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ABSTRACT

We consider the problem of blind estimation of a band-limited
channel excited by a cyclostationary input. We propose a channel
estimation method that, like several existing ones, exploits the re-
lationship between the channel frequency response and the cyclic
spectrum. However, the novelty here is an approximation made for
the discretized phase of the cyclic spectrum, which, under certain
conditions, results in a significant simplification of the aforemen-
tioned relationship. The result is a channel estimation method with
complexity equal to that of an IDFT. The proposed approach is ap-
plied to simulated data, and real recordings obtained at our wire-
less communications testbed, and is compared to existing methods.

1. INTRODUCTION

Blind channel estimation and equalization plays a very important
role in high-speed communications, where the use of a training
sequence is considered to be a waste of bandwidth. In general,
estimation of an LTI system excited by an unknown stationary
non-Gaussian input, based on the system output, is possible us-
ing higher-order statistics (HOS) of the output. However, when
the input is cyclostationary, which is the case of communications
systems, system estimation can be carried out using second-order
cyclic statistics of the output [1, 3]. Pioneering work done in [3, 6]
followed by [7] and [5] has led to several approaches that exploit
second-order statistics for channel estimation. Basically these fall
into two categories: time domain and frequency domain, with ref-
erence to the transform domain in which the estimate is obtained.

In this paper we consider estimation of the channel in fre-
quency domain, with a prior knowledge that the channel is ban-
dlimited. The proposed method will always have an error, however
it will be negligible if the channel has negligible energy within the
stopband.

2. PROBLEM FORMULATION

Let us consider the baseband representation of a digital data com-
munication system. Assuming that the channel is LTI and BIBO
stable, the received signal is given by:

x(t) =
∞

∑
m=−∞

smh(t −mT )+w(t) (1)
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where sm is the transmitted signal, which is assumed to be zero-
mean i.i.d. with unit variance; h(t) is the combined response of the
shaping filter, channel and receiver filter; T is the symbol interval,
and w(t) is stationary, zero-mean, white noise with variance No,
independent of sm. The signal x(t) is cyclostationary with cyclic
period T [1]. Sampling x(t) with sampling interval ∆ = T

p , p ∈
�

,
yields:

x(n) =
∞

∑
m=−∞

smh(n−mp)+w(n),n ∈
�

(2)

where h(n) = h(n∆), w(n) = w(n∆). The discrete time signal x(n)
is a cyclostationary process with cyclic period p. Cyclostationarity
implies that the autocorrelation function is periodic with period p.
The Fourier series coefficients of the autocorrelation are referred
to as cyclic autocorrelation, Rkα

x (m), and the Fourier Transform of
those as the cyclic spectrum, Skα

x (e jω) [1], i.e.,

Rkα
x (m) =

p−1

∑
n=0

Rx(n+m,n)e− j2πkαn (3)

Skα
x (e jω) =

∞

∑
m=−∞

Rkα
x (m)e− jmω (4)

where α = 1
p , n,m,k ∈

�
and Rx(m,n) denotes autocorrelation of

x(n). It holds that:

Skα
x ( jω) = H(e jω)H∗(e j(ω−2πkα))+ pNoδ(k),k ∈

�
(5)

This is a key relationship that can lead to the estimation of the
channel frequency response H(e jω). The magnitude response of
the channel can be easily recovered by evaluating (5) for k = 0.
Evaluating (5) for k = 1 and considering phases, we get:

ψ(ω) = φ(ω+πα)−φ(ω−πα) (6)

where ψ(ω), φ(ω) are the phases of Skα
x (ω) and H(e j(ω)), re-

spectively. Several methods have been proposed to employ (6)
in obtaining φ(ω). In [2], it was shown that (6) cannot recover the
phase response of an arbitrary channel, since when evaluated for
different ω’s it always leads to an underdetermined system of equa-
tions. According to [6], discrete channels with zeros uniformly 2π

T
spaced on a circle are not identifiable. Parametric approaches for
obtaining φ(ω) from (6) have been proposed in [4] as well as ap-
proaches for identifiable channels, that exploit the periodicity of
φ(ω). In [9], it was shown that an appropriately discretized ver-
sion of (6), i.e., ω = 2π

N k, k = 0, ...,N−1, with N and p co-prime
numbers, can lead to the phase within a scalar ambiguity.
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3. PROPOSED METHOD

For bandlimited channels, the estimation of phase for the full fre-
quency range is unnecessary because within the stopband the am-
plitude is very small. An estimate of phase of such a channel for
the whole frequency interval [0,2π) would be highly error prone.

Let us consider a channel that has no zeros uniformly spaced
on a circle at angle 2π/p where p is the over sampling ratio, and
which is bandlimited with cutoff frequency ωc.

