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ABSTRACT 

 
Rooms are modeled as linear time invariant systems, 
where the acoustic transmission characteristics between a 
specific source receiver pair are described by the room 
impulse response (RIR). A recursive realization of the 
short time Fourier transform is employed to decompose 
the RIR in the time frequency domain, where the different 
subband signals are approximated by parametric models. 
The pole-zero models, evaluated by the Steiglitz-McBride 
iteration, perform perfect reconstruction of the early 
reflections, whereas the decay rate of the reverberant part 
is sufficiently approximated. The RIR of a real room is 
studied as an example case. 

 

1. INTRODUCTION 
 
Rooms are traditionally modeled as linear time invariant 
systems, where the room impulse response (RIR) and the 
corresponding room transfer function (RTF) describe the 
transmission characteristics for a specific source receiver 
pair. In the time domain the RIR reveals the arrival times 
of the various reflections and the global decay rate, 
whereas in the frequency domain the RTF presents the 
overall frequency response. However, the different decay 
properties of different frequencies are not clearly shown 
from these representations.  

Therefore time frequency analysis is employed to give 
insight on the different characteristics of different 
frequencies. Time frequency methods analyze the two 
domains jointly and thus give the ability to describe time 
variable and frequency dependent characteristics of non-
stationary signals. RIRs are highly non-stationary signals 
with different decay properties at different frequencies and 
hence are well suited for time frequency analysis. 

Methods of time frequency analysis with application to 
room acoustics that have appeared in the literature include 
the short time Fourier transform and the wavelet transform 
[1], [2]. In this work a recursive realization of the short 

time Fourier transform is used for the decomposition of 
RIRs in the time frequency domain. 

In order to relax the need for handling large amount of 
data, different frequency bins are modeled using 
parametric models. In the literature all-zero finite impulse 
response (FIR) and all-pole infinite impulse response (IIR) 
models have been used to approximate either the RIR or 
the RTF [3], [4], [5]. In this work the Steiglitz-McBride 
algorithm is employed in order to evaluate the coefficients 
of pole-zero models that best match the different 
frequencies subbands. Since different frequencies have 
different decay rates and hence different complexities, 
models of different orders are used for the low, mid, and 
high frequencies. The evaluated models give an exact 
replica of the early reflections, whereas the decay rate of 
the reverberant part is sufficiently approximated.  

The paper is structured as follows. In section 2 the 
windowed running z transform is presented and is 
implemented recursively using filter banks. In section 3 
the Steiglitz-McBride algorithm is employed in order to 
evaluate the coefficients of pole-zero models that best 
match the different frequencies subbands. An application 
of the proposed methodology to a real room RIR is 
demonstrated in section 4. The paper is concluded in 
section 5. 
 

2. RECURSIVE FILTERING FOR TIME 
FREQUENCY ANALYSIS  

 
2.1. The windowed running z transform 
 
Linear time frequency analysis is used, as it is simple to 
implement and provides means of analysis and synthesis of 
non-stationary signals. In particular we generalize and 
employ a recursive algorithm for the evaluation of the 
short time Fourier transform, which is faster compared to 
non-recursive realizations. The method is implemented 
recursively using filter banks.  

The running z-transform is defined as the short time z 
transform of a delayed signal [6]. Hence, for a sequence 

( )x n , the running z-transform is: 
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For fixed n , ( , )n zΦ  is the z-transform in the variable k 
of the segment ( ),  0 1x n k k N− ≤ ≤ −  of ( )x n . For 
simplicity the above formulation assumes a rectangular 
window function applied to the signal. This definition is 
chosen because it leads to a recursive evaluation of the 
discrete Fourier transform coefficients. 

Here we extend the above definition of the running z-
transform to include windows, other than the rectangular, 
applied to the signal. The windowed running z-transform 
of a sequence ( )x n is defined as: 
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where ( )p k is the window function. 
Substituting 1k l= + , in equation (2) we have  
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If we request ( 1) ( )p l Cp l+ = , where C is complex, 
then from equation (3) it follows that ( , )n zΦ  satisfies the 
first order recursion equation: 
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and with the substitution z w m= − ,  function  

Φ( , )n w m− , i.e. the discrete Fourier transform 
coefficients, follows the simple recursion: 
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Equation (5) defines a discrete recursive system with 
input ( )x n , output ( , )mn w−Φ  and system function 

 1

(0) ( 1)( , )
1

N

m

p Cp N zS m z
Cw z

−

−

− −=
−

 (6) 

The system consists of one shift register with output 
( )x n N− , one delay element and two multipliers (Fig. 1). 

Connecting N such systems together in parallel, results in 
a running Discrete Fourier Series (DFS) spectrum analyser 
which can be realised using filter bank structure (Fig. 2). 
In Figure 2 it is ( , )m

mF n w−= Φ . 
 

 
 
Figure 1: Elementary filter structure. 

 

 
 
Figure 2: Recursive spectrum analyzer. 
 
