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ABSTRACT

Rooms are modeled as linear time invariant systems,
where the acoustic transmission characteristics between a
specific source receiver pair are described by the room
impulse response (RIR). A recursive redlization of the
short time Fourier transform is employed to decompose
the RIR in the time frequency domain, where the different
subband signals are approximated by parametric models.
The pole-zero models, evaluated by the Steiglitz-McBride
iteration, perform perfect reconstruction of the early
reflections, whereas the decay rate of the reverberant part
is sufficiently approximated. The RIR of a real room is
studied as an example case.

1. INTRODUCTION

Rooms are traditionally modeled as linear time invariant
systems, where the room impulse response (RIR) and the
corresponding room transfer function (RTF) describe the
transmission characteristics for a specific source receiver
pair. In the time domain the RIR reveals the arrival times
of the various reflections and the globa decay rate,
whereas in the frequency domain the RTF presents the
overall frequency response. However, the different decay
properties of different frequencies are not clearly shown
from these representations.

Therefore time frequency analysis is employed to give
insight on the different characteristics of different
frequencies. Time frequency methods anayze the two
domains jointly and thus give the ability to describe time
variable and frequency dependent characteristics of non-
stationary signals. RIRs are highly non-stationary signals
with different decay properties at different frequencies and
hence are well suited for time frequency analysis.

Methods of time frequency analysis with application to
room acoustics that have appeared in the literature include
the short time Fourier transform and the wavelet transform
[1], [2]. In this work a recursive realization of the short
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time Fourier transform is used for the decomposition of
RIRsin the time frequency domain.

In order to relax the need for handling large amount of
data, different frequency bins are modeled using
parametric models. In the literature all-zero finite impulse
response (FIR) and all-pole infinite impulse response (1IR)
models have been used to approximate either the RIR or
the RTF [3], [4], [5]. In this work the Steiglitz-McBride
agorithm is employed in order to evaluate the coefficients
of pole-zero models that best match the different
frequencies subbands. Since different frequencies have
different decay rates and hence different complexities,
models of different orders are used for the low, mid, and
high frequencies. The evaluated models give an exact
replica of the early reflections, whereas the decay rate of
the reverberant part is sufficiently approximated.

The paper is structured as follows. In section 2 the
windowed running z transform is presented and is
implemented recursively using filter banks. In section 3
the Steiglitz-McBride algorithm is employed in order to
evaluate the coefficients of pole-zero models that best
match the different frequencies subbands. An application
of the proposed methodology to a real room RIR is
demonstrated in section 4. The paper is concluded in
section 5.

2. RECURSIVE FILTERING FORTIME
FREQUENCY ANALYSIS

2.1. Thewindowed running z transform

Linear time frequency analysis is used, as it is simple to
implement and provides means of analysis and synthesis of
non-stationary signals. In particular we generalize and
employ a recursive agorithm for the evaluation of the
short time Fourier transform, which is faster compared to
non-recursive realizations. The method is implemented
recursively using filter banks.

The running z-transform is defined as the short time z
transform of a delayed signal [6]. Hence, for a sequence
X(n) , the running z-transformis:
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®(n,2) = Ngx(n -k)z'* (1)

For fixed n, ®(n,2) is the z-transform in the variable k
of the segment x(n-k), 0sk<N-1 of x(n). For

simplicity the above formulation assumes a rectangular
window function applied to the signal. This definition is
chosen because it leads to a recursive evaluation of the
discrete Fourier transform coefficients.

Here we extend the above definition of the running z-
transform to include windows, other than the rectangular,
applied to the signal. The windowed running z-transform
of asequence x(n) is defined as:

®(n,2) = Ngx(n -k) p(k)z™ 2

where p(k) isthe window function.
Subgtituting k =1 +1, in equation (2) we have

N-1

®(n,2) = z’lz x(n-1-Np( +)z" + @

+x(n) p(0) —x(n -N) p(N)z™

If we request p(l +1) =Cp(l), where C is complex,

then from equation (3) it follows that ®(n, z) satisfies the
first order recursion equation:

®(n,2) =CP(n-1,2)z" +x(n)p(0) -

N (@)
—Cx(n=N)p(N -1z
and with the substitution z=w", function
CD(n,W_m), i.e. the discrete Fourier transform
coefficients, follows the simple recursion:
d(n,w ™) —Cw"d(n -Lw ™) =x(n)p(0) - ®)

-Cx(n=N)p(N -1)

Equation (5) defines a discrete recursive system with
input x(n), output ®(n,w™™) and system function
p(9) - Cp(N -z ©

1-cw"z?t
The system consists of one shift register with output
x(n—N), one delay element and two multipliers (Fig. 1).

S(m,z) =

Connecting N such systems together in parallel, results in
arunning Discrete Fourier Series (DFS) spectrum analyser
which can be realised using filter bank structure (Fig. 2).

