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ABSTRACT

Principal Components Analysis (PCA) being the most
optimal linear mapper in Least-Squares (LS) sense has
been predominantly used in subspace-based signal
processing methods. In system identification problem,
optimal subspace projections must span the joint space of
the input and output of the unknown system. In this
scenario, subspaces determined by the principal
components of the input or the desired alone do not
embed key information, which lies in the joint space. In
this paper, we first propose a hybrid subspace projection
method that finds optimal projections in the joint space.
The concepts behind this method are firmly rooted in
statistical theory. We then derive adaptive learning
algorithms to estimate the subspace projections. Finally,
we show the superiority of the new framework in solving
system identification problem in noisy environment.

1. INTRODUCTION

In vector-space methods of signal processing, linear
transformations play an important role. Linear
transformations may be defined as the projection of
vector-valued signals onto lower-dimensional subspaces
of the original data space [1]. Subspace projections play
an important role in the system identification problem
with noisy data as the noise blended in the signal can be
reduced substantially under some constraints [2]. Principal
Components Analysis (PCA), which maximally preserves
the data variance, has been widely adopted as a major
subspace projection method. However, in the problem of
system identification, the underlying system parameters
lie in the joint space of the input and desired signals.
PCA, due to its very nature, cannot effectively utilize the
information in joint spaces.

The subspace methods have been well studied in
statistics. Many studies in statistics have formed various
methods for multivariate regression to overcome the
“collinearity” problem amongst input variables.
Regularized regression methods such as Partial Least
Squares (PLS), Ridge Regression (RR), and PCA are well
known in statistics literature [3]. Continuum Regression
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(CR), introduced by Stone and Brooks [4], embraces
Ordinary Least Squares (OLS), PLS, and PCA by
blending their criteria. Therefore, the desirable
regularization can be one of OLS, PLS, and PCA or a
combination of them. The problem of system
identification studied in this paper is similar to regression
in statistics; hence, we may be able to utilize statistical
regularization methods to design improved subspace
methods.

In this paper, we propose a hybrid criterion function
for subspace projection similar to CR, and develop the
rules to estimate the projection matrix. We first present a
gradient-based method and then improve the speed of
convergence by designing a fixed-point type algorithm.
We then solve the system identification problem using the
new framework and proposed algorithms.

2. REVIEW OF CONTINUUM REGRESSION (CR)

In this section, we briefly summarize the criterion and the
procedure of CR. Let the data be given by an input matrix
X (n x p) and a matrix of desired responses d (n x m).
Here, we assume m equal to 1 for simplicity. Extension to
multivariate outputs can be found in [5]. Both X and d are
normalized to have zero column means. In [4], the
criterion is,

J(w, @) = (Xw) d)% (Xw)" Xw)' | =1 (1)

where, w e R”" | and a is a real number in the range 0 <
o < 1. The special cases are oo = 0 (OLS), a = 1/2 (PLS),
and o = 1 (PCR). We introduce two new matrices,
R=X"X

2
p=X'd 2)
then, (1) can be rewritten as,
£
J(w,a)=(w'p)’ (W' Rw)'* || =1 A3)

Thus, given a, the projection weight vector w is
constructed to maximize J(w,a). After finding the first
weight vector, the successive ones are computed such that
weight vectors are orthogonal to each other.
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3. HYBRID CRITERION FUNCTION

We build the criterion similar to CR in (3) as,
J(w, A)=(w'p)” (w'Rw) . [w]=1 @)
where A is a real number in the range 0 < A < 1. This
criterion covers the continuous range between PLS (1= 1)
and PCA (4 = 0), whereas CR covers OLS, PLS and PCA.
Since we are only interested in the case when subspace
projection is necessary, incorporation of OLS can be
omitted. We include the constraint ||w||=1 in the modified
criterion J (w, A) , which is invariant to scaling of w as,
(WTp)Zﬂ (wTRw)l—l

7 )

w'w
Since log is a monotonically increasing, the criterion can
also be rewritten as,
log(j(w, A)) = 2log(w'p)* +(1— 1) log(w'Rw) — log(w’ w)
(6)

We seek to maximize this criterion for 0 < A < 1. To select

the best value of A, cross-validation or other validation
methods can be utilized [6].

