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ABSTRACT 
 
In this paper, we generalize the well-known variable 
fractional delay filter structure of Farrow to include 
Laguerre and Kautz filters. We also show how one can 
incorporate amplitude response shaping into the 
optimization design formulation, and extend the range of 
variable delay to beyond the usual one sampling period. 
Some salient features of the new structures are 
demonstrated through three design examples based on the 
simple least squares criterion. 

 
1. INTRODUCTION 

 
Fractional delay filters have found applications in many 
fields of signal processing such as digital modems, 
microphone and sonar array processing, and speech and 
music signal processing [1]. These filters allow the user to 
delay sampled signals by amounts that are not integer 
multiples of the sampling period. An excellent discussion 
on the various design methods for fractionally delay filters 
can be found in the tutorial article [1]. 

One particularly important class of fractional delay 
filters is the variable fractional delay filters. Apart from 
the usual signal input, these filters have one additional 
input through which the user can adjust the amount of 
delay synthesized by the filters. The best known structure 
for implementing variable fractional delay filters is the 
one proposed by Farrow in [2] and shown in Fig. 1. It 
consists of M parallel FIR filters, whose coefficients are 
fixed, and a multiplier chain through which the user 
adjusts the filter delay. The FIR filters have K taps each. 
Methods to design the fixed filters have been summarized 
in [1], and some more recent work are reported in [3]-[6]. 

Here, we note that, in the design methods described 
thus far in the literature, (i) they all aim to design all-pass 
filters; and (ii) the range of delays synthesized by the filter 
is always taken to be one sampling period. In some 
applications, e.g. beam steering of the microphone array 
of a teleconferencing system [7], it may be desirable to 
incorporate some form of frequency response shaping, 
e.g. a bandpass characteristic from 300 Hz to 3000 Hz, 

into the beam steering fractional delay filters. Also, to 
track moving speech sources, it may be desirable if the 
range of delays that is synthesized by the filters can be 
easily adjusted over more than one sampling period. For 
speech, the sampling rate is typically 8000 Hz and in [7], 
it is seen that to cover the range of delays that can arise in 
a microphone array, it may be necessary to switch unit 
delay elements in and out of the Farrow filters. This can 
be awkward in practice. 
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Fig. 1. The Farrow structure 

In this paper, we show how the optimum design 
formulations of variable fractional delay filters can be 
reformulated trivially to include frequency response 
shaping and an extended range of variable delays. We also 
show how the conventional Farrow structure can be 
generalized to incorporate Laguerre and Kautz filters [8]. 
Laguerre and Kautz filters are higher order forms of the 
unit delay elements of an FIR filter. By replacing the unit 
delays with Laguerre and Kautz filter sections, an extra 
one (Laguerre) or two (Kautz) degrees of freedom are 
introduced into the design. It will be shown that this extra 
freedom can yield a better design. 

 
2. THE LAGUERRE-FARROW AND KAUTZ-

FARROW STRUCTURES 
 
It can be easily shown that the transfer function of the 
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Farrow filter structure of Fig. 1 is given by [1],[4] 
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Eq. (1) shows that ( , )w dH  can be thought of as being 
just a K-tap FIR filter except that each of its tap 
coefficients is an ( 1-M )th order polynomial of d . In 
other words, ( , )w dH  approximates the dependence of 
each of its coefficients on d  by an ( 1-M )th order 
polynomial. 

We next express (1) as follows 
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where { }( ), 0, , ( 1)f w = -…k k K  is a set of K ortho-
normal basis functions in w . Other orthonormal basis 
functions are the Laguerre and Kautz functions 
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where w= jz e , 1 1a- < < , 1b < , 

 0
1 (1 )(1 )(1 )
2

b b bb* *= + + -c , (6) 

and 1
1 (1 )(1 )(1 )
2

b b bb* *= - - -c . (7) 

The Laguerre-Farrow and Kautz-Farrow structures are 
shown, respectively, in Figs. 2 and 3 where  
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Note that a Laguerre filter reduces to an FIR filter 
when 0a = , while a Kautz filter reduces to a Laguerre 
filter when b  is real and to an FIR filter when 0b = . 
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Fig. 2. The Laguerre-Farrow structure 
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Fig. 3. The Kautz-Farrow structure 

 
 

3. OPTIMUM DESIGN FORMULATIONS 
 
Suppose the desired transfer function is given by 
 ( )( , , ) ( ) w dw d w - += j D

d dH D A e  (13) 
where p w p- £ £ , D  is the nominal or mean delay to 
be synthesized by the variable delay filter, ( )wdA  is the 
desired amplitude response, d d d- £ £m m , and dm  is the 
maximum delay variation. For the Farrow structure, 
design methods reported thus far all assumed ( ) 1w =dA  
and 0.5d =m  [1]. 

