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ABSTRACT

This papempresent@&nanalyticalmodelfor predictingthe stochas-
tic behavior of Affine Projection(AP) algorithm. The modelis
derivedfor autorgressie (AR) Gaussiannputsandfor unity step
size (fastestcorvergerce). Deterministicrecursve equatiors are
presentedor the meanweightand meansquareerror for a large
numberof adaptve tapsN ascomparedo thealgorithmorderP.
Themodelpredictionsshav betteragreemenbetweertheoryand
simulationsin transienandsteady-statéhanpreviousmodelsdes-
cribedin theliterature.Thelearningbehaior of the AP algorithm
is of greatinterestin applicationssuchasacousticechocancellati-
on.

1. INTRODUCTION

TheleastmeansquaregLMS) andits normalizedversion(NLMS)
areamongthe mostoften usedalgorithmsin adaptve signalpro-
cessingapplications However, their corvergercespeedsreinsuf-
ficientwhentheinputsignalsarehighly correlatecandthenumbe
of adaptve tapsis large[1]. Acousticechocancellatioris oneim-
portantapplicationwith suchcharacteristics.The Affine Projec-
tion (AP) algorithmwas propogd by Ozeki and Umedain 1984
[2] asa solutionto this problem. The AP algorithm updateshe
weightsin directiongthatareorthogmaltothelast P inputvectors.
This whitensan AR(P) input and speed convergerce [3]. Thus,
AP is a betterchoicethan LMS or NLMS for applicationswith
highly correlatednput signals[4]. Highercompuationalcomple-
xity is the price of the fastercorvergence.This costdecreaseas
moreadvancedsemicondutor elementsareintroduced.Comple
algorithmshave recentlybecone feasiblefor applicationssuchas
echocancellationchanrel equalizatiorandnoisecancellation.
This feasability has createdinterestin the stochasticanalysis
of the AP algorithm behaior. However, quantitatve statistical
analysisis extremely difficult becausef the underdeterminedte-
astsquaresolutionembededin thealgorithm.Referencé4] pre-
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sentsa quantitatve analysisof the AP algorithmwhichis basedn
anindepementinput signalmodel[5]. However, this input model
limits the ability of the analysisto modelthe pre-whiteningpro-
pertiesof the AP algorithm.Referencg6] presentec quantitatve
analysisfor autorgyressie Gaussiarnnputs. This analysisfollows
thework in [3] obtainingthe solutionof arecursiorfor theweight
error vectorvariances.The solution usesprevious resultsfor the
NLMS algorithmwith white inputs. More recently[9] presented
anew statisticalanalysisfor the behaior of the AP algorithmfor
GaussiarAR inputs. Analytical difficultiesareavoidedfor the ca-
seof alargenumberof adaptvetapscomparedo the AP algorithm
order This caseallows anassumgion similar to the independa-
ce assumptiorwhich hasbeenusedto successfullyanalyzemary
adaptve algorithms,includingthe AP algorithm[1, 6].

This pape followsthework in [9]. Resultdntroducedn [6] are
usedto determinestatisticalpropertiesof the decorrelatednput
signal.New assumptionareusedto evaluae themeanweightand
the meansquareerror behaior. Monte Carlo simulationresults
shav excellentagreemat with theoreticalpredictionsduring the
adaptatiorphaseandin steady-state.

2. THE INPUT SIGNAL MODEL

Theadaptve systemattemptgo estimateadesiredsignald(n) that
canbemodeledby

d(n) = w°" u(n) +r(n)

wherew® = [w] w$ ... w‘}v_l]T is thevectorof the modelpa-
rametersand r(n) is a white noisewith variances?, which ac-
courts for measurememoiseandmodelingerrors.
Theinputsignalu(n) is assumedo beastationaryAR process,
modelinginput signalsfor mary practicalapplications.Let u(n)
beavectorof N sampleof anAR procesof orderP. Thus,

P
u(n) = Z a;u(n — i) + z(n) = U(n)a+ z(n) (1)

wherethematrixU(n) = [u(n—1) ... u(n— P)] isacollectionof
P pastinputvectorsu(n—k) = [u(n—k) ... u(n—k—N+1)]T
andz(n) = [z(n) ... z(n — N +1)]” is avectorwith samples
from a stationarywhite Gaussiarprocesswith varianceo?.
Theleastsquaregstimateof theparametewectora is givenby:

a(n) = [U" (n)U(n)]"'U" (n)u(n) (@)
whereUT (n)U(n) is assumeaf rank P.
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3. THE AFFINE PROJECTION ALGORITHM

The weight updateequationof the AP algorithm with stepsize
unity (maximumcorvergerce speedyxanbewritten as[3]:

w(n +1) = w(n) + %e(n) @)

wheretheerrorsignale(n) is givenby

e(n) =" u(n) +7(n) - w" (n)u(n) @)
wherew(n) = [wo(n) wi(n) ... wy_1(n)]T is the adaptie
weight vector The vector ®(n) definesthe direction of update,
andis givenby:

®(n) = u(n) —U(n)a(n) ()

The orderof the AP algorithmis definedby the numbe (P + 1)
of input vectorsusedto determine®(n).

