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ABSTRACT

There is a considerable literature on non-parametric es-
timation of signals buried in coloured noise of known
or finitely parameterised spectrum. And a considerable
literature on nonparamtric estimation of the spectrum
of an observed coloured noise. Here we consider the
bivariate problem of jointly, non-parametrically esti-
mating a signal in coloured noise as well as the coloured
noise spectrum. It is straightforward enough to develop
estimators for each infinite dimensional parameter but
what is much less clear is how jointly choose the two
required tuning parameters. We develop, apparently
for the first time a criterion that achieves this.

1. INTRODUCTION

The problem of non-parametric estimation of a signal
(or function) in noise is a central and so much studied
ill-conditioned inverse problem e.g. [1],[2]. A crucial
part of the solution process is choosing a tuning pa-
rameter such as a window-width or a Tikhonov penalty
parameter [3]. Similarly much studied, is the problem
of non-parametric estimation of a spectral density ei-
ther directly e.g. by windowing the auto-covariance [4]
or indirectly e.g. by auto-regressive modeling with an
empirically chosen order [5]. It is the conjunction of
the two that we are interested in here and we call this
a bivariate ill-conditioned inverse problem .

It is known in fact in the statistics literature that

we consider here namely joint non-parametric estima-
tion of signal and noise spectral density is not discussed
in these works and indeed there seems to have been no
work at all on this topic. While it may be easy enough
to think up estimators it is much less obvious how to do
the joint tuning parameter selection. Our aim indeed
is to show how to do this.

In the next section we describe the problem setup
as well as some estimators. In section 3 the model
selection criterion is developed. In section 4 are results
of a simple simulation. Conclusions are given in section
3.

2. SIGNAL IN COLOURED NOISE

Consider the problem of estimating an unknown func-
tion or signal f(t) buried in coloured noise of spectrum
F(w) from data (scaled to lie on [0, 1])
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A standard estimator for f(t) is the kernel (or two-sided
filter) estimator

1 t—4i

ft) = EE?K(T)?/Z' (2.1)

Here K () is a hump shaped kernel e.g. a triangle or
a Gaussian and h is a window-width or feature size

non-parametric signal estimation in the presence of coloured which controls the bias and variance of the estimator.

noise requires a non-trivial adjustment be made to pro-
cedures for automatic selection of tuning parameters
[6],[7],[8]- Indeed each of the references discusses meth-
ods for doing that which generally involve crude esti-
mation of the correlation structure. But the problem
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The properties of this kind of estimator are well un-
derstood [1] and automatic methods of selecting the
window-width are well known [1], [3]. If we take Fourier
transforms we find

K(wh)j(w)
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We see the estimator provides a low pass filtering of y;
and that } is a bandwidth for the filter. (Unfortunately
in the statistics literature h itself is usually called a
bandwidth; we prefer the term window-width to avoid
confusion).

Similarly in the absence of the signal then a com-
mon method to estimate F'(w) is to fit an auto-regressive
model and calculate the corresponding spectrum. Au-
tomatic methods of selecting the order p are again well
studied [5],[9].

Now consider simultaneous estimation of f(t), F(w).
We can still use the kernel estimator (2.1) and it is
even known how to adjust the automatic selector for
the presence of autocorrelation [6]. The adjustment
depends on empirical estimation of the autocorrelation
function as well as another window-width for which
however no empirical selection method has been given.
Further the autocorrelation function estimator is not
shown to lead to a spectrum estimate. Our aim here
is to directly deal with both estimation of f(t), F(w)
as well as automatic selection of the two needed tuning
parameters; h and p.

3. TUNING PARAMETER SELECTION
WITH NURE

Our development follows earlier work of the author
[10],[11] which while independently developed can be
seen as an extension of the methods of [9]. We denote
the parameters by 8 = (3, a); these consist of e.g. S:
Fourier coefficients in the Fourier series expansion of
f(t) on [0,1]; a: auto-regressive parameters.

To develop a tuning paramter selection criterion
we need two items: (i) a data fidelity criterion Jy(y)
such as a log likelihood, used for parameter estimation.
(if) A joint measure of the quality of the estimators of
f(t), F(w). This is a discrepancy or 'risk’ measure, call
it D(f) - below we will use Kullback-Liebler informa-
tion. We also need an unbiassed estimator of D(6) say
Dy(y); usuallly fairly easily constructed.

