
A STOCHASTIC MODEL FOR THE CONVERGENCE BEHAVIOR OF THE AFFINE
PROJECTION ALGORITHM FOR GAUSSIAN INPUTS
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ABSTRACT

Thispaperpresentsananalyticalmodelfor predictingthestochas-
tic behavior of Affine Projection(AP) algorithm. The model is
derivedfor autoregressive(AR) Gaussianinputsandfor unity step
size (fastestconvergence). Deterministicrecursive equations are
presentedfor the meanweight andmeansquareerror for a large
numberof adaptive taps � ascomparedto thealgorithmorder � .
Themodelpredictionsshow betteragreement betweentheoryand
simulationsin transientandsteady-statethanpreviousmodelsdes-
cribedin theliterature.Thelearningbehavior of theAP algorithm
is of greatinterestin applicationssuchasacousticechocancellati-
on.

1. INTRODUCTION

Theleastmeansquares(LMS) andits normalizedversion(NLMS)
areamongthemostoftenusedalgorithmsin adaptive signalpro-
cessingapplications.However, theirconvergencespeedsareinsuf-
ficientwhentheinputsignalsarehighly correlatedandthenumber
of adaptive tapsis large[1]. Acousticechocancellationis oneim-
portantapplicationwith suchcharacteristics.The Affine Projec-
tion (AP) algorithmwasproposed by Ozeki andUmedain 1984
[2] asa solution to this problem. The AP algorithmupdatesthe
weightsin directionsthatareorthogonalto thelast � inputvectors.
This whitensan AR(P) input andspeeds convergence [3]. Thus,
AP is a betterchoicethan LMS or NLMS for applicationswith
highly correlatedinput signals[4]. Highercomputationalcomple-
xity is the priceof the fasterconvergence.This costdecreasesas
moreadvancedsemiconductor elementsareintroduced.Complex
algorithmshave recentlybecome feasiblefor applicationssuchas
echocancellation,channel equalizationandnoisecancellation.

This feasabilityhascreatedinterestin the stochasticanalysis
of the AP algorithm behavior. However, quantitative statistical
analysisis extremelydifficult becauseof the underdeterminedle-
astsquaressolutionembeddedin thealgorithm.Reference[4] pre-
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sentsaquantitativeanalysisof theAP algorithmwhich is basedon
anindependentinput signalmodel[5]. However, this input model
limits the ability of the analysisto model the pre-whiteningpro-
pertiesof theAP algorithm.Reference[6] presentedaquantitative
analysisfor autoregressive Gaussianinputs.This analysisfollows
thework in [3] obtainingthesolutionof a recursionfor theweight
error vectorvariances.The solutionusesprevious resultsfor the
NLMS algorithmwith white inputs. More recently[9] presented
a new statisticalanalysisfor thebehavior of theAP algorithmfor
GaussianAR inputs.Analytical difficultiesareavoidedfor theca-
seof alargenumberof adaptivetapscomparedto theAPalgorithm
order. This caseallows anassumption similar to the independen-
ceassumptionwhich hasbeenusedto successfullyanalyzemany
adaptivealgorithms,includingtheAP algorithm[1, 6].

Thispaper followsthework in [9]. Resultsintroducedin [6] are
usedto determinestatisticalpropertiesof the decorrelatedinput
signal.New assumptionsareusedto evaluatethemeanweightand
the meansquareerror behavior. Monte Carlo simulationresults
show excellentagreement with theoreticalpredictionsduring the
adaptationphaseandin steady-state.

2. THE INPUT SIGNAL MODEL

Theadaptivesystemattemptsto estimateadesiredsignal ���	��
 that
canbemodeledby ���	��

�����������	��
������	��

where � � ��� ��� !�"�#%$&$&$ ���')(  +*-, is thevectorof themodelpa-
rametersand �.�	��
 is a white noisewith variance / #0 , which ac-
counts for measurement noiseandmodelingerrors.

Theinputsignal 12�	��
 is assumedto beastationaryAR process,
modelinginput signalsfor many practicalapplications.Let u �	��

beavectorof � samplesof anAR processof order � . Thus,�3�	��
�� 45 6 7  �8 6 �9�	�;:=<>
?�A@B�	��
9�DCE�	��
>FG�H@I�	�J
 (1)

wherethematrix CE�	��
9�K� u �	��:MLN
 $N$&$ u �	��:O�O
 * is acollectionof� pastinputvectorsu �	�
:QP.

