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ABSTRACT

Stability of the all-pole model in conventional, unconstrained
linear prediction with the autocorrelation criterion is well
known. By exerting constraints to the optimisation prob-
lem it is possible to define models of orderm + l with m
parameters. However, traditionally constraints have led to
models whose stability is not guaranteed. In this paper, we
will discuss constrained linear predictive models where the
constraint is one-dimensional (l = 1) and derive stability
criteria for these models.

1. INTRODUCTION

Linear prediction (LP) is a classical method in digital signal
processing. Applications of LP have appeared in a remark-
ably wide variety including such fields as speech process-
ing, geology and economics [1]. In many cases, constraints
derived from a priori information can be used to funnel the
linear predictive model to a favourable direction or to avoid
illegal solutions. However, in applications that require the
minimum-phase property, that is, the stability of the all-pole
model, few such models are available. On the other hand,
analysis of the stability of polynomials has been studied in
detail in, among others [2, 3].

In our earlier work, we have studied constrained linear
predictive models for speech processing [4, 5, 6] as well as
stable all-pole models with alternative optimisation proce-
dures [7]. The current work presents stability criteria for
constrained LP models.

2. BACKGROUND

2.1. Conventional Linear Prediction

The formulation of the conventional linear prediction as de-
scribed in [1] can be presented in matrix notation as follows.
Using signalxn and parametersai (0 ≤ i ≤ m), denoted
x anda in vector notation, respectively, and model order
m, we define the residual aseLP,n = xT a. We then min-
imise the expected value of the squared errorE

[
e2
LP,n

]
=

E
[
aT xxT a

]
= aT Ra subject to the constrainta0 = 1 or

equivalentlyaT b = 1 with b = [1, 0, 0, . . . ]T .

The standard method for inclusion of constraints in opti-
misation is through usage of the Lagrange multiplierλ. The
objective function is then

η(a, λ) = aT Ra + λ
(
aT b− 1

)
. (1)

The extreme is found through differentiation0 = ∂η/∂a =
2Ra + λb. Multiplying from the left hand side withaT

yieldsaT Ra = E[e2
LP,n] = −λ/2 = σ2. The optimal so-

lution can then be written in the extended normal equations
(also known as the extended Yule-Walker equations) as

Ra = σ2b, (2)

whereσ2 is the energy of the prediction error.

2.2. Line Spectral Pair Polynomials

The Line Spectral Pair (LSP) polynomials are defined us-
ing the transfer functionA(z) corresponding to vectora
as P (z) = A(z) + z−m−1A(z−1) andQ(z) = A(z) −
z−m−1A(z−1) [8]. It is well known that polynomialsP (z)
andQ(z) have the intra-model interlacing property, that is,
the zeros ofP (z) andQ(z) will be interlaced on the unit
circle if A(z) is minimum-phase. Correspondingly, if the
zeros ofP (z) andQ(z) are separate and interlaced on the
unit circle, then the reconstructionA(z) = 1

2 [P (z) + Q(z)]
will be minimum-phase.

In addition to the intra-model interlacing property, the
polynomialsP (z) and Q(z) have also an inter-model in-
terlacing property [9]. Namely, the zeros of the orderm
polynomialsPm(z) andQm(z) are interlaced with the ze-
ros of the orderm+1 polynomialsPm+1(z) andQm+1(z),
respectively.

Predictorsp andq corresponding to the LSP polyno-
mials can be calculated directly from a similar relation as
Eq. 2 by definingRp = σ2

p[1, 0, . . . , 0, 1]T andRq =
σ2

q [1, 0, . . . , 0, −1]T . These polynomials have trivial ze-
ros atz = ±1 [10], and if these zeros are removed, then
the corresponding polynomials, denoted here byS(z) and
T (z), respectively, can be calculated from equationsRs =
σ2

s [1, 1, . . . , 1, 1]T andRt = σ2
t [1, −1, 1, −1, . . . ]T , re-

spectively [6]. The inter-model interlacing property can
then be interpreted as interlacing of zeros ofP (z), Q(z),
S(z) andT (z) (excludingS(z) or T (z) for m odd).
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3. CONSTRAINED LINEAR PREDICTION

Consider a linear model that estimates a future sample of
signalxn from past values of a filtered signalx̃n = cn ∗xn,
wherecn is the impulse response of a causal FIR filter (with
the trivial casecn ≡ 0, n ≥ 0 excluded). The prediction
residual isen = xn+

∑m−1
i=0 aix̃n−i = xn+

∑m−1
i=0 aicn−i∗

xn−i = xn+
∑m−1

i=0

∑l
k=0 aickxn−i−k. This equation is,

importantly, different from conventional linear prediction
since it defines a predictor of orderm+l−1 usingm param-
eters. Hence, we will call this approachconstrainedlinear
prediction. The residual can be concisely written as

en = bT x + aT CT x, (3)

wherex = [x0, . . . , xm+l−1]T , a = [a0, . . . , am−1]T is
the parameter vector andbi = δi. Matrix C ∈ R(m+l)×m

is defined such thatCij = cj−i for 0 ≤ j − i ≤ l, where
l + 1 is the length ofcn. Later, we will need the null-space
of matrixC, defined asCT C0 = 0 whereC0 ∈ R(m+l)×l.

