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ABSTRACT

In this paper, we propose wavelet-thresholding estimators
for spectrum analysis of a zero-mean cyclostationary signal.
In the case of Gaussian regression, it is known that wavelet
estimators outperform traditional linear methods if the reg-
ularity of the function to be estimated varies substantially
over its domain of definition.
The goal of this paper is to extend these wavelet methods
to the estimation of cyclospectra. In this context, we will
show both theoretically and through a simulation example
that wavelet-thresholding estimators lead to improved per-
formances compared to kernel methods.

1. INTRODUCTION

In communications, cyclospectra are appropriate tools for
the description of the second-order statistics of cyclostation-
ary random processes such as modulated signals. They can
be useful in many non-trivial applications (phase identifi-
cation, synchronization [1], transmitter and receiver filter
design, blind equalization [2] ...). Cyclospectrum analy-
sis is also very useful in many other application domains
including geophysics, meteorology, economics, .... Unlike
spectral density, cyclospectrum measures are, similarly to
high order statistics (HOS), phase-sensitive but they require
much less computations and often provide more reliable es-
timates than HOS.
Many of the well-known spectrum-density estimation meth-
ods, like multitaper estimators , have been generalized to cy-
clospectrum analysis. These estimators work well for sig-
nals with slowly varying cyclospectra, but they are not so
successful if the degree of smoothness of the cyclospectra
highly varies over the frequency domain. In the present
paper, we propose a non parametric wavelet-thresholding
method for the estimation of cyclospectra for a wide class
of cyclostationary or almost cyclostationary signals. Like in

the case of Gaussian regression, we show that this estima-
tor reaches minimax rate on Sobolev spaces, which is not
attained by linear (kernel or spline) estimators whenever a
certain amount of inhomogeneity in the smoothness of the
cyclospectra is present. Note that similar results have been
obtained for spectrum estimation of stationary processes���.
The paper is organized as follows. In Section�, we intro-
duce the basic notations and hypotheses. In Section�, we
show how to transfer the cyclospectrum estimation prob-
lem to a Gaussian regression one. This allows us to obtain
minimax results for the estimator. In Section�, we further
improve the estimator, by exploiting the underlying symme-
tries of the cyclospectra. Finally in Section�, we provide
some simulations.

2. HYPOTHESES AND NOTATIONS

We consider a real discrete-time (almost) cyclostationary
signal����� with correlation function:��������� � ����
�	 �
 �

�
��� ����
�

�����, where� is the (countable) set
of cyclic frequencies, and the functions����
 are the cyclo-
correlations of�����. Their Fourier transform define the
so-called cyclospectra that will be denoted by
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Since����� is real, it is easy to show that� is symmetric
with respect to� and that the cyclospectra have the follow-
ing symmetries:
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A naive estimator of���	
 is the shifted tapered periodogram
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 �
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������ , �	� � �
� � and
�

� �����
��� ���
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�
� 
; ��� � � 
� �, are the taper functions.

It is well known that, under quite general assumptions, the
shifted periodogram is an asymptotically unbiased estima-
tor for ���	
 and that the use of smooth data tapers��� ��,
reduces the finite sample bias. However, the shifted peri-
odogram is not consistent: its asymptotic variance is propor-
tional to� ���	
 � itself. In order to ensure consistency, ker-
nel methods use adequate kernels with well-chosen band-
width to smooth the shifted periodogram. Alternatively, we
attempt to construct wavelet-thresholding estimators of the
cyclospectra, which outperform linear traditional ones.
More precisely, we will consider the problem as being de-
scribed by the following additive model :
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�
(2)

Note that the error,��� , in this model is neither Gaussian
nor i.i.d. However, under general mixing-conditions (see
Assumption
 below), one can transfer the model��
 to a
Gaussian regression problem. So, the estimator of the cy-
clospectrum���	
 is constructed by using a wavelet de-
composition of the shifted periodogram, thresholding the
obtained empirical wavelet coefficients for some resolution
levels and then reconstructing the estimator from the thresh-
olded coefficients.
Let us consider an orthonormal-wavelet basis of�� ��
, as-
sociated to the following scaling and wavelet functions:
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The associated periodized wavelets are given by
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where, at each resolution level� (� � � �), the location
� varies in
� � ��� 


� �� � 
�. Then, an orthonormal
basis of��� ���� 
��
, the space of
-periodic functions with
finite energy, is� � ���	
�
���

�
���	
����	
���

. Note
that no boundary correction of this basis is needed, since
the function to estimate is
-periodic. The decomposition
of ���	
 on this basis reads:
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We estimate the wavelet coefficients���	
 by the integral ver-
sion of the empirical wavelet-coefficients of the cyclopectra:����	
 �

� �
� �

�
� �	
��	
�	
�	. The approximation coefficients

�
�
�	
 are similarly estimated. Although, other discrete esti-

mates of the decomposition coefficients are possible, and
may be advantageous in some cases, we think that it is no
difficult to show that, under Assumption
 and by using ta-
pers with bounded variations, the corresponding estimators

have the same asymptotic behavior. So the wavelet estima-
tor is defined by
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WhereÆ�

 denotes soft-thresholding function (or hard-thre-
sholding one) applied separately to the real and imaginary
parts of the decomposition coeffients. The parameter��

�	
 �

���	��	
 � �
�	�
�	
 
 is the vector of the threshold values applied on

the real and imaginary parts of the decomposition coeffi-
cients. The set of resolution levels��� , on which the thresh-
olding is applied, will be precised later.
In the following, we denote by��	
 (resp.���	
) one of the
coefficients���	
, ���	
 (resp. ����	
, ����	
), and by��	��	
 (resp.

