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ABSTRACT

The all-pole model is often used to parsimoniously approximate
rational transfer functions. In many applications, such as single
channel blind deconvolution, an estimate of the channel is required.
However, in general, attempting to model the entire channel spec-
trum by a single all-pole model leads to a large computational load.
Hence, it is better to model a particular frequency band of the spec-
trum by an all-pole model, reducing a single high-dimensional op-
timistation to a number of low-dimensional ones. If each subband
is completely decoupled from the others, and does not enforce any
continuity, there will be discontinuities in the spectrum at the sub-
band boundaries. In this paper, continuity is ensured by constrain-
ing the subband parameters such that the end points at one subband
boundary is matched to the spectrum in the adjacent subbands.
This is formulalised in the Bayesian probabilistic framework.

1. SELECTIVE SPECTRAL MODELLING

The all-pole model is often used to model a channel since, not only
is it mathematically convienient and widely used in many fields,
but it often parsimoniously approximates rational transfer func-
tions. This model simultaneously fits the entire frequency range,
even though it may fit some regions in this frequency space better
than others. For example, acoustic impulse responses (AIRs) may
be modelled by a linear time-invariant (LTI) all-pole filter with
typical model orders in the range 50 ≤ P ≤ 500 [1]. In many
applications, such as single channel blind dereverberation [2], an
estimate of the AIR is required. However, attempting to model
the entire acoustic spectrum by a single all-pole model often leads
to a large computational load. Hence, it may be better to model
a particular frequency band of the filter’s spectrum by an all-pole
model. Since the subbands have been decoupled, this often re-
sults in a lower model order for that frequency band and, therefore,
improved parameter estimation within this frequency band. Sub-
band linear prediction has also been considered in [4–6]. Unfortu-
nately, as discussed in [3] where the subband autoregressive (AR)
model is applied to room acoustics, since the model in each sub-
band is completely decoupled from the other subbands, there are
discontinuities in the model’s spectrum at the subband boundaries,
which introduce distortion into the equalised channel. The sub-
band model did not enforce any continuity between blocks. In this
paper, continuity is ensured by constraining the AR parameters
such that the end points at one subband boundary is matched to
the estimated spectrum in the adjacent subbands.

This work is supported by William Colton Research Fellowship,
Queens’ College, University of Cambridge.

2. BAYESIAN FREQUENCY DOMAIN FORMULATION

If a channel is modelled as all-pole excited by white Gaussian
noise (WGN), its output, s(t), is given by the AR process:

s(t) = −
P∑

p=1

a(p) s(t − p) + e(t), ∀t ∈ T (1)

where e(t) is the WGN input excitation, a = {a(p), p ∈ P} are
the model parameters, and P is the number of poles. Although the
estimate of the autoregressive parameters, a, is usually derived in
the time-domain, it can also be formulated within the frequency
domain. Makhoul [4] suggests such a formulation when analysing
speech using linear prediction. A rigorous Bayesian formulation
is derived below, which has previously been summarised in [3].

2.1. Likelihood Function for AR Processes

The sequence {s(t), t ∈ T = {0, . . . , T − 1}} is modelled by
the AR process given in equation (1). If e(t) � E(k) and s(t) �
S(k) are discrete Fourier transform (DFT) pairs, defined by:

S(k) =
1√
T

T−1∑
t=0

s(t) e−
j2πkt

T , s(t) =
1√
T

K−1∑
k=0

S(k) e
j2πkt

T

where k ∈ K = {0, . . . , K − 1} and t ∈ T , then application of
the DFT to (1) for t ∈ T gives:

E(k) = S(k) +

P∑
p=1

a(p) e−
2π jkp

T Ŝp(k) (2)

where Ŝp(k) is given by:

Ŝp(k) =
1

T

K−1∑
k̂=0

S(k̂)

T−1−p∑
t=0

e
j2π(k̂−k)t

T +
1√
T

−1∑
t=−p

s(t)e−
j2πjt

T

︸ ︷︷ ︸
initial conditions

Inclusion of the initial conditions leads to a spectral analogue of
the covariance AR modelling method. However, for brevity, the
effect of the initial conditions are removed by assuming s(t) is pe-
riodic, such that as T gets large, linear convolution can be approx-
imated by circular convolution. In this case, S(k) replaces Ŝp(k)
in (2), which can be written in vector-matrix form by defining the
vector1 [E ]k = E(k), k ∈ K:

E = S + Sa (3)

1In addition to bold lower case letters, bold calligraphic letters are used
to denote vectors. Bold capital letters denote matrices.