J(w,2)=

4. LEARNING ALGORITHMS
4.1. Gradient learning algorithm

The gradient of (6) with respect to the weight vector is,
alog(j(w, A) _ 2p N 20-2)Rw 2w
ow w'p

Using gradient-ascent, the weight vector can be updated
as
w(k +1)=w(k)+nVI(J) (8)
where 7 > 0 is a small learning rate. To compute the
gradient, we need to know R and p that can be simply
estimated from samples. The above update rule converges
to the first projection vector.

To find M such orthogonal weight vectors, where M
is the desired dimension of the subspace, update rules (7)
and (8) are applied on the residuals of input from the
previous projection output (deflation procedure [6]). Note
that R and p need to be recomputed in each step. Table 1
summarizes the procedure to construct the projection
weight vectors.

()

w’ Rw wiw

4.2. Fixed-point learning algorithm

The gradient method possesses a couple of defects; the
speed of the convergence is slow, and the performance
depends on the choice of the learning rate. Like all
gradient-based methods, a finite set of step-sizes restricted
by an upper bound exists for guaranteed convergence.

X ~ input matrix

d ~ desired response vector
M ~ dimension of subspace
K ~ number of iterations
Normalize X and d.

Given A,

Fork=1,...,K
X(]:X
Form=1,...M

Compute R and p from samples.

~ o 22p 2(-)Rw 2w
Vi) =220 - AR 2y
w'p w' Rw W w
w (k+D)=w_(k)+nVI(J,k)
m m 77
*+D) w, (k+1)
w =
" [w,, Ge+1)|
Y, =X, W, (k+1)
T
Y X
Xm:Xm—l_y”lT—1
mem
end

end

Table 1. Gradient hybrid subspace learning algorithm.

However, this step-size upper bound is data dependent
which makes it unwieldy to utilize in any practical
application. Recently fixed-point algorithms have been
proposed for PCA that were shown to converge faster
than gradient methods [7]. Motivated by the effectiveness
of the fixed-point PCA rules, we derived the fixed-point
version of the hybrid subspace learning algorithm. The
stationary point of (7) is given by equating the gradient to
Zero.

Assuming that ||w||=1, we can rearrange the terms as,

w:{ /15, +(1—T/I)Rw} )
w'p WwW Rw

Let the weight vector w(k) be the estimation of the first
projection direction at iteration k. Then the estimate of the
weight vector at iteration index k+1 is,

Wk +1) = Ap N (1-A)Rw(k)

wk)'p wk)" Rw(k)
where, w(k)"w(k) = 1. It can be shown using the principles
outlined in [7], [8] that the algorithm in (10) will enter a
limit cycle (near convergence) resulting in the oscillation
of w between two vectors. To remove the oscillation
behavior when convergence is reached, we balance the
previous value of the weights with the new correction as
shown in [2],

(10)

wk+1) = (1= T)w(k)+ 7| —2P +(I_A)Rw(k)}(ll)

wk)'p  w(k)" Rw(k)
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where 0 < T < 1. The convergence rate is affected by T,
which produces a tradeoff between the convergence speed
and the accuracy. For T = 1, we obtain the fastest
convergence. The overall procedure for finding
subsequent projection weight vectors is the same as
depicted in table 1.

We will now show that the fixed-point update
equation is stable. The ordinary differential equation
equivalent to (11) is,
ow(r) wk+1)—w(k)

ot T
_Ap N (1-A)Rw(k)
w(k)'p  w(k)" Rw(k)
Then, we can state the following theorem;

w(k) (12)

Theorem: The norm of the weight vector, |w(?)|]
converges to 1 as ¢ — oo.

Proof: Multiplying from the left by w’(¢) on both sides
of (12), we get,

ow(t
WT(O#=[1—WT(f)W(f)]=[1—||W(f)||2] (13)
From the above equation, it is easy to see that,
Awa)| ow(r)
Ivol = L 2w (== =2l ~ w1 (14)

The above ODE can be easily solved as,
W) =1-~[w)*)e™ (15)

where w(0) denotes the initial weight vector. As ¢ — oo,
the norm converges to unity. This completes the proof.

