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ABSTRACT

In this paper, we propose wavelet-thresholding estimators
for spectrum analysis of a zero-mean cyclostationary signal.
In the case of Gaussian regression, it is known that wavelet
estimators outperform traditional linear methods if the reg-
ularity of the function to be estimated varies substantially
over its domain of definition.

The goal of this paper is to extend these wavelet methods
to the estimation of cyclospectra. In this context, we will
show both theoretically and through a simulation example
that wavelet-thresholding estimators lead to improved per-
formances compared to kernel methods.

1. INTRODUCTION
In communications, cyclospectra are appropriate tools for
the description of the second-order statistics of cyclostation-

be useful in many non-trivial applications (phase identifi-

cation, synchronization [1], transmitter and receiver filter

design, blind equalization [2] ...). Cyclospectrum analy-

sis is also very useful in many other application domains
including geophysics, meteorology, economics, .... Unlike

spectral density, cyclospectrum measures are, similarly to
high order statistics (HOS), phase-sensitive but they require
much less computations and often provide more reliable es-
timates than HOS.

Many of the well-known spectrum-density estimation meth-
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the case of Gaussian regression, we show that this estima-
tor reaches minimax rate on Sobolev spaces, which is not
attained by linear (kernel or spline) estimators whenever a
certain amount of inhomogeneity in the smoothness of the
cyclospectra is present. Note that similar results have been
obtained for spectrum estimation of stationary proces3es
The paper is organized as follows. In Sectihrwe intro-
duce the basic notations and hypotheses. In Se8tiove
show how to transfer the cyclospectrum estimation prob-
lem to a Gaussian regression one. This allows us to obtain
minimax results for the estimator. In Sectiénwe further
improve the estimator, by exploiting the underlying symme-
tries of the cyclospectra. Finally in SectiGnwe provide
some simulations.

2. HYPOTHESES AND NOTATIONS

MVe consider a real discrete-time (almost) cyclostationary

signal{ X;}; with correlation functionE{ X ; X;,,} = r(t,
t+u) =3, cpry(u)e’™, whereA is the (countable) set
of cyclic frequencies, and the functiong(u) are the cyclo-
correlations of{ X;};. Their Fourier transform define the
so-called cyclospectra that will be denoted by

ga(v) =Y rylw)e ™0

u€Z

Since{X.;}; is real, it is easy to show that is symmetric

with respect td) and that the cyclospectra have the follow-

ods, like multitaper estimators , have been generalized to Cy'ing symmetries:

clospectrum analysis. These estimators work well for sig-
nals with slowly varying cyclospectra, but they are not so

successful if the degree of smoothness of the cyclospectra

highly varies over the frequency domain. In the present
paper, we propose a non parametric wavelet-thresholding
method for the estimation of cyclospectra for a wide class
of cyclostationary or almost cyclostationary signals. Like in
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gn(n —v). (1)
A naive estimator o, (v) is the shifted tapered periodogram

1
=T

1

) = g df ) (= v), vl < 3.
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whered! (v) = 31 hi(£)Xpe 27, |y < L, andHI =  have the same asymptotic behavior. So the wavelet estima-
o h(B)ha(L); hiy @ = 1, 2, are the taper functions. ~ tor is defined by
It is well known that, under quite general assumptions, the

~T _ ~
shifted periodogram is an asymptotically unbiased estima- In (v) = Z O‘ln,k‘f’hk(”)

tor for g,,(v) and that the use of smooth data tapeys h-, ket B
reduces the finite sample bias. However, the shifted peri- + ) D 8Bk (v)
odogram is not consistent: its asymptotic variance is propor- j>1,j€JT k€H;

tional to| g, (v) | itself. In order to ensure consistency, ker- ) )

nel methods use adequate kernels with well-chosen band-Wheres(.) denotes soft-thresholding function (or hard-thre-
width to smooth the shifted periodogram. Alternatively, we Sholding one) applied separately to the real and imaginary
attempt to construct wavelet-thresholding estimators of the Parts of the decomposition coeffients. The paramefgr=

cyclospectra, which outperform linear traditional ones. (/\;’,{, /\;7T) is the vector of the threshold values applied on
More precisely, we will consider the problem as being de- the real and imaginary parts of the decomposition coeffi-
scribed by the following additive model : cients. The set of resolution leved$, on which the thresh-
1 1 olding is applied, will be precised later.
IF () = gy(v) + €} (v), —5<v<; 2 In the following, we denote by , (resp.7; ) one of the

coefficientsa ., B, (resp.aj,, E;k) and byy” (resp.

T o . . .

Note_: 'that the errorg, , in this model !s.nelther gau55|an ~m) the real or imaginary parts of; . (resp. ¥; ). The

nor i.i.d. However, under general mixing-conditions (see i
variance of the componem;k will be denoted by(s )2

Assumptionl below), one can transfer the model)) to a Th fimati fth wuall Lin th
Gaussian regression problem. So, the estimator of the cy- e estimation of these variances actually is cruma in the
wavelet-thresholding framework, since it allows the defini-

clospectrumg, (v) is constructed by using a wavelet de- T i
composition of the shifted periodogram, thresholding the tion of the thresholdsj x- Closed form asymptotic expres-

obtained empirical wavelet coefficients for some resolution Sions for thes’;'s have been obtained, which will not been
levels and then reconstructing the estimator from the thresh-Presented due to the lack of space.
olded coefficients.

