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ABSTRACT

In this paper, we generalize the well-known variable
fractional delay filter structure of Farrow to include
Laguerre and Kautz filters. We also show how one can
incorporate amplitude response shaping into the
optimization design formulation, and extend the range of
variable delay to beyond the usual one sampling period.
Some salient features of the new structures are
demonstrated through three design examples based on the
simple least squares criterion.

1. INTRODUCTION

Fractional delay filters have found applications in many
fields of signal processing such as digital modems,
microphone and sonar array processing, and speech and
music signal processing [1]. These filters allow the user to
delay sampled signals by amounts that are not integer
multiples of the sampling period. An excellent discussion
on the various design methods for fractionally delay filters
can be found in the tutorial article [1].

One particularly important class of fractional delay
filters is the variable fractional delay filters. Apart from
the usual signal input, these filters have one additional
input through which the user can adjust the amount of
delay synthesized by the filters. The best known structure
for implementing variable fractional delay filters is the
one proposed by Farrow in [2] and shown in Fig. 1. It
consists of M parallel FIR filters, whose coefficients are
fixed, and a multiplier chain through which the user
adjusts the filter delay. The FIR filters have K taps each.
Methods to design the fixed filters have been summarized
in [1], and some more recent work are reported in [3]-[6].

Here, we note that, in the design methods described
thus far in the literature, (i) they all aim to design all-pass
filters; and (ii) the range of delays synthesized by the filter
is always taken to be one sampling period. In some
applications, e.g. beam steering of the microphone array
of a teleconferencing system [7], it may be desirable to
incorporate some form of frequency response shaping,
e.g. a bandpass characteristic from 300 Hz to 3000 Hz,
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into the beam steering fractional delay filters. Also, to
track moving speech sources, it may be desirable if the
range of delays that is synthesized by the filters can be
easily adjusted over more than one sampling period. For
speech, the sampling rate is typically 8000 Hz and in [7],
it is seen that to cover the range of delays that can arise in
a microphone array, it may be necessary to switch unit
delay elements in and out of the Farrow filters. This can
be awkward in practice.
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Fig. 1. The Farrow structure

In this paper, we show how the optimum design
formulations of variable fractional delay filters can be
reformulated trivially to include frequency response
shaping and an extended range of variable delays. We also
show how the conventional Farrow structure can be
generalized to incorporate Laguerre and Kautz filters [8].
Laguerre and Kautz filters are higher order forms of the
unit delay elements of an FIR filter. By replacing the unit
delays with Laguerre and Kautz filter sections, an extra
one (Laguerre) or two (Kautz) degrees of freedom are
introduced into the design. It will be shown that this extra
freedom can yield a better design.

2. THE LAGUERRE-FARROW AND KAUTZ-
FARROW STRUCTURES

It can be easily shown that the transfer function of the
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Farrow filter structure of Fig. 1 is given by [1],[4]

K-1
H(®,8) =Y, [ 2 bkmé'm}e_ﬂ“”. (1)
k=0 m=0
Eq. (1) shows that H(w,d) can be thought of as being
just a K-tap FIR filter except that each of its tap
coefficients is an (M —1)th order polynomial of & . In
other words, H(@,d) approximates the dependence of
each of its coefficients on 0 by an (M —1)th order
polynomial.
We next express (1) as follows

K-1
H(®,6) =Y, Z b ¥

k=0 m=0

where {¢ (@), k=0,...,(K-1)} is a set of K ortho-
normal basis functions in @. Other orthonormal basis
functions are the Laguerre and Kautz functions
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The Laguerre-Farrow and Kautz-Farrow structures are
shown, respectively, in Figs. 2 and 3 where
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Note that a Laguerre filter reduces to an FIR filter

when o =0, while a Kautz filter reduces to a Laguerre

filter when £ is real and to an FIR filter when £ =0.
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Fig. 3. The Kautz-Farrow structure

3. OPTIMUM DESIGN FORMULATIONS

Suppose the desired transfer function is given by
Hy(@,D.8) = Ay(@)e % (13)

where —7<@w<7x, D is the nominal or mean delay to
be synthesized by the variable delay filter, 4,(®) is the
desired amplitude response, —J,, <J <J,,, and J,, is the
maximum delay variation. For the Farrow structure,
design methods reported thus far all assumed A;(w)=1
and ¢J,, =0.5 [1].

Clearly, many optimum design problems can be
formulated. For example, the minimax design for the
Laguerre-Farrow structure is given by

min max |E(a) D §)| (14)
he RM -r<w<rw
-l<a<l1 -0,<0<0,

8, <D<(K-1-6,)

where  E(w,D,d) = H(w,d) - H;(w,D,6), (15)

while the least squares design is given by
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. . (O (7 = o2
_min_ {hren@( J—am j_”|E(w,D,5)| dwdé‘} .(16)
3,<D<(K-1-6,,)

A similar set of design formulations can be written for
the Kautz-Farrow structure if we replace the constraint
—-l<a <1 in(14)and (15) with |S] <1.

Other design formulations can also be posed, for
example, those involving constraints in the amplitude
and/or phase responses [9]. In the sequel we will consider
only the least squares formulation (16).