���	��	
) the real or imaginary parts of��	
 (resp. ���	
). The

variance of the component�� �	��	
 will be denoted by����	��	

�.
The estimation of these variances actually is crucial in the
wavelet-thresholding framework, since it allows the defini-
tion of the thresholds���	
. Closed form asymptotic expres-

sions for the���	��	
 ’s have been obtained, which will not been
presented due to the lack of space.

It is well known that for the Gaussian white-noise model
� ��
 �

� �
�
 �!
�! 	 "# ��
, where# is Brownian walk

and$ % � is the noise level, the optimal convergence rate
of estimation of in Sobolev (or Besov) balls#�	��&
 �

�'� �'������	�	
 	 � Æ
��
Æ�� ������	�	
 � &�, is "����
, where

(�)
 � ��
���� , and that this rate is attained by wavelet-

threshold estimators. Our main result is to show that, for the
model�

, wavelet-thresholding estimators are also (near)
optimal for cyclospectra in#�	��&
.
One can make some objections on the minimax viewpoint
which focuses only on the worst case rather than certain in-
termediate cases���. However, for spatial adaptivity sake,
which is of particular interest in spectral analysis, one has
to exhibit estimators which work well for both spatially in-
homogeneous smooth cyclospectra and spatially homoge-
neous smooth ones. These cyclospectra are well represented
by functions in#�	��&
 with * � � for the first class, and
* % � for the last one.
We make the following two assumptions. The first one is
a mixing assumption which is often satisfied by cyclosta-
tionary signals. The second one consists in imposing some
regularity on the considered wavelets.

Assumption 1 ���
� is a zero-mean process, such that for
all + � �,
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In practice, the number of the cyclic components is finite
(typically �, in the context of band limited communication
signals�
�). Then, Assumption
 is satisfied, in particular
for cyclostationary processes, for many distributions (Gaus-
sian, exponential, gamma, ...)

Assumption 2 .

� i) �� and �� are &�,

� ii)
�
�
�� ����
�� � � for � � � � )� 
,

� iii) & � ���������� � � �����
 and
& � � ������������ ������
 are finite, and
�������	
��� ���	
��
 � -�

�
� .

These assumptions are widely satisfied. In particular for
Daubechies’s wavelets with support�. , the last assumption
is satisfied with- � �. ���������� � ����
.

3. THE MINIMAXITY OF THE ESTIMATOR

We transfer the model��
 to an additive Gaussian noise
model. In fact, under Assumptions
 � �, the error��� is
asymptotically near Gaussian in the wavelet domain for an
increasing number of resolution levels. In terms of risk, this
yields to an equivalence to the Gaussian case for the esti-
mator���� . The near-minimaxity of this estimator is then
derived in the theorem below. This result is based on the es-
timation, with explicit constants, of the cumulants of bilin-
ear combinations of the process (the empirical wavelet co-
efficients of the shifted periodogram). By estimating these
cumulants for a stationary process, similar results have been
obtained for the estimation of the spectrum density���.
The thresholding is applied on details for resolution levels
in ��� � ��� � � �� �� � / ����, for some0 % � satisfy-
ing �
 � 0
��)� *
 � (�)
, where��)� *
 � )	 
� �

�� ,
�* � ����*� �
.

Theorem 1 Suppose that Assumptions 
 � � hold and the
threshold satisfies
���	��	
�� ������� �

 �� � �

�	�	�
�	
 � 1/�

�

�

�
���/ 
 on ��� , where

1 is a constant. Then,
��������
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.