Let us consider an orthonormal-wavelet basi&.ofR), as- It is well known that for the Gaussian white-noise model
sociated to the following scaling and wavelet functions: = Jo F(2)dz + €W (x), whereW is Brownian walk

~ ~ - o ands > 0is the noise level, the optimal convergence rate
bri(x) = 2202 — k), ¢ju(x) = 22/%)(2 2 — k). of estimation off in Sobolev (or Besov) ballg/,, ,(C) =
{75 111 (0.1 + 155, o,y < 1y is €2°0), where

The associated periodized wavelets are given by o(m) = and that this rate is attained by wavelet-
- 2m+1’

dri( Z bz +n), )i Z Vx(@ +n) threshold estimators. Our ma}ln resu_lt is to show that, for the
model (1), wavelet-thresholding estimators are also (near)

. ] ) optimal for cyclospectra ifi ,, ,(C).

where, at each resolution levgl(> I > 0), the location  gne can make some objections on the minimax viewpoint
k varies inH; = {0,...,2/ — 1}. Then, an orthonormal  ich focuses only on the worst case rather than certain in-
basis ofL, ([0, 1]*), the space of-periodic functions with  termediate caseld]. However, for spatial adaptivity sake,
finite energy, isB = {¢.x tken, U{¥jr};j>1rem;- NOte  which is of particular interest in spectral analysis, one has
that no boundary correction of this basis is needed, sincetg exhibit estimators which work well for both spatially in-
the function to estimate i$-peri0dic. The decompOSition homogeneous smooth Cyc|ospectra and Spat|a||y homoge-

nez nez

of g, (v) on this basis reads: neous smooth ones. These cyclospectra are well represented
by functions inWW,,, ,,(C) with p < 2 for the first class, and
— yi Ui . m,p ’
= Z Lk + Z Z Bix¥ik- p > 2 for the last one.
ket J2l ke H; We make the following two assumptions. The first one is

a mixing assumption which is often satisfied by cyclosta-
tionary signals. The second one consists in imposing some
regularity on the considered wavelets.

We estimate the wavelet coefficieui?c%,c by the integral ver-
sion of the empirical wavelet-coefficients of the cyclopectra:
j = fo 5 (V) (v)dv. The approximation coefficients

al’k are similarly estimated. Although, other discrete esti- Assumption 1 (X;); is a zero-mean process, such that for
mates of the decomposition coefficients are possible, andall s > 2,

may be advantageous in some cases, we think that it is no

difficult to show that, under Assumptidnand by using ta- ~ Sup { D lewm(Xu,, .., Xo, 1, X)) [} < C*(s)7
pers with bounded variations, the corresponding estimators“€”  uiue-1€2
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In practice, the number of the cyclic components is finite for appropriate<; andp > 0, and this bound is uniform in
(typically 3, in the context of band limited communication n > 3 andj € HTTm. So using lemma. in [6], we obtain
signals[1]). Then, Assumptiornl is satisfied, in particular  the asymptotic Gaussianity of the empirical wavelet coeffi-
for cyclostationary processes, for many distributions (Gaus- cients forj in ZJZ ,- Consequently, we show that, by thresh-

sian, exponential, gamma, ...) olding 47 with A7, the risk over resolution levelg?
Assumption 2 . is equivalent, with an error of orde?d((7') ~*(")), to the
o i)¢andy are O™, thresholding-risk based on the Gaussian m@ggl On the
~ other-hand, the error of the projectiongf on the wavelet

o i) [g " (t)dt = 0for 0 <1 <m—1, space corresponding to resolution levelsjire J7 is of

orderO((T)~*(™)). Since forj € J}, the variances ',
O = max(||¢/| 11 ||¢| 1) are finite, and decay likeT 3, the minimaxity of the estimator is, then,
j derived from classical results for the Gausssian modél.
max([[@,nllocs l[j.kllo0) < A2%. Note that in general, this rate is not reached by linear estima-
These assumptions are widely satisfied. In particular for tors of the cyclopectra. In fact tHg? risk of linear estima-
Daubechies’s wavelets with supp®rY, the last assumption  tors depends only on the first and second moments of the er-

o i) C = max(||¢][11, ldl1:) and

is satisfied withd = 2N max(|¢||so; ||¢]l0o)- ror distributions. So, again, by the equivalence above of the
model(2) to the Gaussian model and using classical results
3. THE MINIMAXITY OF THE ESTIMATOR we can conclude that the linear cyclospectrum-estimation

rate is the suboptimal rae—"(™) whererm = m + § — L.