Clearly, many optimum design problems can be 
formulated. For example, the minimax design for the 
Laguerre-Farrow structure is given by 
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where ( , , ) ( , ) ( , , )w d w d w d= - dE D H H D , (15) 

while the least squares design is given by 
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A similar set of design formulations can be written for 
the Kautz-Farrow structure if we replace the constraint 

1 1a- < <  in (14) and (15) with 1b < . 
Other design formulations can also be posed, for 

example, those involving constraints in the amplitude 
and/or phase responses [9]. In the sequel we will consider 
only the least squares formulation (16). 

 
4. LEAST SQUARES DESIGN 

 
Define firstly the vectors 
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and ( ) ( )d w w= ƒφ δ φ . (20) 
where ƒ  denotes Kronecker product. Using the results of 
[6], it can be shown that the optimum solution to the inner 
minimization of (16) is given by 
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  (24) 
The optimum solution to (16) is then found by searching 
for the best D  and a . 

Note that, with an appropriate re-definition of ( )f wk , 
(21) applies also to the Farrow and Kautz-Farrow filters. 

 
4. DESIGN EXAMPLES 

 
In this section, we present and compare three band pass 
variable fractional delay filter designs based on the 
Farrow, Laguerre-Farrow, and Kautz-Farrow structures. 
All three filters have the same desired amplitude response 
(stopband [0,0.25 ] [0.75 , ]p p p» , passband [0.4 ,0.6 ]p p , 
and linear in the transition bands), the same filter length 

20K = , and the same delay variation of 2 sampling 
periods, i.e. 1d =m . Concerning M , it was found 
experimentally that for 1d =m , increasing M  beyond 5 
will give only a very small decrease in optimum cost. We 
thus set 5=M . It was also found experimentally that M  
depends only very slightly on K , which is expected since 
M  gives the degree of the polynomial approximation of 
the filter coefficients on d  as d  varies from d- m  to dm . 

The results of the designs are summarized in Table 1. 
As expected, in terms of the achieved optimum cost, the 
Kautz-Farrow filter outperforms the Laguerre-Farrow 
filter which, in turn, outperforms the Farrow filter. Fig. 4 
shows the magnitude responses while Fig. 5 shows the 
group delay responses for [ ]0.4 , 0.6w p pŒ . It is 
intuitively satisfying to see the pole of the Kautz-Farrow 
filter is located at almost 90° which corresponds to the 
centre frequency of the passband. 

 

 

 
Fig. 4. Magnitude responses 
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 D  Pole Posn. Opt. Cost 
Farrow 9.5 0 0.00476220 

Laguerre 9.50225 -0.0306339 0.00428066 
Kautz 10.2480 0.381983/90.5393° 0.00349160 

Table 1. Summary of filter design results 

 

 

 

 
Fig. 5. Group delay responses 

Comparing the magnitude responses shown in Fig. 4, 

we see that there appears to be little difference between 
the three filters in the passband from 0.4p  to 0.6p . 
However, in the stopband, the Kautz-Farrow filter gives 
better suppression. As for the group delay responses 
shown in Fig. 5, we see that the Laguerre-Farrow filter 
gives better group delay linearity than the Farrow filter, 
while the Kautz-Farrow filter is better still. 

 
5. CONCLUSIONS 

 
In this paper, we have generalized the Farrow variable 
fractional delay structure to include Laguerre and Kautz 
filters, and using a simple least squares design 
formulation, we have shown that the Laguerre-Farrow and 
Kautz-Farrow structures can offer performance gains. It is 
expected that by a more appropriate formulation, one can 
extract better performance gains from the higher order 
variable fractional delay filters. We also showed how one 
can include amplitude response shaping into the design 
formulation and extend the range of delays that the filters 
can synthesize. 
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