method and
the x? method for a Gaussian AR(5) process.
Residual Method x> Method
wy Lo. Cov. Up. Length Lo. Cov. Up. Length

100 0 918 8 578 21 902 77 539
103 0 906 94 586 31 894 75 549
105 0 914 8 589 18 893 89 551
161 1 982 17 179 60 900 40 157
164 1 972 27 178 52 911 37 156
166 2 972 26 176 66 89 38 156
203 2 916 82 259 31 898 71 237
206 0 922 78 260 26 905 69 240
208 0 928 72 260 26 915 59 240

Spectral Density
Speciral Density

15 2 25 3 0 05 P 15
) A

Fig. 1. 95% confidence bands for the spectral density of X; using
the residual based method (left) and the x* approximation (right).

non-Gaussian case and consider the frequencies wy, = 27k/256
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Table 3. Performance of the residual based bootstrap method and
the x2 method for an AR(5) process driven by non-Gaussian noise.
Residual Method x> Method
wr Lo, Cov. Up. Length Lo. Cov. Up. Length
063 0 916 84 3545 17 894 89 35.06
066 0 88 115 3531 11 858 131 35.05

068 O 882 118 3550 11 889 100 35.43
127 0 876 124 3581 5 836 159 35.64
130 O 88 114 3616 9 864 127 3554
132 0 891 109 36.12 27 8838 85 35.08
233 6 983 11 032 82 8% 23 028
235 5 986 9 031 83 87 30 026
242 3 983 14 030 69 906 25 024

for k = 26, 27, 28, 52, 53, 54, 95, 96, 97, which correspond to two
peaks and the minimum of the true spectral density (see Figure 2).
The confidence interval results are presented in Table 3.

Spectral Density
Spectral Density
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Fig. 2. 95% confidence bands for the spectral density of Y; using
the residual based method (left) and the x> approximation (right).

4. BANDWIDTH OPTIMISATION

Appropriate selection of i isessential to achieving good estimates.
Severa criteria such as the integrated mean squared error have
been proposed for choosing h in various context, such as kernel
probability density functions. One widely used measure of the lo-
cal performance of spectral density estimates is the mean squared
percentage error [2], defined as

n(w;h) = E{(Cxx(w; h) — Cxx (w))/Cxx (w)}*.
Because C'x x (w) is unknown, one cannot calculate the minimis-
ing ho. Under some assumptions [1, 2] on X; and on the kernel
K, n(w; h) is minimised asymptotically if i is chosen to vanish

a arate T~'/®. Using the bootstrap we can locally optimise the
bandwidth k. We estimate n(w; k) by its bootstrap counterpart,

" (w;h) = E{(Cxx(w;h, g) — Cxx(w; 9))/Cxx(w; 9)}’,
and we choose the optimal bandwidth 4, such that
N (w; hy) = Minke 0" (w; h),

where By is an interval of bandwidths which shrinks to zero at
the optimal rate T-'/%, i.e, By = [aT~/° bT~"/?], where

0 < a < b < oo are suitable constants. One can avoid resam-
pling in the minimisation if one explores the asymptotic indepen-
dence of the bootstrap residuals &, and E.é;, = 1,k =1,...,N.
Franke and Hardle [8] show that in this case a closed form ex-
pression exists for n* (w; k), which can be minimised with respect
to h. The minimising hg is (under some regularity conditions)
consistent in that T/%(hg — ho) converges to zero and the ratio
n* (w; hg) /n(w; ho) tends to 1 in probability as T — co.

We focus our attention to the problem of global bandwidth
optimisation and use the averaged mean squared percentage error

7 = < > nwri ),
k=1

which is to be minimised with respect to h. We do not resort to
the approximation for n* (wx; k) given in [8] and implement the
bootstrap approach for finding hg. For simplicity, we will make
no distinction between h and g (see Table 1) and proceed as in
Table 4, where Steps 0-3 areidentical to the onesgivenin Table 1.
The choice of the range of h used for the optimisation depends

Table 4. The Bootstrap procedure for bandwidth optimisation.