4. VECTOR AND STATISTICAL PROPERTIESOF &

The following analysisinvokes assumptionsimilar to the inde-
pendelce assumptiorusedto analyzemary stochastialgorithms
[1].

Assumption Al: Thestatisticaldependeoe betweenz(n) and
U(n) canbeneglected.This assumptionis justifiedasfollow and
is morerealisticfor N > P.

Equation (1) shavs an algebraicdepenlence betweenz(n)
and vectorsu(n — 1), ..., u(n — P). Also, z(n) is of di-
mensionN. ConsiderP,(n) = U®)[UT (n)U(n)]7*UT (n),
the projectionmatrix onto the subspacepanred by the columns
of U(n), and P,(n) = I — P,(n), the projection matrix on-
to the orthogaal complemen subsgce. Then, z(n) canbe de-
compose€ asz,(n) + z,(n), wherez,(n) = P,(n)z(n) and
z1(n) = P,(n)z(n). Only z,(n) is algebraicallydepement
uponU(n). Moreover, sincez(n) is white, the averageenepgy
of z(n) is equallydistributedamongits V dimensionsThus,only
theenepy in z, (n) createsdepeneéncebetweere(n) andU (n).
Thisdependececanbengylectedif N > P.

Assumption A2: ®(n) andtheweightvectorw(n) arestatis-
tically independent.

This assumptiornis similar to theindepenlenceassumptiorap-
plied to delayline adaptve filters with white inputssince®(n) is
avectorwhoseelementsareestimate®f thewhite noisesequence
z(n) [3].

Substituting(1) in (5) yields

®(n) =[I — Pu(n)]z(n) = Po(n)z(n) = z1(n)  (6)

Eq. (6) shavsthat®(n) is orthogmal to the columrs of U(n).

The structureandthe propeties of the correlationmatrix R
require considerationof the vector and statistical propertiesof
P(n).

First, z (n) is a vectorwith power only in (N — P) dimen-
sionsof the N-dimensionaspace.The vectorz,(n) contritutes
the power in the remainingP dimensiors. Considera given ite-
ration (a fixed value for n). In general,the dimensiors excited
by z, (n) aredifferentfor eachsamplefunction of the adaptve
processhecawse of the randannessof u(n). On average this is
equialert to all dimensionsexcited at eachrun (for ary givenn)

with (N — P)/N of thepowerin z(n). Thisreasonings detailed
in thefollowing calculations.
From(6), the correlationmatrix of ®(n) canbewrittenas:
Ryy = E{@(n)@" (n)} = E{z.(n)2] (n)} @)

Using z(n) = zi(n) + =z.(n) and noting that
E{z)(n)zL(n)} = 0 and E{z,(n)z} (n)} = 0, sincefor
eachrun z, (n) and z,(n) always have powers in different
directionsit is easyto shav that

Ryy = E{z(n)z" (n)} — E{zu(n)z, (n)} 8)

An expressiorfor Ry, is now derived basedon a equaldistri-
bution of the averagepower in eachdimension The total power
contributedby eachtermonther.h.s.of (8) is givenby

tr[E{z(n)z” (n)}] = N - o ©

and
tr(E{z.(n)z, (n)}] = P - o7 (10)

Distributing the power equallyin all dimenisiongesultsin

N-—-P

Rys = E{®(n)®" (n)} =0} - I :( ) co2-1 (11)
Assumption A3: ®(n) isazeromeanGaussiamandomvector
Eg. (6) shavs thateachcomponet ¢(n — ¢) of ®(n) is deter

minedby Ej.vzl P, z(n —Jj- 1)._ FromassumptiorAl andz(n)

white, the randomvariablesin this sumareindepenént. Thus,

by the CentralLimit Theoremthedistribution of ®(n) tendsto a

Gaussiarfor large V.

5. MEAN WEIGHT BEHAVIOR

Definingthe weighterrorvector v(n) = w(n) — w° andusing

(4), (3) canbewritten as

_2mu"(n)
&7 (n)®(n)

®(n)

v(n+1) = v(n) VOt S @)

r(n) (12)

Pre-multiplying(12) by @7 (n), u” (n) andU” (n), andusing
thepropatiesderivedin [3] yields

vin+1) =v(n)— %v(n) + %ra(n)
(13)
wherer, (n) is thefiltered noisesequene[3]
ra(n) =r(n) =Y ai(n)r(n—i) (14)

i=1

Underassumtion A2 andnotingthat E{® (n)r.(n)} = 0 be-
causer(n) is zeromeanandindependentof ary othersignal,the
expededvalueof (13)yields

T
E{v(n+1)} = E{v(n)} — E{%}E{v(n)} (15)

Eachelementof the expectationin ther.h.s. of (15) hasa nu-
meratorgiven by ¢(n — 1)¢(n — j) anda denoninator given by
S ¢*(n—k). Sincethecomponatsof &(n) in thenumerator
affectonly two outof IV termsin thedenaminator numeratorand
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denomiratorcanbe assumedveakly correlatedor large valuesof
N. Thisis equivalert to applytheaveragingprinciple proposel in
[7], as¢(n — 1)é(n — j) tendsto be slowly varyingwhencom-
paredio &7 (n)®(n) for largevaluesof N. Hence thefollowing
approximaion is used:
E{[®" (n)®(n)] "' @(n)@" JRso
(16)

(M)} = E{[@" (n)@(n)]”

whereRg, is givenby (11).

