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ABSTRACT

Stability of the all-pole model in conventional, unconstrained
linear prediction with the autocorrelation criterion is well
known. By exerting constraints to the optimisation prob-
lem it is possible to define models of order+ [ with m
parameters. However, traditionally constraints have led to
models whose stability is not guaranteed. In this paper, we
will discuss constrained linear predictive models where the
constraint is one-dimensional & 1) and derive stability
criteria for these models.

1. INTRODUCTION

Linear prediction (LP) is a classical method in digital signal
processing. Applications of LP have appeared in a remark-
ably wide variety including such fields as speech process-
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The standard method for inclusion of constraints in opti-
misation is through usage of the Lagrange multipkefhe
objective function is then

n(a,A) =a’Ra+\(a’b-1). 1)

The extreme is found through differentiation= dn/0a =
2Ra + Ab. Multiplying from the left hand side witla™
yieldsa’Ra = Ele} p,| A/2 = o2. The optimal so-
lution can then be written in the extended normal equations
(also known as the extended Yule-Walker equations) as

Ra = oD, 2)
whereo? is the energy of the prediction error.

2.2. Line Spectral Pair Polynomials

The Line Spectral Pair (LSP) polynomials are defined us-

ing, geology and economics [1]. In many cases, constraintsing the transfer functiomd(z) corresponding to vectos

derived from a priori information can be used to funnel the
linear predictive model to a favourable direction or to avoid
illegal solutions. However, in applications that require the
minimum-phase property, that is, the stability of the all-pole

model, few such models are available. On the other hand,

analysis of the stability of polynomials has been studied in
detail in, among others [2, 3].
In our earlier work, we have studied constrained linear

predictive models for speech processing [4, 5, 6] as well as

stable all-pole models with alternative optimisation proce-
dures [7]. The current work presents stability criteria for
constrained LP models.

2. BACKGROUND

2.1. Conventional Linear Prediction

The formulation of the conventional linear prediction as de-
scribed in [1] can be presented in matrix notation as follows.
Using signalx,, and parameterg; (0 < i < m), denoted

x anda in vector notation, respectively, and model order
m, we define the residual as,p,, = x’a. We then min-
imise the expected value of the squared efide ,,,| =

E [aTxxTa] = a”Ra subject to the constraini, = 1 or
equivalentlya”’b = 1withb = [1, 0, 0, ...]7.
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asP(z) = A(z) + 2™ 1A(z7Y) and Q(z) = A(z) —
2~m=LA(271) [8]. Itis well known that polynomials(z)
andQ(z) have the intra-model interlacing property, that is,
the zeros ofP(z) and Q(z) will be interlaced on the unit
circle if A(z) is minimum-phase. Correspondingly, if the
zeros of P(z) andQ(z) are separate and interlaced on the
unit circle, then the reconstructiof(z) = 3 [P(z) + Q(z)]

will be minimum-phase.

In addition to the intra-model interlacing property, the
polynomials P(z) and Q(z) have also an inter-model in-
terlacing property [9]. Namely, the zeros of the order
polynomialsP,,(z) andQ,,(z) are interlaced with the ze-
ros of the ordefn + 1 polynomialsP,,, 1 (z) andQ@,,+1(2),
respectively.

Predictorsp and q corresponding to the LSP polyno-
mials can be calculated directly from a similar relation as
Eq. 2 by definingRp = ¢2[1, 0, ...,0, 1]" andRq =
0—3[1, 0,...,0, —1]7. These polynomials have trivial ze-
ros atz = +1 [10], and if these zeros are removed, then
the corresponding polynomials, denoted hereStyy) and
T(z), respectively, can be calculated from equati®s=
o1, 1,...,1,1]T andRt = o2[1, -1, 1, -1, ...]7, re-
spectively [6]. The inter-model interlacing property can
then be interpreted as interlacing of zerosRik), Q(z),
S(z) andT'(z) (excludingS(z) or T'(z) for m odd).
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3. CONSTRAINED LINEAR PREDICTION Proof Definingh = b + Cayieldse,, = x”h. Obviously,
h — b = Caandh — b is thus in column space &. Con-
Consider a linear model that estimates a future sample ofsequently, the constraint can be written@$S(h — b) = 0,

