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Abstract

Estimation of time varying systems can be done by repre-
senting the whole system behaviour in terms of some fixed
basis sequences. Available solutions use computationally
expensive nonrecursive solutions. In this work we derived
an RLS solution for the wavelet based expansion of time
varying systems. This method has been applied to speech
signals and its performance is studied. A recursive lat-
tice algorithm is derived for the above modeling. Also
the performance of the method using both the Haar and
Daubechies bases are studied.

1. INTRODUCTION

Time varying system identification has been receiving con-
siderable attention in the recent past in the literature of
signal processing. Time Varying systems arise in various
applications like speech processing, communication sys-
tems,seismic analysis. However conventional methods for
system identification make use of stationarity over a short
frame of time as assumption. However most of the sig-
nals we encountered in practice are nonstationary in nature,
which are well described by using atime-varying model.

In the past, different algorithms have been proposed for
time varying system identification based upon adaptive al-
gorithm,basis expansion [1]and kalman filter[3]. In this
work the nonstationary signal is modeled as atime-varying
autoregressive process and the time-varying autoregressive
coefficients are modeled as a linear combination of the
wavelet bases by parametric expansion. The wavelet bases
are obtained from theiterated filter bank using the multires-
olution analysis. Then the estimation of the time-varying
coefficients becomes the estimation of the unknown coeffi-
cientsin the expansion. By selecting the model with only a
few bases leads to a parsimonious representation of the sys-
tem.
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2. WAVELET BASED AR MODELING

Consider a non-stationary signal y(n) whose AR model of
anorder pisgivenby,

y(n) = ap(n)y(n — k) (1)
k=1

In the above, let us model each time-varying autoregres-
sive coefficient a (n) asalinear combination of some basis
sequences f;(n) for(l = 1--- L, where L isthetotal number
of basisfunctions), Then I

ak(n) =Y &ufi(n) )
=1
where, k=1---p

Now, the identification of a(n) reduces to the identifi-
cation of time-invariant coefficients £;;. The wavelet basis
functions f; (n) arederived by iterating low pass Hy (z) and
high passfilters H; (z) using the following relationships.

Hgmam (2) = Ho(z)Ho(2?) - - ~L{()1(22j’71a2_1)
H{(z) = HO(Z)HO(ZQ) T 1'_11(2'/2J )7.7 =1 Jmaz

The wavelet decompsition of a, (n) using the multireso-
lution approach is as shown in Fig.1. Now, each time vary-
ing coefficient a(n) can be expanded as

N
2imaz

Q) = 3 Gl (1= 20mem)
m

=1

N

Jmaz 27

+ >0 &k (n—27m) ©)

j=1 m=1

In the above equation the first term represents the low res-
olution decomposition of ay, (n) and the second term repre-
sents detailed decomposition of ay, (n). Arranging (1) and
(3) in the matrix form, it can be shown that

y=H{+e 4
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Fig. 1. Wavelet decomposition and reconstruction down to
depth j

where

y = [0)---ymn-1"

e = [e(0)---e(N=1)"

§ — [él...ép]T

Ho= [Hfre e

Hipe = (b (n)Rgrer (n = 27mes) -
I
H, = [k —2)- k0 -2 3)
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Here{ ¥ isthe sequenceof all the wavel et coefficientsrep-
resenting the k' parameter.

Equation(4) can be simplified by discarding the lower
level coefficients. That is, ¢, = 0for 0 < j < jmin by
removing the corresponding columnsfrom(4). This reduces
the size of the parameter set as well as the underdetermi-
nancy provided jin > log, p .

Discarding the lower level coefficientsyields,
y= Hu§u t+e (%)
Theleast square solution of (7) is given by
¢, =H/H] ' H]y ®)
However to overcome the computational complexity as-

sociated with LS solution we employed arecursive estima-
tion for the estimation of §M in (6) whose proof is given in

[4].

3. AWAVELET BASED LATTICE ALGORITHM

L attice structures are found to be very useful in many signal
processing applications. In lattice method the prediction pa-
rameters are found out in terms of reflection coefficients by
minimizing the forward and the backward prediction error.
A time-varying lattice structureis as shownin Fig. 2.