�R� 12�	�
:QP.
 $&$N$ 12�	�9:!PJ:Q�S�ML�
 *T,
andz �	��
U�V� WI�	��
 $&$X$ WI�	�Y:A�V�ZL�
 * , is a vectorwith samples
from a stationarywhiteGaussianprocesswith variance/ #[ .

Theleastsquaresestimateof theparametervector F is givenby:\FJ�	��

�R� C , �	��
]CE�	��
 * (  C , �	��
 u �	��
 (2)

where C",3�	��
]CE�	�J
 is assumedof rank � .
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3. THE AFFINE PROJECTION ALGORITHM

The weight updateequationof the AP algorithm with stepsize
unity (maximumconvergencespeed)canbewrittenas[3]:�^�	����L�
��_�^�	��
�� ` �	��
` , �	��
 ` �	��
ba �	��
 (3)

wheretheerrorsignal a �	��
 is givenby

a �	��
�� w �dc u �	��
��A���	�J
2:=� , �	��
 u �	��
 (4)

where �^�	��
e�f� �)gb�	��
��  �	��
 $&$X$ � ')(  �	��
 *-, is the adaptive
weight vector. The vector ` �	��
 definesthe directionof update,
andis givenby: ` �	��
�� u �	��
�:�CE�	��
 \F2�	��
 (5)

The orderof theAP algorithmis definedby the number ( �_�hL )
of input vectorsusedto determine` �	��
 .

4. VECTOR AND STATISTICAL PROPERTIES OF `
The following analysisinvokes assumptionssimilar to the inde-
pendenceassumptionusedto analyzemany stochasticalgorithms
[1].

Assumption A1: Thestatisticaldependencebetween@I�	�J
 andCE�	��
 canbeneglected.This assumptionis justifiedasfollow and
is morerealisticfor �jik� .

Equation (1) shows an algebraicdependencebetween @B�	��

and vectors �3�	��:lLN
 , $X$&$ , �3�	�_:m�O
 . Also, @B�	��
 is of di-
mension � . Consider ��n��	��
=�oCE�	��
X� C!,3�	��
]CE�	�J
 * (  C!,9�	�J
 ,
the projectionmatrix onto the subspacespanned by the columns
of CE�	��
 , and � � �	��
A�op^:h� n �	��
 , the projection matrix on-
to the orthogonal complement subspace. Then, @B�	��
 canbe de-
composed as @ n �	��
��h@rqU�	��
 , where @ n �	��
Y�k� n �	��
>@B�	��
 and@rqU�	��
%�s� � �	��
>@B�	��
 . Only @ n �	�J
 is algebraicallydependent
upon CE�	��
 . Moreover, since WI�	��
 is white, the averageenergy
of @B�	��
 is equallydistributedamongits � dimensions.Thus,only
theenergy in @tn��	�J
 createsadependencebetween@B�	��
 and CE�	�J
 .
This dependencecanbeneglectedif �jik� .

Assumption A2: ` �	�J
 andtheweightvector �^�	��
 arestatis-
tically independent.

This assumptionis similar to the independenceassumptionap-
plied to delayline adaptive filters with white inputssince ` �	��
 is
avectorwhoseelementsareestimatesof thewhitenoisesequenceWI�	��
 [3].

Substituting(1) in (5) yields` �	��
��K� pO:u� n �	�J
 * z �	��

�_� � �	��
>@B�	��

�_@vq��	��
 (6)

Eq. (6) shows that ` �	�J
 is orthogonal to thecolumnsof CE�	��
 .
Thestructureandthepropertiesof the correlationmatrix wExyx

require considerationof the vector and statisticalpropertiesof` �	��
 .First, @ q �	��
 is a vectorwith power only in �z�{:��O
 dimen-
sionsof the � -dimensional space.The vector @ n �	��
 contributes
the power in the remaining � dimensions. Considera given ite-
ration (a fixed value for � ). In general,the dimensions excited
by @vq)�	�J
 aredifferent for eachsamplefunction of the adaptive
processbecauseof the randomnessof 12�	��
 . On average,this is
equivalent to all dimensionsexcitedat eachrun (for any given � )

with �z�V:S�O
+|X� of thepower in @B�	��
 . This reasoningis detailed
in thefollowing calculations.