InFigure2itis F, =d(nw ™).
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Figure 1: Elementary filter structure.
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Figure 2: Recursive spectrum analyzer.
2.2. Candidate windows

From the equation p(l+1) =Cp(l) we see that the
windows considered are of the form:

p(l) =C' p(0) (7)
Subgtituting in equation (7) variable C with its complex
representation C = re' we have the following form for the
candidate windows:

p() =ar'e” ()
where a = p(0) iscomplex.

Equation (8) shows that the candidate windows have an
exponential form and hence equation (4) can be extended
to include windows that can be decomposed in exponential
functions [7]. Therefore periodic functions that are
expanded in a sum of exponentials, using the Fourier
series decomposition, can be used as windows. Assuming
that a function pPcan be expanded into exponential

functions r, e | i.e.

p() = Zoakrk'e”k' ©)

where a, is complex, then this function pcan be used asa
window and equation (5) is generalized according to

®d(nw ™) = KZ:CDk(n,W"‘) (20)

where
®d, (nw ™) -Cw'd (n-Lw™) = (11)
=x(N)p,(0) ~Cx(n=N)p, (N -1)
In this work the Hamming function is adopted because
it owns good properties for the processing of audio and

acoustics signals [8]. The Hamming function is described
in the time domain by the equation

p(n) = O.54—O.46cos§2Wn nﬁ, OsnsN-1 (12)

and hence can be expanded into exponential functions as
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p(n) = ; P, (n) (13)
with
P, (N) = 0.54,
p(n) = 046N, (14)

_.2n

p,(n) = -0.46e 'N"
and by using the representation C, = r, % we have

2m _.2m

C,=1C =€ N,C =e 'V (15)

3. PARAMETRIC APPROXIMATION OF
FREQUENCY SUBBANDS

Time frequency analysis of RIRs gives insight on the time
variation of their spectral content but generates large
amount of data, which are difficult to handle. In order to
relax this restriction the subband signals are approximated
by parametric models. Since different frequencies have
different decay rates and hence different complexities,
models of different orders are used for the low, mid, and
high frequencies.

ARMA models that yield pole-zero filters are used,
since they can sufficiently approximate signals like the
RIRs that exhibit non-minimum phase behavior. The linear
filter

Q
2
Ho(2) =—F— (16)

1+ gakz‘k

with finite poles and zeros in the z-plane is used to model
the m™ subband signal. The problem of obtaining the
parameters of the subband models from the subband
reference impulse responses is a classica non-linear
problem of identification, which can be solved using the
structure depicted in Figure 3.

For the evaluation of the coefficients of the pole-zero
models that best match the different frequencies subbands
the Steiglitz-McBride agorithm is employed [9]. The
Steiglitz-McBride is a powerful iterative algorithm, with
independent numerator and denominator orders, which
perform perfect reconstruction of the initial part by the
numerator order and sufficient approximation of the
reverberation part by the denominator order.

4. APPLICATION RESULTS

The acoustic characteristics of arectangular small-size rea
room, of approximate dimensions 4 by 3 by 3.5 m, are
presented, as an example case. The RIR was measured
using a binary maximum-length sequence excitation
technique and is shown in Figure 4. The RIR is

decomposed in the time frequency domain, using the
recursive realization of the short Fourier transform with a
hamming window of 128 points, where it can be seen that
the first reflections are distributed over the whole
frequency range, while mainly low and mid frequencies
dominate the reverberant part (Fig. 5).

Parameters of pole-zero models to approximate the
subband responses are evaluated using the Steiglitz-
McBride iteration. Since most of the reverberant energy is
concentrated in the low and mid frequencies the models
that approximate these subbands are of higher orders than
the models that approximate the high frequencies. The
order of the models that approximate the low frequencies
(up to 500 Hz) is P=200, Q=400, while models of order
P=150, Q=300 and P=100, Q=200 are used for the mid
(between 500 and 2500 Hz) and high (up to 8000 Hz)
frequencies respectively.

In Figure 6 the overall RIR approximation in the time
frequency domain is shown. Detailed comparison between
the 36" frequency bin impulse response, corresponding to
4500 Hz, and the model approximation is presented in
Figure 7. It is clear that the model performs an exact
reconstruction of the initiad part, determined by the
model’s numerator order, while the decay rate of the
reverberant part is sufficiently approximated.

5. CONCLUSION

The short time Fourier transform proves to be a powerful
tool for the analysis of RIRs. In this work the short time
Fourier transform is evaluated recursively, using a
methodology, which is faster when compared to non-
recursive realizations and provides the potential of real
time implementation in hardware. The methodology is
generalized to include as windows functions that can be
expanded as a sum of exponentials.

In order to relax the need for handling large amount of
data, different frequency bins are modeled using pole-zero
models, whose parameters are evaluated by the Steiglitz-
McBride iteration. The models perform perfect
reconstruction of the initial part by the numerator order
and sufficient approximation of the reverberation part by
the denominator order. The original broadband signal can
be reconstructed by combining the approximation subband
signals.
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Figure 3: Structure for subband approximation.
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Figure 4: Room impul se response (fs=16000 Hz).
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Figure 5: Time frequency analysis of RIR.
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Figure 6: Time frequency approximation of RIR.
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Figure 7: Detailed comparison for frequency bin 36.
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