=)
0

Fig. 2. Time-varying lattice structure

The recursions for the forward and backward errors are
given by the following relations

eia(m)— K/ m)rii(n—1)  (7)
-1 - Kl (n)eii(m)  (®)

e; (n)

ri(n)

In the above recursions K/ (n) and K? (n) are the for-
ward and backward reflection coefficients.

3.1. Wavelet Based M odeling

From equation(7) and (8) we have

ei(n)=ei1(n)— K/ (n)ri1(n—1)
ri(n)=ri—1(n—1)— Kf’ (n)ei—1 (n)

By rearranging the above relations we have

eii(m) =K/ )ris(n—1)+e;n) (9

ri1(n—1) = Kl (n)ei_1 (n) +r; (n) (10)

In the process of identification of K/ (n) and K?(n),each
time-varying reflection coefficient K f (n) and K!(n) are
modeled as alinear combination of wavel et basis sequences
aswedidin section 2.

From an order p lattice structure we have the forward and
backward prediction errors e; (n) and r; (n) which are re-
|ated to the time-varying forward and backward autoregres-
sive parameters by the following relationships.
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ei(n)=ym) —ai(m)y(n—1) - —aj(n)y(n—i
. ' (11)
=y(n—i)=bi(n)y(n)—-—bi(n)y(n-

(i—1))
(12)

Substituting the recursive relationships for e; (n) and
r; (n) givenin (7) and (8) it can be shown that,

r; (n)

ai (n)y(n—1)+ +ai(n)y(n—Z
ail(n)y(n—l) +al 1(n)
n){y(n—i)—b""(n-1)

~bZ1(n=1)y(n—(i-

) =
(n—(-1)+
(n—1) -

1)} (13)

Y
yn

() y () 4+ + B )y (n = (= 1)) =
b (= 1)y (n—1>+~-~+bl—1<n>y<n—(z’—l))

+K2 () {y () = ai )y (n—1) -
—aiZt )y (n— (- 1))} (14

Comparing the constituents of (13) and (14) on both the
sides, the recursions can be given as,

K (n)b" (n—1)

) . (15)
i J € [17 - 1]
ai (n) = K{ (n) (16)
bi (n) = K7 (n) (17)
bi(n) =bi} (n—1) = K} (n)a’"} (n)
J € [2,i]
(18)

4. PERFORMANCE STUDIES

In the initial part of the present work, the above agorithm
is tested for synthetic speech, which is generated by driv-
ing atime-varying all pole model of the following transfer
function with white gaussian noise of variances? = 1.

1

1—2rcos (Z2) 2! + 7222

H(z)= (19)

The above system has a pair of complex conjugate poles

located at » = re*7(%) . From the above transfer function
givenin equation(19), we have two AR coefficientswith the
first one varying sinusoidally with amagnitude 2r cos (Z2)
and the other is kept constant at —r2.

Figure 3 to 5 shows the performance of this method.
These plots consist the original signal along with the pre-
dicted one and it’s corresponding prediction error.

Figure 6 and 7 shows the true and estimated time-varying
autoregressive parameters of the above model. As men-
tioned earlier the first parameter was varying in a sinusoidal
fashion and the next parameter is held at some constant
value.

5. CONCLUSIONS

A recursivelattice algorithmis derived based on the wavel et
expansion of the time-varying autoregressive parameters.
This recursive estimation overcomes the computational
complexity of the least squares by the use of matrix inver-
sion lemmawhich makesit attractive for the on-lineimple-
mentation.

The simulation results shows the effectivness of the
present method in case of estimating the time-varying pa-
rameters. However the performance will vary depending
upon the type of the wavelet employed. Generaly short
length wavelets are more suitable than long wavelets for
estimating rapidly varying parameters but yield estimates
which are very rough due to small vanishing moments (ex:
Haar, Daub4). With long length wavelets the results are
smooth but they cant handle rapid variations of the time
varying parameters (ex: Daub20). If the system parame-
ters changes abruptly then Haar wavelet is the best.
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Fig. 5. The forward prediction error
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Fig. 3. The synthetic speech
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Fig. 4. The forward predicted speech
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Fig. 6. True and estimated coefficient a; (n) using Daub4
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Fig. 7. True and estimated coefficient a» (n) using Daub4
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