For the simple, one parameter FIR filter with coefficient
vector [1, −c]T (i.e. l = 1), the corresponding constraint
matrix is

CT =


1 −c 0 · · · 0

0 1 −c
...

...
...

...
...

... 0
0 · · · 0 1 −c

 (4)

and its null space isC0 =
[
1, c−1, c−2, . . . , c−(m+l−1)

]T
.

Matrix C0 will thus be equal to the LSP constraints (with
one trivial zero removed) forc = ±1 [6].

Note that we have chosen to predict samplexn from
x̃n−i wherei ranges fromzero to m − 1. The samplexn

is therefore estimated from thecurrent and past samples
of x̃n. One would therefore easily be led to believe that
the predictor is non-causal. Luckily, however, if the FIR
filter is non-trivial then the residualen can be determined
since its computation (Eq. 3) contains terms ofxn−i where
i ∈ [0,m + l − 1], and the optimisation problem is un-
ambiguous. The transfer function of predictors obtained by
these formulations will therefore have a coefficient ofz0

that is generally not equal to one.
We can then formulate our optimisation problem as:

Problem Minimise E[e2
n]

with en = bT x + aT CT x

Solution We have the auxiliary equationRh = C0λ with
the unknown vectorh. The l × 1 vectorλ is solved from
CT

0 R−1C0λ = CT
0 b. Vectora can be calculated from the

overdetermined equationh− b = Ca.

Proof Definingh = b + Ca yieldsen = xT h. Obviously,
h− b = Ca andh− b is thus in column space ofC. Con-
sequently, the constraint can be written asCT

0 (h− b) = 0,
and our objective function can be written as

η(a, λ) = hT Rh + λT CT
0 (h− b), (5)

whereλ is the Lagrange multiplier vector. The optimum is
at ∂η/∂h = 0 which yieldsRh = C0λ. Parameterλ can
be solved fromCT

0 R−1C0λ = CT
0 b [11].

Vectora obeys, by definition, relationh− b = Ca and
can thus be calculated fromh. �

Remark Sinceen = xT h, vectorh is the impulse response
used in prediction. However, the minimal representation,
containing no redundant data, is vectora. It can be solved
settingE[ ∂

∂ae2
n] = 0 from CRCT a = CRb.

The constrained linear predictors havem degrees of free-
dom in defining a predictorh of orderm + l − 1. This im-
plies that in constrained predictors (forl ≥ 1), in contrast to
conventional LP, all-pole models of orderm + l − 1 can be
defined from less thanm + l − 1 parameters [4, 5]. Conse-
quently, constrained linear predictors can find applications
in such areas as coding and feature extraction. However,
covering all casesl ≥ 1 is beyond the scope of this article
and therefore we will concentrate on the casel = 1 only.

4. STABILITY OF CONSTRAINED LP MODELS

Theorem 1 Predictorac solving

Rac = γ
[
1, c−1, c−2, . . . , c−m

]T
(6)

is minimum-phase if|c| > 1 (wherec ∈ C), R is positive
definite andγ is a scaling factor. For|c| = 1 predictorac

has its roots on the unit circle, and for|c| < 1 outside the
unit circle.

The following proofs are based on the approach presented
in [12].

Proof Let α be a root of polynomialAc(z) corresponding
to vectorac. Writing vectorac in factored form

ac =


1

ac,1

ac,2

...
ac,m

 =


b0 0
b1 b0

b2 b1

...
...

0 bm−1


[

1
−α

]
= B

[
1
−α

]
,

(7)
it follows that

Rac = RB
[

1
−α

]
= γ

[
1, c−1, c−2, . . . , c−m

]T
. (8)
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Multiplying from the left byBH yields

BHRB
[

1
−α

]
= ξ

[
1

c−1

]
, (9)

whereξ = γ
∑m−1

i=0 b∗i c
−i.

If R is positive definite thenBHRB is positive definite
since matrixB is full rank [13]. Further,

BHRB =
[

s0 s1

s∗1 s0

]
> 0, (10)

which implies that|s0|2 > |s1|2 wheres0 is real.
Combining equations 9 and 10 yields

BHRB
[

1
−α

]
=

[
s0 − αs1

s∗1 − αs0

]
= ξ

[
1

c−1

]
(11)

Eliminatingξ to solveα yields

α =
s∗1 − s0c

−1

s0 − s1c−1
. (12)

We can readily show that|α| = 1 is equivalent to(
|s0|2 − |s1|2

) (
1− |c|−2

)
= 0. (13)

Therefore,|α| = 1 requires that|c| = 1 since|s0| > |s1|.
Further, in Eq. 11,|c| > 1 implies that|α| < 1, while |α| →
∞ implies thatc → s0

s1
, that is, |c| < 1. This concludes

the proof. Note that we have, as a by-product, proved the
stability of the traditional LP model. �

An example of the root space of predictorac as a func-
tion of c is depicted in Fig. 1.