We transfer the mode(2) to an additive Gaussian noise The near-optimal rate#)”(m) for the estimation of the

model. In fact, under Assumptioris— 2, the errore] is cyclospectrais then attained by the wavelet-thresholding es-
asymptotically near Gaussian in the wavelet domain for an timator but not by linear estimators;if < 2 (i.e. in cases
increasing number of resolution levels. In terms of risk, this of inhomogenous regularity of the cyclospectra in the fre-
yields to an equivalence to the Gaussian case for the esti-quency domain).

matorg;l. The near-minimaxity of this estimator is then On the other hand, we note that there are many possibilities
derived in the theorem below. This result is based on the es-for 1, andp to fulfill the condition(1 — 7)r(m, p) > v(m).
timation, with explicit constants, of the cumulants of bilin- Hence the estimator is Simu|taneous|y near|y optima| over
ear combinations of the process (the empirical wavelet co- 3 wide range of smoothness classes. Finally, like for the
efficients of the shifted periodogram). By estimating these Gaussian white modéB), one can easily show that the op-

cumulants for a stationary process, similar results have beenimal rate7 (™) is exactly attained by using the thresholds
obtained for the estimation of the spectrum denfity i _

. aT
e ) _ : N 571 (21n(12+1))2. In Section 5, we will use these
The thresholding is applied on details for resolution levels . J:* Jv’“( (55))

ind?l ={j, j >1, 29 <T'~7}, for somer > 0 satisfy- results.

ing (1 — 7)r(m,p) > v(m), wherer(m,p) =m+1— %,

p = min(p, 2). 4. FURTHER IMPROVEMENT OF THE

Theorem 1 Suppose that Assumptions 1 — 2 hold and the ESTIMATOR

threshold satisfies '

T (2 In(|g7)))? < A;:L’T < KT73\/m(T)onJT, where  The estimatog!’, described in Section 3, reaches the de-

K isaconstant. Then, , In(T) sired near-optimal rate!™”2)v(m) | but there are two obvi-

Sngnewg"(C){E(Hgn = 9nlltsqo, 1)} = O((=72)"). ous possibilities to improve it further for finite sample sizes.

Sketch of the proof First, in constrast to the usual kernel estimatay,pfwavelet

Thanks to Assumptions — 2 the problem in mode(2) is estimators are not translation-invariant. If we shift the pe-

transfered to the following Gaussian regression one: riodogram by a certain amoust apply non-linear thresh-
i i i o olding and shift the estimate back bythis new estimator
Vik = Vik T Ojk€iks J €7, k € Hj, @) g5 will differ from the unshifted varian§ in most cases.

wheree; , ~ N(0,1) are i.i.d. The only shift lengths which do not alter the estima@ﬁr

In fact, from Assumptiond — 2, we can show that for res- are multiples of the shift length of the wavelet basis at the
olution levels ing? , = {1 < j, 20 <T'"7, 27 > T*}, for coarsest scale, i.gr. On the other hand, there is no rea-

anyp > 0, the following estimation holds son to assume that any of the possible shifts are always su-
i i perior to the other shifts. To weaken the effect of not be-
|Cumn(7j,k — Vjk )| < (n!)”zV(KlT)*“(”*Q) ing translation-invariant we apply the well-known idea of

~7,1

Tk stationary wavelet transforms and define, with shifts=
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. i=0,..,I—1,the new estimator optimally chosen bandwidtti(= 0.11), of the cyclospectra
(the2f-componenton the right). The wavelet estimator bet-
1= ter captures the peaks and it is also slightly better in smooth
=7 Z parts. We also estimated the averagétl/ SE. The results
=0 are provided in the figure captions.

then we obtain by Jensen’s inequality that

@ @
25 2

I—
1 .
19 = 901l 20,17y < 7 Z 195" = 9nllE=(0,1)) (4) 2 L5
=0
15 1
In particularg; also satisfies the results in Theorem 1. More- 1 05
over, in view of the possibly strict inequality in (4), we ex- . 0
pect to get a significant improvement for finite sample sizes. 05 (g) 05 05 (g) 05
Secondly, consider symmetrized estimaipt(v) = %[jg?,*](y)+ 15

92, (=v) + 950 —v) + g5 (n — v)].
Hence we have again by Jensen’s inequality, and the fact

thatg,, satisfies (1), that the new estimafg* satisfies 1 o5
-~ 2 -~ 2
195" = gallzzqo.ny) < 195 = 9nll=qo,1) "% n 25 05 0 s
o , . , © 0]
where strict inequality holds if two of the four above esti- 15
mators are different. 15
’ 1
5. SIMULATIONS 1 05
We generated a time series which corresponds to an am-05- 5 05 05 5 05

plitude modulation of a superposition of ahRM A(2,2)
signalY; and a Gaussian white noigg : Fig. 1. AveragedNMSE: Wav.: 0.0334 for n =

0
0.0467 for n = 0.25 . Ker.: 0.0491 forn = 0 (c),
Xe =Yy + cZ;) cos(2m f1). ®) o582 for nn: 0.25 ( fge) ! “
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