Step 4. Bandwidth Optimisation. For h, < h < hy,
Step 4.1. Resampling. Draw independent bootstrap residu-

as £1,...,&y from the empirical distribution of
51,...,5]\[.
Step 4.2. Find
Iix(wr) = Ixx(—wi) = Cxx(wi;h)é,
N
A k) = b i/ A £
Cxx(wr;h) = T’%_Z_NK( A )IXX(WIC)'

Step 4.3. Calculate

= Z{c;‘m(wk;h)—cxx(wk;h)}

N &~ Cx x (wi; )

Step 4.4. Repeat Steps 4.1-4.3 a large number of times and
compute E.¢* (h)

Step 5. Find the minimising & for E.¢*(h)

on a priori knowledge about the smoothness of Cx x (w). In the
absence of any information, the interval [hz, hyr] should be large
enough to cover a broad range of bandwidths. However, thereisa
trade-off between spectral resolution and computational expense.
We use the same example asin Section 3 and run a bootstrap
based bandwidth optimisation. We did run the algorithm of Table 4
in 0.01 increments for h. We used atotal of 200 bootstrap runsin
Step 4. Theresultsare given in Figure 3 for both X; and Y;. They
show that there is a distinct minimum for h, Whicrlin both cases
isaround 0.1. For T = 128 samples we found that h lies between
0.09 and 0.1, whilefor T' = 256 it was found to be between 0.092
and 0.12. An increase of the number of bootstrap runs does not
affect the results. If one is to approximate the distribution of the
kernel spectral density estimate, including bandwidth estimation,
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the additional computational expense due to the optimisation of h
isminimal.

L B0
Enh)
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Fig. 3. 95% Average mean sguared percentage error vs. kernel
spectral bandwidth h for X; (left) and Y; (right).

5. ACCURACY ANALYSIS

The Bootstrap is a means of estimating the distributional prop-
erties of estimates using resampling. A bootstrap version of the
population-sample relationship is constructed in that each compo-
nent that depends on the population is replaced by its sample ver-
sion, and each part that depends on the sample is replaced by its
resample counterpart [3]. Many examples such as bootstrapping
means and variances show that if one fails to adhere to this rule,
the accuracy of the bootstrap approximation, which is of second
order (i.e., the distributions are within O,(T~') apart), quickly
degrades. In the case of estimating Cx x (w) using a kernel esti-
mate, C'x x (w; h) is determined by abandwidth &. For simplicity,
let us assume that ¢ = h. In Section 4 we discussed the estima-
tion of h, which is calculated from the data X1, ..., Xr. Inthat
case, h is not fixed, but depends on the data, and thus, we denote
it by h. If in kernel spectral density estimation we require to as-
sess the accuracy or determine the distribution of the estimate of
Cx x (w) along with the estimation of a pilot estimate /. for h, as
discussed in the previous section, the bootstrap dictates that the es-
timate C'k x (w; h) should be computed using A = A* of h. Itis
well-known that this reduces the order of error associated with the
bootstrap approximation to a distribution.

Recently Hall et al. [5] showed that for kernel probability
density estimation replacing i by h* when computing the boot-
strap estimator does not necessarily improve the order of accu-
racy of confidence procedure based on the bootstrap. Unlike the
percentile-t approach [4], it will not usualy improve performance
by an order of magnitude. Thereason ismainly that standard boot-
strap methods are unable to capture the bias of a curve estimate.
Also, pivoting [9], which ensures the order of accuracy, is not re-
produced.

Following [5], one can show that similar conclusions can be
drawn for spectral densities. Indeed C% x (w; i) — Cx x (w; h) as
well as Cx x (w; h*) — Cx x (w; h) arefirst order accurate. Ex-
tensive ssimulations have confirmed this result. In Figure 4, we
show atypical result of confidence interval estimation when using
the plug-in method, i.e., using A* at each resampling step against
using a pilot estimate h. Here, we used the same parameters as
in Section 3. From the figure, it can be seen that the results are
in close agreement. The next step will be to compare these results
with percentile-t methods, in which we studentise the statistics[4].
Findings will be presented elsewhere.
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Fig. 4. 95% confidence bands for the spectral density of Y; using
the plug-in method (left) and using a pilot estimate i (right).

6. DISCUSSION

We have considered the problem of kernel spectral density estima-
tion. First, we presented a bootstrap based method for confidence
interval (distributional) estimation. The method is based on resam-
pling residuals and thus does not require block optimisation. Then,
we proposed a bootstrap method for the choice of the kernel global
bandwidth. The method does not rely on asymptotic findings and
results show good performance with little computationa burden.
We then have addressed the question of whether the accuracy of
the distributional bootstrap estimation is influenced by using the
resample version, rather than the sample version of an empirical
bandwidth. Aligned with recent results on non-parametric proba-
bility density estimation it has been found that varying an empir-
ica bandwidth across resamples is largely unnecessary and thus,
the computational burden is greatly reduced while maintaining es-
timation accuracy.
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