4. LEAST SQUARES DESIGN

Define firstly the vectors

T
h :[bo,o o bgyp bop-1 - bK—l,M—l:I ,(17)

& =[5° s aM‘l]T, (18)
0(®) = [h(@) 4@ g @], (19
and 05(®) = 3 ® (). (20)

where ® denotes Kronecker product. Using the results of
[6], it can be shown that the optimum solution to the inner
minimization of (16) is given by

h(D,a) = R™'p(D, @) @1
where R = 27Z'R6 ®IK><K’ (22)
25P+a-1
5’”—, (p+q) even
[Rs],, =1p*a-! . (23
pa=lb Mg, (p+g) odd

and p(D,a) = ji J;Re[H; (w,5,5)~q)5(a))] dwds

(24)
The optimum solution to (16) is then found by searching
for the best D and « .
Note that, with an appropriate re-definition of ¢, (@),
(21) applies also to the Farrow and Kautz-Farrow filters.

4. DESIGN EXAMPLES

In this section, we present and compare three band pass
variable fractional delay filter designs based on the
Farrow, Laguerre-Farrow, and Kautz-Farrow structures.
All three filters have the same desired amplitude response
(stopband [0,0.2572]U[0.757x, 7], passband [0.47,0.67],
and linear in the transition bands), the same filter length
K =20, and the same delay variation of 2 sampling
periods, ie. &, =1. Concerning M, it was found
experimentally that for J,, =1, increasing M beyond 5
will give only a very small decrease in optimum cost. We
thus set M =5. It was also found experimentally that M
depends only very slightly on K, which is expected since
M gives the degree of the polynomial approximation of
the filter coefficients on J as § varies from —J,, to J,, .

The results of the designs are summarized in Table 1.
As expected, in terms of the achieved optimum cost, the
Kautz-Farrow filter outperforms the Laguerre-Farrow
filter which, in turn, outperforms the Farrow filter. Fig. 4
shows the magnitude responses while Fig. 5 shows the
group delay responses for we [0.4ﬂ', 0.671’]. It is
intuitively satisfying to see the pole of the Kautz-Farrow
filter is located at almost 90° which corresponds to the
centre frequency of the passband.
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Fig. 4. Magnitude responses
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D Pole Posn. Opt. Cost
Farrow 9.5 0 0.00476220
Laguerre | 9.50225 -0.0306339 0.00428066

Kautz

10.2480 [0.381983/90.5393°|0.00349160

Table 1. Summary of filter design results
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Fig. 5. Group delay responses

Comparing the magnitude responses shown in Fig. 4,

we see that there appears to be little difference between
the three filters in the passband from 0.4z to 0.67.
However, in the stopband, the Kautz-Farrow filter gives
better suppression. As for the group delay responses
shown in Fig. 5, we see that the Laguerre-Farrow filter
gives better group delay linearity than the Farrow filter,
while the Kautz-Farrow filter is better still.

5. CONCLUSIONS

In this paper, we have generalized the Farrow variable
fractional delay structure to include Laguerre and Kautz
filters, and using a simple least squares design
formulation, we have shown that the Laguerre-Farrow and
Kautz-Farrow structures can offer performance gains. It is
expected that by a more appropriate formulation, one can
extract better performance gains from the higher order
variable fractional delay filters. We also showed how one
can include amplitude response shaping into the design
formulation and extend the range of delays that the filters
can synthesize.

6. REFERENCES

[1] T.I. Laakso, V. Viliméki, M. Karjalainen, and U. K. Laine,
“Splitting the unit delay: tools for fractional delay filter
design,” IEEFE Signal Processing Mag., vol. 13, no. 1, pp.
30-60, Jan. 1996.

[2] C. W. Farrow, “A continuously variable digital delay
element,” in Proc. IEEE ISCAS’88, Espoo, Finland, Jun.
1988, vol. 3, pp. 2641-2645,.

[3] J. Vesma and T. Saramaki, “Optimization and efficient
implementation of FIR filters with adjustable fractional
delay,” in Proc. IEEE ISCAS’97, Hong Kong, Jun. 1997,
vol. IV, pp. 2256-2259.

[4] f. harris, “Performance and design of Farrow filter used for
arbitrary resampling,” in Proc. 13th Int. Conf. Digital
Signal Processing DSP’97, Santorini, Greece, Jul. 1997,
vol. 2, pp. 595-599.

[5] J. Vesma, “A frequency-domain approach to polynomial-
based interpolation and the Farrow structure,” IEEE Trans.
Circuits Syst. 11, vol. 47, no. 3, pp. 637- 644, Mar. 2000.

[6] T. Deng, “Discretization-free design of variable fractional-
delay FIR digital filters,” IEEE Trans. Circuits Syst. 11, vol.
48, no. 6, pp. 637-644, Jun. 2001.

[71 P.Murphy, A. Krukowski, and A. Tarczynski, “An efficient
fractional sample delayer for digital beam steering,” in
Proc. IEEE ICASSP’97, Munich, Germany, Apr. 1997, vol.
3, pp. 2245-2248.

[8] L. S. H. Ngia, “Separable nonlinear least-squares methods
for efficient off-line and on-line modeling of systems using
Kautz and Laguerre filters,” IEEE Trans. Circuits Syst. 11,
vol. 48, no. 6, pp. 562-579, Jun. 2001.

[91 Z. Zang, S. Nordholm, S. Nordebo, and A. Cantoni,
“Design of digital filters with amplitude and group delay
specifications,” in Proc. IEEE 1lth Statistical Signal
Processing Workshop, Singapore, Aug. 2001, pp. 357-360.

VI - 284