From(6), thecorrelationmatrix of ` �	��
 canbewrittenas:} xyx~�_�E� ` �	��
 ` , �	�J
]�Q�_�E��@vq)�	��
>@ , q �	�J
]� (7)

Using @B�	��
 � @ q �	�J
���@vn��	��
 and noting that�E��@rq)�	��
>@ ,n �	��
]�j��� and �E�N@bn��	�J
>@ , q �	��
]����� , since for
each run @bqU�	��
 and @ n �	��
 always have powers in different
directions,it is easyto show that} xtx~�_�~�N@B�	��
>@ , �	��
]�":=�~�N@ n �	�J
>@ ,n �	��
]� (8)

An expressionfor
} xyx is now derived basedon a equaldistri-

bution of the averagepower in eachdimension. The total power
contributedby eachtermon ther.h.s.of (8) is givenby� ��� �E��@B�	��
>@ , �	��
]� * �_���&/ #[ (9)

and � ��� �E��@ n �	��
>@ ,n �	��
]� * �_�Z�X/ #[ (10)

Distributing thepower equallyin all dimenisionsresultsin} xyxM�_�E�t�!�	��
+� , �	��
]�Q��/ #x �NpG�=� �l:u�� � �N/ #[ �&p (11)

Assumption A3: ` �	��
 is azeromeanGaussianrandomvector.
Eq. (6) shows thateachcomponent ���	�;:u<�
 of ` �	��
 is deter-

minedby � '� 7  � ���T� WI�	�O:M�9:eLN
 . FromassumptionA1 and WI�	��

white, the randomvariablesin this sum are independent. Thus,
by theCentralLimit Theorem,thedistribution of ` �	��
 tendsto a
Gaussianfor large � .

5. MEAN WEIGHT BEHAVIOR

Defining the weighterror vector, �3�	��
!�m�^�	��

:H� � andusing
(4), (3) canbewritten as�9�	�3�;LN
��_�9�	��
t: ` �	�J
 u , �	��
` , �	��
 ` �	��
 �3�	��
N� ` �	�J
` , �	��
 ` �	��
 �.�	��
 (12)

Pre-multiplying(12) by ` ,
�	�J
 , u ,9�	��
 and C",3�	��
 , andusing
thepropertiesderivedin [3] yields�3�	����L�
��_�3�	��
2: ` �	�J
 ` , �	��
` , �	��
 ` �	��
 �3�	��
�� ` �	��
` , �	�J
 ` �	�J
 �N���	��
(13)
where � � �	��
 is thefilterednoisesequence[3]�N���	��
9�����	��
�: 45 6 7  \8 6 �	��
>�.�	��:u<�
 (14)

Underassumption A2 andnotingthat �E� ` �	��
>�����	��
]���h� be-
cause���	��
 is zeromeanandindependentof any othersignal,the
expectedvalueof (13) yields�E���9�	�O�HLN
]�Q�_�~�N�3�	��
]�9:^��� ` �	��
 ` ,3�	��
` , �	��
 ` �	��
�� �E�N�3�	��
]� (15)

Eachelementof the expectationin the r.h.s. of (15) hasa nu-
meratorgiven by ���	�e:H<�
����	�^:=�v
 anda denominator given by� ')(  � 7 g � # �	�9:!PI
 . Sincethecomponentsof ` �	��
 in thenumerator
affect only two out of � termsin thedenominator, numeratorand
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denominatorcanbeassumedweaklycorrelatedfor largevaluesof� . This is equivalent to applytheaveragingprincipleproposed in
[7], as ���	�Y:_LN
����	�^:=�v
 tendsto be slowly varying whencom-
paredto ` , �	��
 ` �	��
 for largevaluesof � . Hence,thefollowing
approximation is used:�E�r� ` , �	��
 ` �	��
 * (  ` �	�J
 ` , �	��
]�!�D�E�v� ` , �	��
 ` �	��
 * (  � } xtx(16)
where

} xyx is givenby (11).
The expected value of �E�v� ` ,3�	��
 ` �	��
 * (  � is determined

usingtheassumptionthat ` �	�J
 isGaussiandistributedandneglec-
ting thestatisticaldependencebetweenits components(estimates
of a white sequence). Thus, � � ` , �	��
 ` �	��
 hasa chi-square
distribution with ¡V�V�¢: � degreesof freedom.The valueof¡ arisesfrom thestatisticalpropertiesof ` �	��
 determinedin the
previoussection.Thus,[8]£y¤ �	�I
�� L¥t¦�§ # / ¦x�¨ � ¦ # 
 ��© ¦?§ #+ª (  a ( ¤ § #>«b¬­ 12�	�.
 (17)

anddirectintegrationleadsto�E�r� ` , �	�J
 ` �	�J
 * (  * �Q� L/ #x �®¡�: ¥ 
 (18)

where/ #x �R�z�l:u�O
+|X�{/ #[ . Using(18) in (15) leadsto:�E���3�	�M�_LN
]�Q�A¯°pG: L/ #x �®¡�: ¥ 
 } xyxv±��E�N�3�	��
]� (19)

which is therecursionfor themeanweighterrorvector.