Let us discretize ψ(ω), i.e., ω = (2π/N)k, k = 0, ...,N − 1,
and select N and p so that whenever φ(ω) falls in the passband,
φ(ω+πα) falls in the stopband. This can be achieved as long as,

Lc < m < N/2−Lc (7)

where Lc and m are the closest integers to 2π
ωc

N and N
2p respectively.

Closer inspection reveals that in order to find a valid value for p,
we need N > 4Lc, i.e. the channel cutoff should be less than π/2
rad/cycle.

For the above values of N and p, let us define:

φ̂(k) =

{
−

�

ψ(k +m);0 ≤ k ≤ Lc −1, N −Lc ≤ k ≤ N −1
0; Lc ≤ k ≤ N −Lc −1

(8)
It can be shown (see Appendix A) that the channel impulse

response constructed based on φ̂(k) and the correct frequency re-
sponse magnitude is related to the true channel impulse response
as follows:

ĥ(n) (9)
4
= IDFT{|H(k)|e jφ̂(k)}

= ah(n+b)⊗{−2
N
∆

e j 2π
N kon

(1− e j 2π
N n)

∆

∑
i=0

δ(n− (2i+1)
N
2∆

)}

+E(n)

where

a = e− jNz(N/2−m), b =
Nz

2
, ko = 2m−Lc (10)

∆ = b
N −2Lc

Nz −1
c, E(n) ≤

2
N

N−Lc

∑
k=Lc

|H(k)|

where ⊗ denotes N point circular convolution. Eq (9) sug-

gests that ĥ(n) will contain delayed copies of the original channel
separated be N

∆ . If Nz > L N−2Lc
N , where L is the channel length,

these copies will be separated well enough for us to extract the
true channel. Note also that the error E will be small if the energy
within the stopband is negligible.

4. SIMULATION RESULTS

We consider the channel

(c(t,0.11)+0.8c(t−1,0.11)−0.4c(t−3,0.11))W6T (t) (11)

where c(t − τ,β) gives a raised cosine with delay τ and rolloff β,
W6T (t) is a rectangular window of width 6 symbol intervals T .
The channel was exited by a 16 QAM signal. The cyclic spectrum

was estimated as a DFT of cyclic correlation windowed by a rect-
angular window. The DFT length for estimation was 128 and the
oversampling ratio was 4. We varied the assumed channel length,
which entered the estimation as the size of the cyclic correlation
window. The NMSE for various combinations of SNR and data
length is given in Fig. 4. We also did a comparison with the high
complexity subspace based method [7] as seen in Figs. 5 and 6.

Although the subspace approach gives lower NMSE when the
channel length is exactly known, when the length is unknown (which
is the practical case) it gives an NMSE of the same order or higher
than the proposed approximate approach, while the computational
complexity of the proposed approach is significantly lower.

5. PERFORMANCE WITH EXPERIMENTAL DATA

We used real data obtained from our wireless communications test-
bed to verify the performance of the algorithm. The setup included
an Agilent ESG 4431B Vector Signal Generator (operating range
250 kHz to 6.0 GHz), Agilent VSA 89640 Vector Signal Analyzer
(operating range D.C. to 2.7 GHz), VSA 89640 Analyzer software
on a laptop and two omni-directional antennae.

A Fujitsu MB86060 chip internal to the Vector Signal Gener-
ator was used for pulse shaping (square root raised cosine pulse
with rolloff 0.08). We transmitted a known 4 QAM data sequence
of 2500 symbols length at a carrier frequency of 2.4 GHz and at a
data rate of 12 Msps.

We obtained the channel using our algorithm and for compar-
ison, we correlated the received signal with the known input se-
quence to obtain another estimate. In each estimate, the taps from
16 to 32 were extracted as the channel. The DFT length used was
175 and the oversampling ratio was 4. We have given the results
in Fig. 7.

6. CONCLUSIONS

We presented a method for blindly identifying bandlimited pulse
shaping systems, within a scalar ambiguity and an unknown de-
lay. We have seen that the subspace approach gives lowest NMSE
when the channel length is exactly known. However, when this is
unknown, the proposed method yields an NMSE of the same or-
der, or smaller, at a much lower computational complexity, i.e., the
complexity of an inverse DFT.

APPENDIX A

Let us consider an ideal bandlimited channel with zero rolloff and
cutoff frequency ωc. The zero magnitude within the stopband is
achieved by designing the shaping function to have a set of uni-
formly spaced zeros. We assume that the number of these zeros,
Nz is large compared to the remaining zeros of the channel.

The channel Frequency Responce can then be given as:

H(ω) =
Ntotal

∏
i=0

(1− ziz
−1)|z=e jω (12)

Here the channel has Ntotal zeros, out of which Nz lie on the unit
circle.