VI - 3170-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



where S = [ S1 · · · SP ], [Sp]k = e−
2πjkp

T S(k), k ∈ K, and

S = S0. Defining [WT ]k,t � 1√
T

e−
2πjkt

T , k ∈ K, t ∈ T , then

E = WT e, where [e]t = e(t), t ∈ T and e ∼ N
(
0T , σ2 IT

)
;

IT ∈ R
T×T is the identity. Next, assume T is even,2 and observe

E(k) = E∗(T−k), k ∈ K̂ = {1, . . . , K̂} where K̂ = T
2
−1, and

that E(0) and E
(

T
2

)
are real. Defining the new random variables

(r. v.s) Er(k) = �{E(k)} , k ∈ K̃ = {0, . . . , K̃}, K̃ = T
2

and Ei(k) = �{E(k)} , k ∈ K̂, where �{·} and �{·} denote
the real and imaginary components respectively, yields a real map-
ping from T real r. v.s in e to T real r. v.s in Ê = {Er(k), k ∈
K̃, Ei(k), k ∈ K̂}. From the definition of the DFT, it follows:



Er(0)
...

Er(K̃)
Ei(1)

...
Ei(K̂)




︸ ︷︷ ︸
Ê

=




c0,0 . . . c0,T−1

...
. . .

...
cK̃,0 . . . cK̃,T−1

s0,0 . . . s0,T−1

...
. . .

...
sK̂,0 . . . sK̂,T−1




︸ ︷︷ ︸
ŴT




e(0)
...

e(K̃)

e(K̃ + 1)
...

e(T − 1)




︸ ︷︷ ︸
e

(4)

where ck,t = 1√
T

cos
(

2πkt
T

)
and sk,t = − 1√

T
sin

(
2πkt

T

)
. Using

the probability transformation rule, where if y = Ax, then:

py (y) =
1

abs |A|px

(
A−1 y

)
(5)

and noting e ∼ N
(
0T , σ2 IT

)
, it follows:

pÊ
(
Ê
)

= N
(
Ê ∣∣ 0, σ2 ŴT Ŵ

T

T

)
(6)

From the definition of ŴT , it may be shown that

[
ŴT Ŵ

T

T

]
k,k̂

=




1 if k = k̂ = 0, or k = k̂ = T
2

1
2

if k = k̂ �= 0, or k = k̂ �= T
2

0 otherwise

(7)

It follows ÊT
(
ŴT Ŵ

T

T

)−1 Ê =

E2
r (0) + E2

r

(
T
2

)
+ 2

K̂∑
k=1

{
E2

r (k) + E2
i (k)

}
≡ E† E

where the equivalence comes from simply expanding E† E . Hence:

pE (E) ∝ N
(E ∣∣ 0, σ2 IT

)
(8)

as expected since, by Parseval’s Theorem in finite-discrete time
eT e = E† E , noting W†

T WT = IT . Using (5) again, the likeli-
hood function is:

pS (S | θ, I) ∝ 1

(2πσ2)
T
2

exp

{
−‖S + Sa‖2

2σ2

}
(9)

where ‖·‖ denotes the Euclidean norm, θ = {a, σ2} are the model
parameters, and I denotes the underlying models used. The pos-
terior probability, p (θ | S , I), is given by Bayes’s theorem:

p (θ | S , I) ∝ p (S | θ, I) p (θ | I) (10)

where p (θ | I) represents any prior belief.

2The derivation is similar if T is odd.

2.2. Prior distribution on AR coefficients

For a real, stable, minimum-phase AR process, a, should ideally
only take on values which lie in the stability domain. However,
it is usual to place a Gaussian prior on the parameters: a |σ2 ∼
N
(
0P , σ2 δ2 IP

)
, δ ∈ R

+.

2.3. Prior distribution for the Excitation Variance

A standard prior for scale parameters, such as variances, is the
inverse-Gamma density: p

(
σ2
∣∣ α, β

)
= IG

(
σ2
∣∣ α

2
, β

2

)
,

IG
(
σ2
∣∣α, β

)
=

βα(σ2)−(α+1)

Γ(α)
exp

(
− β

σ2

)
IR+

(
σ2)

where IA (a) = 1 if a ∈ A and zero otherwise.