6. MEAN SQUARE ERROR BEHAVIOR

Squaring(4) andtakingtheexpectedvalueleads,aftersomealge-
braicmanipulations,to�E� a # �	��
]�Q� � L3�HF , FG�A/ #[ � ��¯²�E�v� C , �	��
]CE�	��
 * (  �&± � / #0� � �.� } xtxr³��	��
 *

(20)

where ³��	��
^�´�E���9�	��
>� , �	��
]� is the weight-errorcorrelation
matrix. The first termof (20) is a function of the input statistics.
Thesecondtermneedsto bedetermined.

Postmultiplying(13)by its transpose,takingtheexpectedvalue,
usingassumptionsA1 andA2, andusingthesameconsiderations
to determine(19) leadsto therecursive expression:³��	�M�_LN
9�_³��	��
�:u³��	��
����M` �	��
 ` , �	�J
` , �	�J
 ` �	�J
 �:���� ` �	��
 ` ,9�	��
` , �	��
 ` �	��
 � ³��	�J
� � � ` �	��
 ` , �	��
` , �	��
 ` �	��
 �9�	�J
>� , �	��
r` �	��
 ` , �	��
` , �	��
 ` �	��
 �� ��� ` �	��
>� � �	��
` , �	��
 ` �	��
 � � �	�J
 ` , �	��
` , �	��
 ` �	��
 �

(21)

The first two expectationsin (21) have alreadybeendetermi-
ned. Sincethedistribution of �3�	��
 is unknown,theevaluation of
the third expectationrequiresfurther approximations. Extensive

simulationshave shown thatanadequateapproximation is thera-
tio of the expectedvalues. Thus,the following approximation is
used�;�E` �	��
 ` , �	��
` , �	��
 ` �	��
 �9�	�J
>� , �	��
r` �	��
 ` , �	�J
` , �	��
 ` �	��
 � �L�~�v� ` , �	��
 ` �	��
 * # � �N�E� ` �	��
 ` , �	�J
>�9�	��
>� , �	��
 ` �	��
 ` , �	�J
]�(22)

The equation(22) canbe evaluatedusingsomefurther appro-
ximationswhich cannotbe presentedherefor reasonsof space.
Usingtheseapproximations in (21) yieldsa recursionfor ³��	�J
 .³��	����L�

�_³��	�J
2: L/ #x �®¡_: ¥ 
 � ³��	��
 } xyx�� } xyx�³��	��
 *�A¯ ¡� � � ��� ³��	�J
 * � � LU: ¡� � �N�E��� , �	��
]�"�N�E���9�	�J
]�&±� } xtx/ #x �®¡ # � ¥ ¡�
 � � L3�AF , FG�A/ #[ � �3¯²�E�r� C , �	��
]CE�	�J
 * (  �N± �� / #0 } xtx/Jµx �®¡_: ¥ 
X�®¡�:=¶v


(23)

7. SIMULATIONS

This sectionpresentssimulationsto verify the accuracy of the
analyticalmodelsgivenby equations(19), (20) and(23). There-
sultsarecomparedto resultsfor previousmodelsdescribedin the
literature[6], [9]. In all cases,thematrix �E�r� C , �	��
]CE�	��
 * (  � has
beennumericallyestimatedusingtheinput process.

The following parametershave been used in the examples:/ #n �¢L and / #0 �¢LN� (�· ; input procesş
} ��LN
 with 8 �¢:�� $ ¹ ;º �lL . Ordersof thealgorithm: ¸!�M� ¹ 
 and ¸!�M��L�»t
 . Ordersof

theadaptivefilter: �j�Z¼y¶ and �j�KL ¥t½ .
Figs. 1 – 4 show the MSE behavior for the examples. Note

that thereis excellentagreementbetweensimulations(150 runs)
andtheanalyticalpredictionsof thenew model,bothduringtran-
sientandin steady-state.Also shown aretheresultspredictedby
the modelsderived in [6] and [9]. The new model yields better
predictionsof algorithmbehavior in all cases.

8. CONCLUSIONS

Thispaperhaspresentedananalyticalmodelfor predictingthesto-
chasticbehavior of theAP algorithmfor AR Gaussianinputsand
for unity stepsize(fastestconvergence). Deterministicrecursive
equations werederived for the meanweight andthemeansquare
error for a large numberof adaptive taps � comparedto the al-
gorithmorder � . Thenew theoryyieldsexcellentagreementwith
Monte Carlosimulationsin bothtransientandsteady-statephases
of adaptation.
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