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ABSTRACT

In fractal coding technique, an image is encoded by
making use of its self-similarity property. The image can
be reconstructed with some well-defined contractive
mappings based on this property and hence, in theory, the
reconstructed image can be of any desirable size by using
an initial image of appropriate size during the decoding
process. However, in practice, the enlarged image is
always degraded due to the sub-optimal contractive
mappings used. In this paper, a fractal-based image
enlargement technique is proposed to reduce this problem.
This technique can preserve the details in edge regions
while maintaining the smoothness in flat regions, which is
superior to conventional image enlargement techniques
such as bilinear interpolation and cubic convolution.

1. INTRODUCTION

Image enlargement plays an important role in many fields,
ranging from medical imaging to military application or to
consumer electronics. To a large extent, it relies on image
interpolation. The principle of all interpolation schemes is
to determine the parameters of a continuous image
representation from a set of discrete points. Simple
approaches include the zero order (nearest neighbor) and
the first order (bilinear) interpolation [1]. The more
advanced schemes are the cubic splines [2] and the cubic
convolution interpolation [3,4]. The common defect of
these approaches is their intrinsic inability to reproduce
sharp image details. This property is due to the low pass
filtering involved in their operations [5].
 Fractal can be used as another approach for
image enlargement due to the property that the fraction
representation of an image carries the same amount of
detail regardless of its scale [6]. However, natural images
are not exactly self-similar, various artifacts, such as
blocking artifact and lost of details, appear in the enlarged
images although the sharpness of the original image can
be preserved.

For this reason, we propose a fractal-based
enlargement technique in this paper to overcome such a
problem by introducing an enhancement layer. This paper
is organized as follows. In Section 2, an overview of the

conventional fractal image coding and its application in
image enlargement are given. Section 3 presents the
enhancement layer and its use in the enlargement process.
Section 4 shows some simulation results and a brief
conclusion is given in Section 5.

2. FRACTAL IMAGE CODING

Fractal image coding technique is based on the
mathematical theory of iterated contractive
transformations developed by Barnsley [7,8]. In this
technique, the original image oriI , of size NN × , is first

partitioned into a number of non-overlapping regions
called range blocks of size nn×  each. For each range
block iR , where i = 1, 2, 3…(N/n)2, the fractal encoder

searches for the best matching domain block, iD , in a

domain pool based on a criterion that 2||ˆ|| ii RRJ −=  is

minimum, where iR̂  is a transformed version of iD .

The domain pool is defined as a set of the domain
blocks. The domain blocks in the domain pool are
extracted from oriI  by sliding a window of size dd nn ×
across oriI  from left to right and from top to bottom. The

size of each domain block should be larger than that of a
range block to fulfill the contractive requirement [9].
Usually, we let nnd 2= .

The affine transform used to get iR̂  is generally

given as

iiiii oDSsR +ψ⋅= ))((ˆ (1)

where is  and io  are, respectively, the contrast scalar

factor and the luminance shift factor to be defined.
Operator iψ  is one of the eight possible isomeric

transforms purposed in [9]. Operator S is a spatial

contractive transform which maps iD  onto a block of size

n×n. This is usually implemented by averaging four
surrounding pixels.

The optimized contrast scalar factor is  and the

luminance shift factor io  are calculated as follows.
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where rj and dj are, respectively, the intensity values of the
thj  pixels of the range block and the transformed domain

block, and K is the total number of pixels in the range
block.

After the best matching domain block is found, the
corresponding affine transform parameters including is ,

io , iψ  and the position of iD  in oriI  are then stored for

image decoding. This process is carried out block by
block until transformation parameters for all blocks are
defined.

At the decoding phase, started with an arbitrary
initial image, affine mappings are recursively applied to
corresponding blocks of the intermediate mapping result
of the image. Note that the domain pool is updated as the
content of the mapping result changes at each iteration.
Eventually it converges to an image close to the original
after a few iterations. Image enlarging can be achieved
easily by scaling the initial image to the desirable size at
the very beginning and then scaling the size of range
blocks and domain blocks with the same scale factor at
each iteration.

3. PROPOSED ALGORITHM

The major idea behind the proposed algorithm is to find
an enhancement layer for decoding to reduce the
difference between a range block and its associated
transformed domain block.

3.1. Enhancement Layer

Let iD  be the best matching domain block for a

range block iR  of size nn×  and the optimized affine

transformation parameters for this range block be is , io

and iψ . The corresponding reconstructed block, say iR̂ ,

can then be given as iiiii oDSsR +ψ⋅= ))((ˆ . Assume

that there exists an ideal domain block for iR , say *
iD ,

such that the original range block can be obtained with the
same affine transformation as follows.

iiiii oDSsR +ψ⋅= ))(( *

The difference between ))(( *
ii DSψ  and ))(( ii DSψ , say

iE , is then given as

))((
)(

ii
i

ii
i DS

s

oR
E ψ−

−
= .    (2)

This difference is a vector of size nn×  and its scaled
version will be used as an enhancement layer for image
enlargement.