The expected value of E{[®7 (n)®(n)]"'} is determined
usingtheassumptiorthat® (n) is Gaussiamistributedandneglec-
ting the statisticaldependeoe betweenits compments(estimates
of awhite sequere). Thus,y = &7 (n)®(n) hasa chi-square
distribution with G = N — P degreesof freedom. The value of
G arisesfrom the statisticalpropertiesof ®(n) determinedn the
previoussection.Thus,[8]

_ 1 (@/2)-1 —y/203
fy(y) = 20/2051“(%)3’ e u(y)  (17)

anddirectintegrationleadsto

1

E{[®T(m)®n)] PN = —— 18
{[®2" (n)2(n)]" 1} (G —2) (18)

wheres} = (N — P)/N o?. Using(18)in (15) leadsto:

E{v(n+1)}=|I—- mRM E{v@m)}  (19)

whichis therecursionfor the meanweighterrorvector

6. MEAN SQUARE ERROR BEHAVIOR

Squaring(4) andtakingthe expectedvalueleads aftersomealge-
braicmanipulationsto

E{e’(n)} = (1 +a’a+oltr [E{[UT(n)U(n)]_l}] >a£

+tr[Rss K(n)]
(20)

where K(n) = E{v(n)vT(n)} is the weight-errorcorrelation
matrix. The first termof (20) is a function of the input statistics.
Thesecondermneedgo bedetermined.

Postmultiplying(13) by its transposetakingtheexpededvalue,
usingassumpions Al andA2, andusingthe sameconsiderations
to determing(19) leadsto therecursve expression:

K(n+1) :K(n)—K(n)E{%}
B (n)@" (n)
E{ T(n)@(n) }K(n) (21)
(n)®7 (n) ®(n)@" (n)
+E{<I>T(n)‘1>(n) (n)v (")<I>T(n)<1>(n)}

B(n)ra(n) ro(n)®7(n)
+E { 37 (1)@ (n) 27 (n)®(n) }

The first two expectationsin (21) have alreadybeendetermi-
ned. Sincethe distribution of v(n) is unknown,the evaluation of
the third expectationrequiresfurther approxmations. Extensve

simulationshave shavn thatan adequatepproxmationis thera-
tio of the expectedvalues. Thus,the following approxmation is
used

()@ (n) o7 RS (0)| _
E{<I>T(n)‘1>(n) A )<I>T(n)<1>(n)}
1

F@Tmampe) e

(n)v(n)v" (n)@(n)@" (n)}
(22)

The equation(22) canbe evaluatedusing somefurther appro-
ximationswhich cannotbe presentechere for reasonsf space.
Usingtheseapproximatios in (21) yieldsarecursionfor K (n).

K(n+1) = K(n) - m[ff(nmw + Rys K (n)]
+ [% tr[K (n)]+ (1 - %)  B{vT(n)} - E{v(n)}]
R, T 2 T —1
W (1 +a’a+oltr [E{[U (n)U(n)] }])
o Ry

ai(G-2)(G—9)
(23)

7. SSMULATIONS

This sectionpresentssimulationsto verify the accurag of the
analyticalmodelsgiven by equationg19), (20) and(23). There-
sultsarecomparedo resultsfor previous modelsdescribedn the
literature[6], [9]. In all casesthematrix E{[U” (n)U(n)]~*} has
beennumericallyestimatedisingtheinput process.

The following parametershave beenusedin the examples:
o2 = 1ande? = 107%; input processAR(1) with a = —0.9;
a = 1. Ordersof thealgorithm: AP(9) and AP(17). Ordersof
theadaptvefilter: N = 64 and N = 128.

Figs. 1 — 4 shav the MSE behavior for the examples Note
thatthereis excellentagreemenbetweensimulations(150 runs)
andthe analyticalpredictionsof the new model,both duringtran-
sientandin steady-stateAlso shavn arethe resultspredictedby
the modelsderived in [6] and[9]. The newv modelyields better
predictionsof algorithmbehavior in all cases.

8. CONCLUSIONS

This papethaspresente@nanalyticalmodelfor predictingthesto-
chasticbehaior of the AP algorithmfor AR Gaussiarinputsand
for unity stepsize (fastestcorvergerce). Deterministicrecursve
equatiors werederived for the meanweight andthe meansquare
error for a large numberof adaptve taps N comparedo the al-
gorithmorder P. Thenew theoryyields excellentagreementith
Monte Carlosimulationsin bothtransientandsteady-statphases
of adaptation
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Fig. 1. MSE:Comparisonbetween(black) Monte Carlo simulati-
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(green)modeldescribedn [9]. AP(9); N = 64.
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