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ABSTRACT 
 
Principal Components Analysis (PCA) being the most 
optimal linear mapper in Least-Squares (LS) sense has 
been predominantly used in subspace-based signal 
processing methods. In system identification problem, 
optimal subspace projections must span the joint space of 
the input and output of the unknown system. In this 
scenario, subspaces determined by the principal 
components of the input or the desired alone do not 
embed key information, which lies in the joint space. In 
this paper, we first propose a hybrid subspace projection 
method that finds optimal projections in the joint space. 
The concepts behind this method are firmly rooted in 
statistical theory. We then derive adaptive learning 
algorithms to estimate the subspace projections. Finally, 
we show the superiority of the new framework in solving 
system identification problem in noisy environment. 
 

1. INTRODUCTION 
 
In vector-space methods of signal processing, linear 
transformations play an important role. Linear 
transformations may be defined as the projection of 
vector-valued signals onto lower-dimensional subspaces 
of the original data space [1]. Subspace projections play 
an important role in the system identification problem 
with noisy data as the noise blended in the signal can be 
reduced substantially under some constraints [2]. Principal 
Components Analysis (PCA), which maximally preserves 
the data variance, has been widely adopted as a major 
subspace projection method. However, in the problem of 
system identification, the underlying system parameters 
lie in the joint space of the input and desired signals. 
PCA, due to its very nature, cannot effectively utilize the 
information in joint spaces. 

The subspace methods have been well studied in 
statistics. Many studies in statistics have formed various 
methods for multivariate regression to overcome the 
“collinearity” problem amongst input variables. 
Regularized regression methods such as Partial Least 
Squares (PLS), Ridge Regression (RR), and PCA are well 
known in statistics literature [3]. Continuum Regression 

(CR), introduced by Stone and Brooks [4], embraces 
Ordinary Least Squares (OLS), PLS, and PCA by 
blending their criteria. Therefore, the desirable 
regularization can be one of OLS, PLS, and PCA or a 
combination of them. The problem of system 
identification studied in this paper is similar to regression 
in statistics; hence, we may be able to utilize statistical 
regularization methods to design improved subspace 
methods. 

In this paper, we propose a hybrid criterion function 
for subspace projection similar to CR, and develop the 
rules to estimate the projection matrix. We first present a 
gradient-based method and then improve the speed of 
convergence by designing a fixed-point type algorithm. 
We then solve the system identification problem using the 
new framework and proposed algorithms. 
 
2. REVIEW OF CONTINUUM REGRESSION (CR) 

 
In this section, we briefly summarize the criterion and the 
procedure of CR. Let the data be given by an input matrix 
X (n x p) and a matrix of desired responses d (n x m). 
Here, we assume m equal to 1 for simplicity. Extension to 
multivariate outputs can be found in [5]. Both X and d are 
normalized to have zero column means. In [4], the 
criterion is, 
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where, , and α is a real number in the range 0 < 
α < 1. The special cases are α = 0 (OLS), α = 1/2 (PLS), 
and α = 1 (PCR). We introduce two new matrices, 
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then, (1) can be rewritten as, 
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Thus, given α, the projection weight vector w is 
constructed to maximize J(w,α). After finding the first 
weight vector, the successive ones are computed such that 
weight vectors are orthogonal to each other. 
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3. HYBRID CRITERION FUNCTION 
 
We build the criterion similar to CR in (3) as, 
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where λ is a real number in the range 0 ≤ λ ≤ 1. This 
criterion covers the continuous range between PLS (λ = 1) 
and PCA (λ = 0), whereas CR covers OLS, PLS and PCA. 
Since we are only interested in the case when subspace 
projection is necessary, incorporation of OLS can be 
omitted. We include the constraint ||w||=1 in the modified 
criterion , which is invariant to scaling of w as, ),(ˆ λwJ
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Since log is a monotonically increasing, the criterion can 
also be rewritten as, 
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We seek to maximize this criterion for 0 ≤ λ ≤ 1. To select 
the best value of λ, cross-validation or other validation 
methods can be utilized [6]. 
 

4. LEARNING ALGORITHMS 
 
4.1. Gradient learning algorithm 
 
The gradient of (6) with respect to the weight vector is, 
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Using gradient-ascent, the weight vector can be updated 
as 
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where η > 0 is a small learning rate. To compute the 
gradient, we need to know R and p that can be simply 
estimated from samples. The above update rule converges 
to the first projection vector. 

To find M such orthogonal weight vectors, where M 
is the desired dimension of the subspace, update rules (7) 
and (8) are applied on the residuals of input from the 
previous projection output (deflation procedure [6]). Note 
that R and p need to be recomputed in each step. Table 1 
summarizes the procedure to construct the projection 
weight vectors. 
 
4.2. Fixed-point learning algorithm 
 
The gradient method possesses a couple of defects; the 
speed of the convergence is slow, and the performance 
depends on the choice of the learning rate.  Like all 
gradient-based methods, a finite set of step-sizes restricted 
by an upper bound exists for guaranteed convergence.  

 
X ~ input matrix 
d ~ desired response vector  
M ~ dimension of subspace  
K ~ number of iterations 
Normalize X and d. 
Given λ, 
For k = 1,…,K 
      X0 = X 
      For m = 1,…,M 
            Compute R and p from samples. 
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      end 
end 

Table 1. Gradient hybrid subspace learning algorithm. 
 
However, this step-size upper bound is data dependent 
which makes it unwieldy to utilize in any practical 
application. Recently fixed-point algorithms have been 
proposed for PCA that were shown to converge faster 
than gradient methods [7]. Motivated by the effectiveness 
of the fixed-point PCA rules, we derived the fixed-point 
version of the hybrid subspace learning algorithm. The 
stationary point of (7) is given by equating the gradient to 
zero.  