2.4. Parametric Estimate of AR Coefficients

The hyperparameters {α, β, δ} are, for simplicity, assumed to be
known. From (9) and (10), the joint density is:

p (θ | S , I) ∝ 1

σR
exp

{
−‖S + Sa‖2 + 1

δ
aT a + β

2σ2

}
(11)

where R = T + P + α + 2. This can be maximised with respect
to a and σ, yielding the maximum marginal a posteriori (MMAP)
solution, which is similar to the usual least-squares solution:

â = −
(
S†S + δ−2

)−1

�
{
S† S

}
σ̂2 = R−1

(
S† S + �

{
S† Sa

}
+ β

) (12)

3. BAYESIAN SUBBAND MODELLING

The Bayesian analysis above can be extended to model an ob-
served process in subbands, rather than a single “full-band”. In
each subband, the power spectrum, P(k) = E

{
|S(k)|2

}
, of s(t)

is modelled by an all-pole spectrum in the region k ∈ Kl =
{kl, . . . , kl+1 − 1}, where l denotes the subband index, Tl ≡
Kl = kl+1 − kl is the number of frequency components in band
l ∈ L = {0, . . . , L − 1}, L is the number of subbands, ω =

{kl, l ∈ L} are the subband boundaries, k0 � 0 and kL � T .
In other words, considering (2), P(k) can be represented over the
full frequency range by a series of subband models, as given by:

E
{
|S(k)|2

}
=

L−1∑
l=0

σ2
l I{kl,kl+1} (ω)∣∣∣∣1 +

∑Pl
p=1 al(p) e

− 2π j(k−kl)p

kl+1−kl

∣∣∣∣2
(13)

where al = {al(p), p ∈ Pl} and σ2
l denote model parameters

in subband l. The spectral error, E = WT e, is divided into
subbands, E = [ E0, . . . , E{L−1}]

T . The variance within each
subband, σ2

l , can be made independent, provided the total power
remains constant; i.e.

∑L−1
l=0 σ2

l = σ2. Hence, (8) becomes:

pE (E) ∝
L−1∏
l=0

N
(E l

∣∣ 0, σ2
l ITl

)
(14a)

where
∑L−1

l=0 Tl = T . It follows, in analogy to (3):

E l = S l + Sl al (14b)
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Fig. 1. The transfer function of the horn, and the corresponding
AR model; Response, 0 → 10 kHz.

Denoting θ = {al, σ2
l , l ∈ L}, the likelihood is:

p (S | θ, φ, I) =

L−1∏
l=0

1

(2πσ2
l )

Tl
2

exp

{
−‖S l + Sl al‖2

2σ2
l

}
(15)

where φ � {ω, Ξ} contains the vector of subband boundaries, ω,
and the vector of model orders, Ξ = {Pl, l ∈ L}. The priors at-
tributed to al and σ2

l are again al |σ2
l ∼ N

(
0Pl , σ2

l δ2
l IPl

)
, δl ∈

R
+ and σ2

l |
(

νl
2

, γl
2

)
∼ IG

(
νl
2

, γl
2

)
, where {δl, νl, γl, l ∈ L}

are assumed known. Bayes’s theorem gives p (θ | S , φ, I), with
the joint density given by the product of terms similar to that in
(11), yielding the MMAP solution:

âl = −
(
S†

l Sl + δ−2
l

)−1

�
{
S†

l S l

}

σ̂2
l =

S†
l S l + �

{
S†

l Sl al

}
+ βl

Tl + Pl + αl + 2

(16)

3.1. Subband Modelling Examples

As a typical channel, consider the frequency response of an acous-
tic gramophone horn as measured in [7]. The magnitude response
is shown in Figure 1, and using a maximum-likelihood estima-
tor for model selection, Spencer [7] shows that this response can
be accurately modelled by a 72th-order all-pole model, depending
on the model selection estimator. This response is modelled with
multiple subbands which, together, span the full frequency range.
The subband model orders, changepoint locations, and the num-
ber of subbands must be chosen. These can be built into a general
model and their values estimated by sampling the joint posterior
distribution for all these variables using MCMC methods. Here,
the number of subbands and their locations are chosen to be uni-
formally distributed across the full frequency range. Since the data
is being fitted by an AR model, each subband model order is se-
lected using Akaike’s B-Information Criterion (BIC), which gives
approximately the same solution as if the joint pdf of the AR pa-
rameters and model order were maximised. Figure 2 shows3 that,
for the case when L = 3, the fit to the original response is just as

3In each figure, the different responses are offset to improve clarity.
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Fig. 2. Modelling the transfer function in Figure 1 using three
subbands. The vertical lines denotes the subband boundary.

L Subband Subband
∑

Pl

Boundaries; ω
π

Model Orders; Ξ

1 – 72 72
3 {0.3, 0.6} {32, 6, 13} 51
10 {0.1, 0.2, . . . , 0.9} {18, 8, 2, 2, 2, 4, 5, 1, 5, 2} 49

Table 1. Summary of the number of subbands, subband bound-
aries, subband model orders, and the total number of parameters.

accurate as the full-band model, but only needs 51 parameters. The
individual subband models, as indicated by Table 1, are smaller,
Ξ = {32, 6, 13}, and consequently easier to manipulate. How-
ever, since there are no boundary constraints, discountinuities are
present, as shown in Figure 3, where 10 subbands are used.