Let us refer to Fig. 1 to calculate the phase of the terms of (12)
that contains the zeros on the unit circle. As ω increases, the set
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of zeros rotate anticlockwise. Let φi be the phase of (1− zie− jω)
where |zi| = 1. It holds:

φi(ω) =
π
2

+
ωc −ω

2
+ i

π−ωc

Nz −1
,0 ≤ i < Nz (13)

The sum of the phases of all terms (1−zie− jω) for which |zi|=
1, i.e. φz(ω) will then be equal to:

φz(ω) = Nz(π−
ω
2

) (14)

When ω ≈ θi, we can show that

dφi(ω)

dω
=

r

(1− r)3 ((1− r)2 −
1
2
(1+ r)(θi −ω)2), ω ≈ θi (15)

We see that as r → 1, dφi(ω)
dω becomes infinite indicating disconti-

nuity of φi at ω = θi.
We see from Fig. 1 that at this discontinuity, the overall change

in φi(ω) is π. Hence, the overall phase response is linear with
jumps of π at frequencies corresponding to each zero on the unit
circle. Note that these jumps will not occur within the passband of
the channel. Hence, within the stopband, if Nz is large enough,
φz(ω) will dominate the overall phase response because all its
derivatives become large whenever we have ω ≈ θi for any i ∈
[0,Nz −1].

If the phase due to zeros away from the unit circle is φt(ω),
the phase of the channel can be given as

φ(ω) = Nz(π−
ω
2

)+φt(ω)+π
Nz−1

∑
i=0

u(ω−ωc − i 2
π−ωc

Nz −1
) (16)

where u(ω) is the step function. Then in discrete form (8) can be
re-written using (16) as:

φ̂(k) =





φ(k)− Nzπ
N k−Nz(N/2−m)

+π∑Nz−1
i=0 u(k +2m−Lc − i∆);

0 ≤ k ≤ Lc −1, N −Lc ≤ k ≤ N −1
0; Lc ≤ k ≤ N −Lc

(17)

Then ĥ(n) = IDFT{|H(k)|e jφ̂(k)} yields:

ĥ(n) = (18)

a
N

Lc−1

∑
k=0

H(k)e j{ 2π
N (b+n)k+π∑Nz−1

i=0 u(k+ko−i∆)}

+
a
N

N−Lc−1

∑
k=Lc

H(k)e j{ 2π
N (b+n)k+π∑(N−1)/∆−1

i=Nz u(k+ko−i∆)}

+
a
N

N−1

∑
k=N−Lc

H(k)e j{ 2π
N (b+n)k+π∑Nz−1

i=0 u(k−N+1+ko−i∆)}

+E

ĥ(n) =
a
N

N−1

∑
k=0

H(k)e j{ 2π
N (b+n)k}G(k)+E (19)

where

G(k) = 2
M

∑
i=0

rect(
k + ko − i2∆

∆
)−1 M ∈

�
(20)

(21)

and rect( τ
∆ ) is a rectangular pulse of width ∆.

We see that the IDFT of G(k) is

g(n) =
e j 2π

N kon(1− e− j 2π
N ∆n)

(1+ e− j 2π
N ∆n)

(1− e j2πn)

(1− e j 2π
N n)

(22)

where g(n) 6= 0 for n = N
2∆ ,3 N

2∆ , . . .. By simplification, (9) follows.
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Zi

r
di

ωc −ω
r ≈ 1

φi

Fig. 1. Calculation of Phase Due to Channel Zeros Corresponding
to the Stopband
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Fig. 2. Channel estimates for 50 runs, true channel is given in
stars/solid line. The mean of estimates is given in circles/broken
line. The SNR was 30 dB and 400 symbols were used in each
estimation. N was kept at 128
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Fig. 3. Output of the channel (a) Before and (b) After equalization
for one run with an SNR of 30 dB for a 16 QAM signal. 400
symbols were used for channel estimation and 4000 symbols were
used in equalization. A zero forcing equalizer was used.
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Fig. 4. Variation of NMSE with assumed channel length used
in windowing for the channel given in (11). For each point, 50
Monte-Carlo runs were used to obtain the NMSE.
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Fig. 5. Variation of NMSE with SNR for the channel given in (11).
Broken Lines are for subspace based method [7]. Solid lines are
for proposed method. For each point, 25 Monte-Carlo runs were
used to obtain the NMSE.
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Fig. 6. Variation of NMSE with SNR for the channel given in
(11) when the channel length was overestimated by two symbol
intervals. Broken Lines are for subspace based method [7]. Solid
lines are for proposed method. For each point, 25 Monte-Carlo
runs were used to obtain the NMSE.
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Fig. 7. Channel obtained using experimental data. Lines with cir-
cles gives the channel obtained by input-output correlation. Lines
with stars gives the mean of the estimated channel using 400 sym-
bols. Solid lines give the real part while broken lines give the
imaginary part.
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Fig. 8. Equalized experimental data (a) using (b) channel obtained
using correlation and (c) channel obtained using proposed method
2000 symbols were used in equalization. 400 symbols were used
in estimation.
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