Assuming that ||w||=1, we can rearrange the terms as, 
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Let the weight vector w(k) be the estimation of the first 
projection direction at iteration k. Then the estimate of the 
weight vector at iteration index k+1 is, 
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where, w(k)Tw(k) = 1. It can be shown using the principles 
outlined in [7], [8] that the algorithm in (10) will enter a 
limit cycle (near convergence) resulting in the oscillation 
of w between two vectors. To remove the oscillation 
behavior when convergence is reached, we balance the 
previous value of the weights with the new correction as 
shown in [2], 
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where 0 < T < 1. The convergence rate is affected by T, 
which produces a tradeoff between the convergence speed 
and the accuracy. For T = 1, we obtain the fastest 
convergence. The overall procedure for finding 
subsequent projection weight vectors is the same as 
depicted in table 1. 

x(t) d(t) Target filter

Subspace
projectionn(t) + d(t) 

+
-Adaptive

filter +We will now show that the fixed-point update 
equation is stable. The ordinary differential equation 
equivalent to (11) is, 
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Then, we can state the following theorem; 
 
Theorem: The norm of the weight vector, ||w(t)||2 
converges to 1 as  t → ∞.  
Proof: Multiplying from the left by  on both sides 
of (12), we get, 
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From the above equation, it is easy to see that, 
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The above ODE can be easily solved as, 
tet 222 ))0(1(1)( −−−= ww     (15) 

where denotes the initial weight vector. As t → ∞, 
the norm converges to unity. This completes the proof.  

)0(w

 
Thus if ||w(0)||2 is bounded, all subsequent weight norms 
are also bounded. The complete proof of the convergence 
of the fixed-point update equation will be given in another 
paper. 
 

5. EXPERIMENTS 
 
We will present a system identification problem in the 
presence of noise. Traditional MSE-based techniques fail 
because of the presence of noise in the data. Subspace 
algorithms on the other hand can find optimal projections 
that can suppress the noise leading to more accurate 
identification. A continuous signal comprising of three 
sinusoidal components was generated as x(t) = c1sin(2πf1t) 
+c2sin(2πf2t) + c3sin(2πf3t), where f1 is 10Hz, f2 is 50Hz, 
and f3 is 100Hz, respectively. The sampling rate was 
1kHz. The coefficients c1, c2 and c3 can be set arbitrary 
(e.g. c1 = c2 = c3 = 1 in our experiment). This signal was 
filtered through a real-valued FIR filter with 10-taps 
(target filter) to generate the desired response signal. Then 
white Gaussian noise was added to x(t) to produce the 
noisy input data. One thousand 50-dimensional vectors 

Figure 1. The structure of the system identification 
example with subspace projection and reconstruction. 
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Figure 2. Euclidean distance between target filter and 
estimated filter for 0 ≤ λ ≤ 1. 

were derived out of this using a tap-delay line to create an 
input matrix of dimension 1000×50. The subspace 
dimension was chosen as 6 (as there were 3 sinusoids). 
Then, the reconstruction matrix, which is equal to the 
transpose of a subspace matrix, linearly combined the 
subspace signal to form the reconstructed signal. Note that 
the reconstructed signal contains less noise due to the 
subspace projection. The reconstructed signal was then 
used as an input to a 10-tap adaptive filter to estimate the 
target filter. The overall architecture is depicted in Fig. 1. 
In simulation, we first trained a subspace projection 
matrix using the two proposed algorithms for 50 epochs, 
and then trained an adaptive filter by LMS. 

First, the Euclidean distances between the target filter 
and estimated filter was evaluated as shown in Fig. 2. The 
results were obtained by averaging 50 Monte Carlo 
simulations. The best estimation result was observed 
when λ was approximately 0.26. This indicates that we 
can estimate the target filter more accurately using hybrid 
subspace projection than PCA or PLS. Next, we verify 
that L2 norm of the weight vector converges to 1. The 
experimental results of ||w(t)||2 for T = 0.3, as t increases, 
are plotted in Fig. 3, and compared with analytically 
computed values from (15). The experimental results 
match very well with theoretical results. Finally, the effect 
of T on the convergence speed was evaluated as illustrated 
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Figure 3. The convergence of the L2 norm of subspace 
projection weight vector.  
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Figure 4. The effect of T on the convergence speed as T is 
equal to 1, 0.7 and 0.4, respectively. 
 
in Fig. 4. We set λ to 0 so that the projection weight 
vector converged to the eigenvector of the input 
correlation matrix. The angle (in degree) between the 
actual eigenvector and the weight vector was computed 
over iterations with T being equal to 1, 0.7, and 0.4, 
respectively.  The results show that convergence is the 
fastest when T is 1, which is in conformance with the 
theoretical arguments presented before. 
 

6. DISCUSSIONS 
 
We have presented a hybrid subspace projection 
framework that effectively uses information in the joint 
space of a pair of signals. The proposed cost function 
 

included PLS and PCA as special cases. We then 
proposed gradient as well as fixed-point type algorithm to 
maximize the hybrid cost function. In order to verify the 
power of this hybrid framework, we performed a system 
identification experiment in noisy environment. Our 
results showed that the new approach has better noise 
rejection capability when compared with the traditional 
PCA based subspace methods.  

The proposed algorithm may be useful for the pattern 
recognition or signal detection problem. In that case, we 
might need to consider how to manipulate the qualitative 
desired response (not quantitative) to compute the cross-
validation vector. Future studies will cover this problem. 
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