4. SUBBAND BOUNDARY CONSTRAINTS

In this section, the parameters are constrained to ensure continuity
across subbands. From (13), if k = kl+1 + δk, then as δk → 0:

E
{
|S(k)|2

}
→ σ2

l+1∣∣∣1 +
∑Pl+1

p=1 al+1(p)
∣∣∣2 (17a)

If k = kl+1 − δk, where δk → 0, then

E
{
|S(k)|2

}
→ σ2

l∣∣∣1 +
∑Pl

p=1(−1)p al(p)
∣∣∣2 (17b)

Equating these leads to the relationship, for l ≥ 2:

al(Pl) = −1 +
√

Tlσlαl−1 −
∑Pl−1

p=1 al(p) (18a)

where αl = ± 1√
Tlσl

(
1 +

∑Pl
p=1(−1)p al(p)

)
Hence: al = ul +

√
Tlσl αl + Fl âl, l ≥ 2 (18b)

where âl ∈ R
Pl−1 is the new reduced parameter vector, uT

l =
[0T

Pl−1,−1], αl = αl−1 ul, and FT
l = [IPl−1,−1Pl−1], 1P ∈

R
P is the vector of 1’s. Dropping the subscripts for clarity, then

substituting (18b) into (14b) gives:

E = Ŝ +
√

Tσ α̂ + Ŝ â (19)
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Fig. 3. Modelling the transfer function in Figure 1 using 10 sub-
bands, showing the discontinuities at the subband boundaries.

where Ŝ = S + Su, α̂ = Sα, and Ŝ = SF. The spectral
error term is now a function of the parameters in adjacent sub-
bands, and consequently, a full Bayesian analysis should take this
into account. However, the likelihood function of (15) soon be-
comes analytically intractable. Hence, as an approximation, the
subband parameters in subband l, al, are calculated independently
of the other subband parameters, not jointly, which would be more
accurate. Differentiating the log-likelihood term:

ln

{
1

(2πσ2)
T
2

exp

(
−E† E

2σ2

)}

with respect to a and σ leads to the solutions:

â = [−(Ŝ
†
Ŝ)−1Ŝ

†Ŝ ]︸ ︷︷ ︸
a1

+
√

Tσ [−Ŝ
†
Ŝ)−1Ŝ

†
α̂]︸ ︷︷ ︸

a2

(20)

where it is noted that a1 is the least-squares solution without any
boundary constraints, and since σ �= 0, σ is the solution to:

E2
1 + 2

√
Tσ

(
Ŝ + Ŝ a1

)† (
1
2
α̂ + Ŝ a2

)
+ Tσ2

[
a†

2Ŝ
† (

α̂ + Ŝ a2

)
− 1

]
= 0

(21)

where E2
1 = ‖Ŝ + Ŝ a1‖2 = Ŝ†

[IT − Ŝ(Ŝ
†
Ŝ)−1Ŝ

†
]Ŝ . The ap-

propriate solution to (20) and (21) is chosen to minimise the over-
all modelling error. Note that since the estimation is not performed
jointly, the current implementation is not symmetrical, since a sub-
band is constrained only by the subband to the left, not to the right.
This lack of symmetry can almost be removed by iteratively esti-
mating the subband coefficients by sweeping from subband 1 to
L, and then in the reverse direction, with the constraint using the
right-hand subband. Details of this will be published elsewhere.

4.1. Subband Modelling Examples

To show the improvement using this method, the response in Fig-
ure 1 is again modelled using 10 subbands with continuity con-
straints. Although not shown, the fit to the original response is
very accurate and, as shown in Figure 4, the equalised response is
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Fig. 4. Modelling the transfer function in Figure 1 using 10 sub-
bands, with the continuity constraint.

smoother and the discontinuities are removed. The penalty, how-
ever, is that the total number of required parameters has risen from∑

Pl = 49 to
∑

Pl = 76, which is larger than the full-band
model order P = 72. Nevertheless, since individual subband
model orders are small, overall, the computational load is reduced.

5. CONCLUSIONS

Subband modelling of AR processes, as described in [3], intro-
duces distortion in the modelled response since each subband is
decoupled from the others, thereby inducing discontinuities at the
subband boundaries. Continuity constraints have been incorpo-
rated in the estimation of the model parameters, thereby reduc-
ing the effect of these discontinuities. This reduces distortion in
the equalised response, and is extremely useful for audio restora-
tion, where these distortions would be audible. Moreover, the
constrained subband model still achieves the objective of reduc-
ing a high-dimensional optimisation problem to a number of low-
dimensional ones in applications which demand channel estimates.
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