If we could calculate D(f) we could choose h,p
jointly to minimise it. Since we cannot in general cal-
culate D(#) the idea is to construct a nearly unbiassed
estimator of it (NURE) and minimise that instead. The
natural candidate is D;(y) but it is biassed. However
in [10] it is shown how to develop a bias correction and
this leads to the selection criterion

NURE = Dy(y) +trace(J5'W)
& Jy(y)
Ja ( d0deT )|0:05
dJy(y) dDy(y)
W = E( 0 doT )|0:0e

0. = argmin.E(Jy(y))

In practice 6, is replaced by 6.

This NURE is very general and extends the ap-
proach in [9] where it is implicitly assumed D(f) =
E(Jy(y)). Note that the criterion does not assume
the data generating process comes from a model in the
model class being fitted as e.g. AIC [9] does. To imple-
ment the criterion we have to specify then Jy(y), D(6).
It is far from straightforward to construct a discrep-
ancy measure that incorporates both signal and noise
components and the most easily accessible candidate is
the Kullback-Liebler information KL().

When the noise is Gaussian it is shown in [11] and
is anyway easy to check that an unbiassed estimator of
K L(0) is the frequency domain likelihood type expres-
sion [5]
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where Iy, (8) = | - ~k|2 and where e.g. gy, is the DFT
of y; and Fi(a) = F(2££) is the noise spectrum.

We use the following data fidelity criterion which
enables simple construction of estimators. The log-
likehood is of course a natural alternative but is com-
putationally more demanding and will be pursued else-
where.
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Optimising the signal criterion Sz(y) leads easily to a
smoothing spline [12] which is also a kernel estimator

s 1 Uk - B 1
P = 1+ (hk)? n = K(wh) = 1+ (wh)?

Carrying through the computations indicated above for
NURE and assuming the data generating process be-
longs to the model class we find

NURE = nlné? + % +2p

where 62 is the residual mean squred error. This is a
very unusual criterion since it involves both a window-
width and a model order. If there is no function to be
estimated the second term is missing and it reduces to
AIC for selecting the order of an auto-regression. If the
noise is white the third term is missing and it is very
close to cross-validation methods for choosing h [1].

VI - 302




L L L L L L L L L
0 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1: Function in Coloured Noise

4. RESULTS

In Fig.1 we show a simulation of n = 200 data values
of the function f(t) = sin®(27r2z?) in coloured AR(2)
noise

€ =V; — Q1€i_1 — D262

where v; is a zero mean white noise of variance o2. In
the simulation ¢1,¢2,02 = —1,—.6,.025. The noise
spectrum is shown in Fig.2.

In Fig.3 we show the NURE surface (plotted against
h and —p i.e. in reverse order on the p axis so that its
shape can be easily seen). The minimum is in the vicin-
ity of p = 3,h = .04. The plot in Fig.4. enables this to
be pinpointed. The estimated function and spectrum
according to these values are shown in Fig 5 and Fig.6.

The signal reconstruction is a little noisy in the
flat region but otherwise reasonably good. Clearly the
spectrum estimate is biased at low frequency but the
location of the peak is well obtained. The bias is not
surprising since there is lack of identifiability at low
frequency between signal and noise. We have made
no attempt to deal with this. But some low pass fil-
tering before spectrum estimation would ameliorate it.
This issue needs further investigation, perhaps along
the lines of [13].

5. CONCLUSIONS

In this paper we have developed, apparently for the
first time a criterion that allows selection of two tuning
parameters in a bivariate ill-conditioned inverse prob-
lem . The approach is quite general and can handle
e.g. computed tomography reconstruction in coloured
noise as well as choice of any number of tuning pa-
rameters. The criterion is unusual in the application
discussed here in that the penalty term involves both
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Figure 2: Noise Spectrum
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Figure 3: NURE Surface

NURE
T

kooooo
TRTIRTR
ShRGLL

Figure 4: NURE as a function of h for each p




a model dimension and a window-width. Compared
to other potential approaches such as Bayesian meth-
ods the computational load here is trivial. Problems
for future work will involve application to other recon-
struction problems as well as development of statistical
properties of the estimators.
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