Remark 1.1 Equation 6 can be rewritten as

Rac = γc−m
[
cm, cm−1, . . . , c−1, 1

]T
, (14)

which shows thata#
c (where superscript# denotes reversal

of rows) is minimum-phase for|c| < 1. Thus, two con-
strained linear predictors defined byc and c−1 have their
roots symmetric to the unit circle.

Remark 1.2 While Eq. 6 yields minimum-phase predictors
and since an LP model with a simple FIR-filter constraint

(Eq. 4) has a null-spaceC0 =
[
1, c−1, c−2, . . . , c−m

]T
,

the corresponding constrained LP model will be minimum-
phase if and only if the zero of the FIR-filter is outside the
unit circle.

Defintion The symmetric and antisymmetric part,d+ and
d−, respectively, of a vectord are defined asd± = d± d#,
where # denotes reversal of rows. Similarly, the scaled
(anti)symmetric part iŝd± = (d± d#)/(d0 ± dm).

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

Fig. 1. Illustration of the root space of predictorac in Eq.
6 as a function ofc ∈ R with m = 10. Corresponding LP-
model (c → ∞) is depicted with circles ’o’. When|c| > 1
roots ofac lie within the unit circle, for|c| = 1 on the unit
circle, and for|c| < 1 outside the unit circle.

Theorem 2 The scaled symmetric and antisymmetric parts

ĉ+ andĉ−, respectively, of vectorc =
[
1, c−1, . . . , c−m

]T

are, forc → ±1 andm even

ĉ+
c→+1 = [+1, +1, +1, . . . , +1, +1]T (15)

ĉ+
c→−1 = [+1, −1, +1, . . . , −1, +1]T (16)

ĉ−c→+1 = [1, 1− 2
m

, 1− 4
m

, . . . ,
2
m
− 1, −1]T (17)

ĉ−c→−1 = [1, −1 +
2
m

, 1− 4
m

, . . . , − 2
m

+ 1, −1]T.(18)

Similarly, form odd

ĉ+
c→+1 = [1, 1, 1, . . . , 1, 1]T (19)

ĉ+
c→−1 = [1, −1 +

2
m

, 1− 4
m

, . . . , − 2
m

+ 1, 1]T (20)

ĉ−c→+1 = [1, 1− 2
m

, 1− 4
m

, . . . ,
2
m
− 1, −1]T (21)

ĉ−c→−1 = [1, −1, 1, . . . , 1, −1]T . (22)

The predictorsa±±c solvingRa±±c = γĉ±c→±1 (where the
sign of symmetry andc are not necessarily equal), have
their zeros on the unit circle.

Proof Equations 15, 16, 19 and 22, follow directly from
the definition. Equations 17, 18, 20 and 21 can be readily
derived using the l’Hopital rule for limits.

Since we have proved that predictorsac solving Eq. 6
are minimum-phase if|c| > 1, then the symmetric and an-
tisymmetric partsa±c have their zeros interlaced on the unit
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0
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1 LP
a(+,c→+1)
a(+,c→−1)
a(−,c→+1)
a(−,c→−1)

Fig. 2. An example of the unit circle and interlacing prop-
erties of the symmetric and antisymmetric partsa±c (Eqs.
15-22) of predictorac in Eq. 6 (m = 10).

circle [14]. The same holds for the reversed predictora# by
symmetry. When|c| = 1, the predictorac is either symmet-
ric or antisymmetric and the opposite symmetry component
is zero. However, it follows that at the limit|c| → 1 the
predictora±±c must have its zeros on the unit circle since
polynomial sequences are continuous. �

The predictorsac solving Ra±±c = γĉ±c→±1 are thus, in
some combinations of sign of symmetry and sign ofc =
±1, the LSP polynomials of degreem + 1 with one trivial
zero removed (see section 2.2). These polynomial have their
zeros interlaced on the unit circle. In addition, symmetric
and antisymmetric pairs with equalc are interlaced due to
[14]. Further, we have observed that all these polynomials
have their zeros interlaced on the unit circle. However, the
proof of this statement lies beyond the scope of this article.
The interlacing properties are demonstrated in Fig. 2. No-
tice especially how all combinations of predictor zeros are
interlaced.

Due to the interlacing properties shown above, these
theorems can be extended to multidimensional cases, i.e.
cases where the FIR filter corresponding to Eq. 4 has sev-
eral roots (l > 1), that is, when constraint vector in Eq. 6
is a Vandermonde matrix [13]. Unfortunately, again this is
beyond the scope of this article.

5. CONCLUSIONS

This study deals with constrained linear prediction that dif-
fers from conventional LP in the sense that an optimal pre-
dictor of orderm + l − 1 is defined usingm parameters.
In the present paper, we have focused solely on the stabil-
ity properties of these models. These proofs form a basis
for applications of constrained linear prediction which ex-
ist, for example, in such areas as speech coding and feature
extraction.
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