Sketch of the proof
Thanks to Assumptions
 � � the problem in model��
 is
transfered to the following Gaussian regression one:

���	��	
 � �
�	�
�	
 	 ���	��	
"�	
� � 	 ��� � � 	 
� � (3)

where"�	
 
 .��� 

 are i.i.d.
In fact, from Assumptions
� �, we can show that for res-
olution levels in���	� � �� � �� �� � / ��� � �� � / ��, for
any3 % �, the following estimation holds
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for appropriate1� and4 % �, and this bound is uniform in
� � � and� 	 ���	�. So using lemma
 in ���, we obtain
the asymptotic Gaussianity of the empirical wavelet coeffi-
cients for� in ���	�. Consequently, we show that, by thresh-

olding ���	��	
 with �
�	�	�
�	
 , the risk over resolution levels���

is equivalent, with an error of order2��/ 
����

, to the
thresholding-risk based on the Gaussian model��
. On the
other-hand, the error of the projection of� � on the wavelet
space corresponding to resolution levels in� 	 ��� is of
order2��/ 
����

. Since for� 	 ��Æ	� the variances���	��	

decay like/�

�

� , the minimaxity of the estimator is, then,
derived from classical results for the Gausssian model.�
Note that in general, this rate is not reached by linear estima-
tors of the cyclopectra. In fact the�� risk of linear estima-
tors depends only on the first and second moments of the er-
ror distributions. So, again, by the equivalence above of the
model��
 to the Gaussian model and using classical results
we can conclude that the linear cyclospectrum-estimation
rate is the suboptimal rate/��� ��
 where�) � )	 �

� �
�
�� .

The near-optimal rate� �
�� 
� 
���
 for the estimation of the
cyclospectra is then attained by the wavelet-thresholding es-
timator but not by linear estimators if* � � (i.e. in cases
of inhomogenous regularity of the cyclospectra in the fre-
quency domain).
On the other hand, we note that there are many possibilities
for) and* to fulfill the condition�
� 0
��)� *
 � (�)
.
Hence the estimator is simultaneously nearly optimal over
a wide range of smoothness classes. Finally, like for the
Gaussian white model��
, one can easily show that the op-
timal rate/����
 is exactly attained by using the thresholds

�
�	�	�
�	
 � ���	��	
�� ��� ��

�
� �
�� 



�

� . In Section 5, we will use these
results.

4. FURTHER IMPROVEMENT OF THE
ESTIMATOR

The estimator���� , described in Section 3, reaches the de-

sired near-optimal rate� �
�� 
� 
���
, but there are two obvi-
ous possibilities to improve it further for finite sample sizes.
First, in constrast to the usual kernel estimator of��, wavelet
estimators are not translation-invariant. If we shift the pe-
riodogram by a certain amount+, apply non-linear thresh-
olding and shift the estimate back by+, this new estimator
���� will differ from the unshifted variant���� in most cases.
The only shift lengths which do not alter the estimator�� ��
are multiples of the shift length of the wavelet basis at the
coarsest scale, i.e�

��
. On the other hand, there is no rea-

son to assume that any of the possible shifts are always su-
perior to the other shifts. To weaken the effect of not be-
ing translation-invariant we apply the well-known idea of
stationary wavelet transforms and define, with shifts+ � �
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, the new estimator
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then we obtain by Jensen’s inequality that

����� � ���
�
�����	�	
 �




�

����
���

����	� � ���
�
�����	�	
 (4)

In particular,���� also satisfies the results in Theorem 1. More-
over, in view of the possibly strict inequality in (4), we ex-
pect to get a significant improvement for finite sample sizes.
Secondly, consider symmetrized estimator����� �	
 � �

� ������	
	
�������	
 	 ������ � 	
 	 ������ � 	
�.
Hence, we have again by Jensen’s inequality, and the fact
that�� satisfies (1), that the new estimator����� satisfies

������ � ���
�
�����	�	
 � ����� � ���

�
�����	�	


where strict inequality holds if two of the four above esti-
mators are different.

5. SIMULATIONS

We generated a time series which corresponds to an am-
plitude modulation of a superposition of an-56-��� �

signal�� and a Gaussian white noise7� :

�� � ��� 	 ,7�
 �����8'�

 (5)

In our example, the modulation frequency is' � �

��, and

�� 	 9����� 	 9����� � :�"� 	 :�"��� 	 :�"��� (6)

where�"��, �7�� are independent Gaussian zero-mean white
noises with variance 1. The-56- parameters are9� �
�
�, 9� � �
�, :� � 
, :� � �, :� � �
� and, � 
. The
cyclic-frequencies (at order�) of ���� are���'� �� �'�.
The theoretical cyclospectra are given on the top of Fig. 1
(the �' -component on the right). They exhibit both sharp
peaks and smooth regions.
We generated
�� samples of size
��� according to��
.
We used the Symmlet
� basis (the least asymmetric). We
chose� � � (the coarsest level). The approximation co-
efficients were left unchanged. Soft thresholding was per-
formed for the levels� � �� �� �� and the coefficients from
scales� % � were set to zero. We used SURE thresholds,
which is justified by the equivalence of our model��
 to the
Gaussian one. The estimate of the variances����	��	



� were
obtained by plugging the kernel estimator��� in the asymp-
totic formula of these variances.
In Fig. 1. we show one realization of the wavelet-estimation
(in the middle) and kernel-estimation (in the bottom), with

optimally chosen bandwidth (� � �


), of the cyclospectra
(the�' -component on the right). The wavelet estimator bet-
ter captures the peaks and it is also slightly better in smooth
parts. We also estimated the averaged.6;�. The results
are provided in the figure captions.
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