2.2.  Candidate windows 
 
From the equation ( 1) ( )p l Cp l+ =  we see that the 
windows considered are of the form: 
                             ( ) (0)lp l C p=               (7) 
Substituting in equation (7) variable C with its complex 
representation jC re θ= we have the following form for the 
candidate windows: 
 ( ) l j lp l r e ϑα=  (8) 
where (0)a p=  is complex. 

Equation (8) shows that the candidate windows have an 
exponential form and hence equation (4) can be extended 
to include windows that can be decomposed in exponential 
functions [7]. Therefore periodic functions that are 
expanded in a sum of exponentials, using the Fourier 
series decomposition, can be used as windows.  Assuming 
that a function p can be expanded into exponential 

functions kj ll
kr e θ , i.e. 
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where ka is complex, then this function p can be used as a 
window and equation (5) is generalized according to 
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In this work the Hamming function is adopted because 
it owns good properties for the processing of audio and 
acoustics signals [8]. The Hamming function is described 
in the time domain by the equation  

       2( ) 0.54 0.46cos ,  0 1p n n n N
N
π = − ≤ ≤ −  

        (12) 

and hence can be expanded into exponential functions as 
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and by using the representation kj
k kC r e θ= we have 
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3. PARAMETRIC APPROXIMATION OF 
FREQUENCY SUBBANDS 

 
Time frequency analysis of RIRs gives insight on the time 
variation of their spectral content but generates large 
amount of data, which are difficult to handle. In order to 
relax this restriction the subband signals are approximated 
by parametric models. Since different frequencies have 
different decay rates and hence different complexities, 
models of different orders are used for the low, mid, and 
high frequencies.  

ARMA models that yield pole-zero filters are used, 
since they can sufficiently approximate signals like the 
RIRs that exhibit non-minimum phase behavior. The linear 
filter 
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with finite poles and zeros in the z-plane is used to model 
the mth subband signal. The problem of obtaining the 
parameters of the subband models from the subband 
reference impulse responses is a classical non-linear 
problem of identification, which can be solved using the 
structure depicted in Figure 3.  

For the evaluation of the coefficients of the pole-zero 
models that best match the different frequencies subbands 
the Steiglitz-McBride algorithm is employed [9]. The 
Steiglitz-McBride is a powerful iterative algorithm, with 
independent numerator and denominator orders, which 
perform perfect reconstruction of the initial part by the 
numerator order and sufficient approximation of the 
reverberation part by the denominator order. 

 
4. APPLICATION RESULTS  

 
The acoustic characteristics of a rectangular small-size real 
room, of approximate dimensions 4 by 3 by 3.5 m, are 
presented, as an example case. The RIR was measured 
using a binary maximum-length sequence excitation 
technique and is shown in Figure 4. The RIR is 

decomposed in the time frequency domain, using the 
recursive realization of the short Fourier transform with a 
hamming window of 128 points, where it can be seen that 
the first reflections are distributed over the whole 
frequency range, while mainly low and mid frequencies 
dominate the reverberant part (Fig. 5). 
Parameters of pole-zero models to approximate the 
subband responses are evaluated using the Steiglitz-
McBride iteration. Since most of the reverberant energy is 
concentrated in the low and mid frequencies the models 
that approximate these subbands are of higher orders than 
the models that approximate the high frequencies. The 
order of the models that approximate the low frequencies 
(up to 500 Hz) is P=200, Q=400, while models of order 
P=150, Q=300 and P=100, Q=200 are used for the mid 
(between 500 and 2500 Hz) and high (up to 8000 Hz) 
frequencies respectively. 

In Figure 6 the overall RIR approximation in the time 
frequency domain is shown. Detailed comparison between 
the 36th frequency bin impulse response, corresponding to 
4500 Hz, and the model approximation is presented in 
Figure 7. It is clear that the model performs an exact 
reconstruction of the initial part, determined by the 
model’s numerator order, while the decay rate of the 
reverberant part is sufficiently approximated.  

 
5. CONCLUSION 

 
The short time Fourier transform proves to be a powerful 
tool for the analysis of RIRs. In this work the short time 
Fourier transform is evaluated recursively, using a 
methodology, which is faster when compared to non-
recursive realizations and provides the potential of real 
time implementation in hardware. The methodology is 
generalized to include as windows functions that can be 
expanded as a sum of exponentials.  

In order to relax the need for handling large amount of 
data, different frequency bins are modeled using pole-zero 
models, whose parameters are evaluated by the Steiglitz-
McBride iteration. The models perform perfect 
reconstruction of the initial part by the numerator order 
and sufficient approximation of the reverberation part by 
the denominator order. The original broadband signal can 
be reconstructed by combining the approximation subband 
signals. 
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Figure 3: Structure for subband approximation. 
 

 
Figure 4: Room impulse response (fs=16000 Hz). 

 

 
 

Figure 5: Time frequency analysis of RIR. 
 

 
 
Figure 6: Time frequency approximation of RIR. 

 

 
 

Figure 7: Detailed comparison for frequency bin 36. 
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