signalx,, from past values of a filtered signa), = ¢, * x,,, and our objective function can be written as
wherec, is the impulse response of a causal FIR filter (with . o
the trivial caser,, = 0, n > 0 excluded). The prediction n(a,A) =h"Rh+ A" Cj (h —b), (5)

residual ise,, = xn+2£61 QT = xn+z,’;:01 @i Cpy— i
Tni = xnt+ S Sy aickn_i_. This equation is,
importantly, different from conventional linear prediction
since it defines a predictor of order+!—1 usingm param-
eters. Hence, we will call this approacbnstrainedinear
prediction. The residual can be concisely written as

where) is the Lagrange multiplier vector. The optimum is
at 9n/0h = 0 which yieldsRh = Cy\. Parametei can
be solved fronCI R~1Cy\ = CI'b [11].

Vectora obeys, by definition, relatioh — b = Ca and
can thus be calculated from 0

Remark Sincee,, = x”h, vectorh is the impulse response
used in prediction. However, the minimal representation,
T containing no redundant data, is vectorlt can be solved
setting B[ ,Z e2] = 0 from CRC"a = CRb.

The constrained linear predictors haualegrees of free-
dom in defining a predictda of orderm + [ — 1. This im-
plies that in constrained predictors (for 1), in contrast to
conventional LP, all-pole models of order+ [ — 1 can be
defined from less tham + [ — 1 parameters [4, 5]. Conse-
quently, constrained linear predictors can find applications

en =blx+alClx, 3)

wherex = [zg, ..., Tmii-1]%, a = [ag, -, Gm_1]

the parameter vector ag = §;. Matrix C € R(m+)xm

is defined such tha;; = ¢;_; for 0 < j —4 < [, where

[ + 1 is the length ot,,. Later, we will need the null-space

of matrix C, defined alCT C, = 0 whereC, € R(m+1)xL,
For the simple, one parameter FIR filter with coefficient

vector[1, —c|T (i.e. I = 1), the corresponding constraint

matrix is ) . )
in such areas as coding and feature extraction. However,
1 —¢c 0 - 0 covering all cases > 1 is beyond the scope of this article
01 and therefore we will concentrate on the casel only.
c’ = o (4)
(:) - 0 1 0 4. STABILITY OF CONSTRAINED LP MODELS
_c
. Theorem 1 Predictora, solving
and its null space i€y = [1, ¢!, ¢72,..., ¢~ (mH=D]7,
Matrix C, will thus be equal to the LSP constraints (with Ra.=~[l, ¢! 2., c*m]T (6)
one trivial zero removed) far = +1 [6].
Note that we have chosen to predict sampjefrom is minimum-phase ifc| > 1 (wherec € C), R is positive
#,_; wherei ranges fronzeroto m — 1. The samplez,, definite andy is a scaling factor. Folc| = 1 predictora,

is therefore estimated from theurrent and past samples has its roots on the unit circle, and for| < 1 outside the

of #,. One would therefore easily be led to believe that unitcircle.

the predictor is non-causal. Luckily, however, if the FIR

filter is non-trivial then the residual, can be determined  The following proofs are based on the approach presented
since its computation (Eq. 3) contains termsegf ; where N [12].

i € [0,m + [ — 1], and the optimisation problem is un-
ambiguous. The transfer function of predictors obtained by
these formulations will therefore have a coefficientz6f
that is generally not equal to one.

Proof Let « be a root of polynomial.(z) corresponding
to vectora,. Writing vectora,, in factored form

1 b 0
We can then formulate our optimisation problem as: o1 b? b
| oaes | b b 1] 1
Problem Minimise Ele?] ac= | Ter f = T [ —a ] =B { —a } ,
with e, =bTx+alCTx : : :
Qe m 0 bmfl
Solution We have the auxiliary equatidRh = CyA with (7

the unknown vectoh. The [ x 1 vector ) is solved from it follows that

CIR1CyA = Cl'b. Vectora can be calculated from the

1
overdetermined equatidn— b = Ca. Ra. = RB [

}7[1, e ™ L (8
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Multiplying from the left byB* yields

H 1] 1
BRB[Q]—f[Cl], 9)
where¢ =~ 37 bt

If R is positive def|n|te thelB X RB is positive definite
since matrixB is full rank [13]. Further,