Thus if ||w(0)|* is bounded, all subsequent weight norms
are also bounded. The complete proof of the convergence
of the fixed-point update equation will be given in another

paper.
5. EXPERIMENTS

We will present a system identification problem in the
presence of noise. Traditional MSE-based techniques fail
because of the presence of noise in the data. Subspace
algorithms on the other hand can find optimal projections
that can suppress the noise leading to more accurate
identification. A continuous signal comprising of three
sinusoidal components was generated as x(¢) = c¢;sin(2nf;t)
+epsin(2mfot) + e3sin(2nf3t), where £, is 10Hz, f; is SOHz,
and f; is 100Hz, respectively. The sampling rate was
1kHz. The coefficients ¢, ¢, and ¢; can be set arbitrary
(e.g. ¢; = ¢, = c3 = 1 in our experiment). This signal was
filtered through a real-valued FIR filter with 10-taps
(target filter) to generate the desired response signal. Then
white Gaussian noise was added to x(¢) to produce the
noisy input data. One thousand 50-dimensional vectors

x(?)

A 4

Target filter »d(0)

Subspace
(o) projection =40

4 +
Adaptive | 3 7

e(?)

Figure 1. The structure of the system identification
example with subspace projection and reconstruction.
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Figure 2. Euclidean distance between target filter and
estimated filter for 0 < A < 1.

were derived out of this using a tap-delay line to create an
input matrix of dimension 1000x50. The subspace
dimension was chosen as 6 (as there were 3 sinusoids).
Then, the reconstruction matrix, which is equal to the
transpose of a subspace matrix, linearly combined the
subspace signal to form the reconstructed signal. Note that
the reconstructed signal contains less noise due to the
subspace projection. The reconstructed signal was then
used as an input to a 10-tap adaptive filter to estimate the
target filter. The overall architecture is depicted in Fig. 1.
In simulation, we first trained a subspace projection
matrix using the two proposed algorithms for 50 epochs,
and then trained an adaptive filter by LMS.

First, the Euclidean distances between the target filter
and estimated filter was evaluated as shown in Fig. 2. The
results were obtained by averaging 50 Monte Carlo
simulations. The best estimation result was observed
when A was approximately 0.26. This indicates that we
can estimate the target filter more accurately using hybrid
subspace projection than PCA or PLS. Next, we verify
that L, norm of the weight vector converges to 1. The
experimental results of |[w(t)||* for 7= 0.3, as ¢ increases,
are plotted in Fig. 3, and compared with analytically
computed values from (15). The experimental results
match very well with theoretical results. Finally, the effect
of T on the convergence speed was evaluated as illustrated
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5 Convergence of the L2-norm of projection vector

—— experimental results
- - - analytical results
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Figure 3. The convergence of the L2 norm of subspace
projection weight vector.
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Figure 4. The effect of T on the convergence speed as 7' is
equal to 1, 0.7 and 0.4, respectively.

in Fig. 4. We set 4 to 0 so that the projection weight
vector converged to the eigenvector of the input
correlation matrix. The angle (in degree) between the
actual eigenvector and the weight vector was computed
over iterations with T being equal to 1, 0.7, and 0.4,
respectively. The results show that convergence is the
fastest when T is 1, which is in conformance with the
theoretical arguments presented before.

6. DISCUSSIONS
We have presented a hybrid subspace projection

framework that effectively uses information in the joint
space of a pair of signals. The proposed cost function

included PLS and PCA as special cases. We then
proposed gradient as well as fixed-point type algorithm to
maximize the hybrid cost function. In order to verify the
power of this hybrid framework, we performed a system
identification experiment in noisy environment. Our
results showed that the new approach has better noise
rejection capability when compared with the traditional
PCA based subspace methods.

The proposed algorithm may be useful for the pattern
recognition or signal detection problem. In that case, we
might need to consider how to manipulate the qualitative
desired response (not quantitative) to compute the cross-
validation vector. Future studies will cover this problem.
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