BYRB = [ %05 } >0, (10)
S1  So
which implies thatsg|? > |s1|? wheres, is real.
Combining equations 9 and 10 yields
BARB| ' =] %07 | ] ] (11)
—a || st—asy | c !
Eliminating¢ to solvea yields
st — sgc !
=7 (12)
So — S1C
We can readily show that| = 1 is equivalent to
(Isol* = Is1*) (1 = [e|™%) = 0. (13)

Therefore |a| = 1 requires thatc| = 1 since|sg| > |s1]-
Further, in Eq. 11j¢| > 1 implies thata| < 1, while |a| —
oo implies thate — 22, that is,|c| < 1. This concludes

the proof. Note that we have, as a by-product, proved theCLH

stability of the traditional LP model. |

An example of the root space of predictgras a func-
tion of ¢ is depicted in Fig. 1.

Remark 1.1 Equation 6 can be rewritten as

Ra,=~c™ [cm, et e 1]T (14)

which shows thaa# (where superscript denotes reversal
of rows) is minimum-phase foje| < 1. Thus, two con-
strained linear predictors defined byandc¢~! have their

roots symmetric to the unit circle.

Remark 1.2 While Eqg. 6 yields minimum-phase predictors

and since an LP model with a simple FIR-filter constraint

(Eq. 4) has a null-spac€y = [1, ¢!, ¢72,..., c*m}T,

the corresponding constrained LP model will be minimum-
phase if and only if the zero of the FIR-filter is outside the
unit circle.

Defintion The symmetric and antisymmetric padt] and
d—, respectively, of a vectat are defined ad* = d + d#,
where# denotes reversal of rows. Similarly, the scaled
(anti)symmetric part igl* = (d + d#)/(do £ d,n).

@\D / o
e

2

Fig. 1. lllustration of the root space of predictar in Eq.
6 as a function of: € R with m = 10. Corresponding LP-
model ¢ — o) is depicted with circles 'o’. Wheix| > 1
roots ofa,. lie within the unit circle, for|c| = 1 on the unit
circle, and forlc| < 1 outside the unit circle.

Theorem 2 The scaled symmetric and antisymmetric parts

¢ andé~, respectively, of vectar= [1, 7!, ..., c*m}T
are, forc — +1 andm even
= [+1, 41, +1, ..., +1, +1]7 (15)
e = [+1, -1, 41, ..., -1, +1)T (16)
2 4 2
G =[1,1-=1-——, ..., ——1,-11" (@7
CCH+1 [ m m m ] ( )
2 4 2
e =1, -14+=1—— ..., —=+1, -1]1.(18)
m m m
Similarly, form odd
e, =111, ..., 11" (19)
2 4 2
e =, -1+ =1 — ., ==+ 1, 1]7 (20)
m m m
2 4 2
G =[1,1-=,1-——, ..., =-1,-117 (2
cc—»+1 [ ) m7 ma ’ m 9 ] ( )
¢ ., =[1,-1,1,...,1, -1%. (22)

The predictorsa®, solvingRaf, = ¢t .| (where the
sign of symmetry and are not necessarily equal), have
their zeros on the unit circle.

Proof Equations 15, 16, 19 and 22, follow directly from
the definition. Equations 17, 18, 20 and 21 can be readily
derived using the I'Hopital rule for limits.

Since we have proved that predicterssolving Eq. 6
are minimum-phase i| > 1, then the symmetric and an-
tisymmetric parta* have their zeros interlaced on the unit
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Fig. 2. An example of the unit circle and interlacing prop-

erties of the symmetric and antisymmetric paiis (Egs.
15-22) of predictomn. in Eq. 6 (n = 10).

circle [14]. The same holds for the reversed prediatoiby
symmetry. Wherc| = 1, the predictor.. is either symmet-

ric or antisymmetric and the opposite symmetry component

is zero. However, it follows that at the limjt| — 1 the

predictora®, must have its zeros on the unit circle since

polynomial sequences are continuous. a

The predictorsa, solving Raf, = ~¢E | are thus, in
some combinations of sign of symmetry and sigrncof
+1, the LSP polynomials of degree + 1 with one trivial
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