3.2. Image Enlargement with Enhancement Layer

Assume that the size of the original image oriI  is

now scaled to zNzN × , where z is the scaling factor. The
initial image is then of size zNzN × . During
enlargement, the corresponding enhancement layer for
each scaled range block (of size znzn× ) is added in the
contractive mapping to compensate for the error between

iR  and iR̂ . In particular, at the thk  iteration, the

contractive mapping of the thi  range block is given by

 iikiiiki oEDSsR ++ψ⋅= )))((( '
)()(     (3)

where )(kiR  is the thk  mapping output of the block, )(kiD

is a block in )1( −kI , the thk )1( −  mapping output of the

image, whose position in )1( −kI  corresponds to that of

iD  in oriI , and '
iE  is the interpolated iE . Zero order

interpolation is applied to interpolate iE  to '
iE .

Fractal coding technique is a block based technique
and hence block artifact is unavoidable in the
reconstructed image. When this technique is applied to
enlarge an image, the block artifact is emphasized and
could be highly visible. In the proposed approach, in order
to remove the block artifact in the enlarged image, the
image is enlarged with two different partition schemes
and then their results are averaged to get the final result.

In the first partition scheme, oriI  is partitioned into

nonoverlapped blocks of size nn×  as usual. As in the
second scheme, oriI  is also partitioned into

nonoverlapped blocks of size nn× , but the centers of the
blocks lie at the corners of the blocks defined in the first
partition scheme.  Those range blocks at the boundary of
the image are not of size nn×  and hence are not handled.

4. SIMULATION RESULTS

Simulation was carried out to evaluate the performance of
the proposed algorithm. Seven 256-level testing images of
size 512×512 were used in the simulation. The testing
images were first downscaled to 256× 256. Then they
were enlarged to their original size with different
algorithms. The size of range blocks used in this
simulation was 4×4.

Table 1 shows the PSNR performance of various
algorithms. Specifically, PSNR is defined as
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where ijp  and ijp̂  represent the image pixels of the

original image and the enlarged image respectively, and
NN ×  is the size of the images.

On average, the PSNR of all the enlarged images
obtained from the proposed algorithm is 1.9dB higher
than that of the cubic convolution interpolation [3]. In
particular, for image “Peppers”, the proposed algorithm
produces an output of 34.36dB which is much higher than
those obtained with the others. The reason for this is that
the image “Peppers” contains many flat regions and
simple edges and hence there is an amount of self-
similarity in the image, which is extremely suitable for
fractal representation.

Fig. 1 shows the enlarged results of some
interpolation algorithms. One can observe that the
proposed algorithm preserves the details in the edge
regions while the others introduce a certain amount of
blur in the enlarged images. As for those complex images
like “Mandrill”, although the performance of various
algorithms is very close in terms of PSNR, the subjective
quality of the output produced by the proposed algorithm
is much better than that of the others.  In Fig. 2, one can
see that the proposed algorithm can preserve most of the
high frequency content while the others cannot. One can
also see that the proposed algorithm can effectively
remove the block artifact.

The advantage of using the enhancement layer can
be revealed in the simulation. In the high frequency
regions like the hair regions in “Mandrill”, the fineness of
the hair in Fig. 2f is much higher as compared with Fig.
2e, where no enhancement layer is applied. The difference
is obvious even though the result is obtained by averaging
two conventional fractal interpolation results as the
proposed approach does. The blur introduced by the
conventional fractal algorithm[7] is remedied by using the
enhancement layer.

5. CONCLUSIONS

In this paper, a fractal-based image enlargement
technique is proposed. The main idea of this method is to
reduce the difference between the range blocks and the
transformed outputs of their corresponding domain blocks
during fractal coding by introducing an enhancement
layer. With the use of the enhancement layer, image
details can be preserved in the edge regions without
destroying the smoothness of the flat regions. Our
simulation results show that the proposed algorithm is
able to produce an enlarged image closer to the original

image as compared with other conventional algorithms
such as bilinear interpolation[1] and cubic convolution[3].

Ours
 Fractal

[7]
Han &

Beak's [5]
Cubic

[3]
Bilinear

[1]

Barbara 24.602 23.679 24.206 24.214 24.213
Boat 30.618 28.201 28.391 28.399 28.174
Goldhill 30.771 28.956 29.401 29.407 29.238
Lena 33.838 31.235 30.516 30.539 30.348
Mandrill 23.062 21.716 22.792 22.795 22.686
Peppers 34.363 32.343 30.990 30.994 30.778
Plane 32.571 29.407 29.659 29.661 29.298

Table 1 Comparison of the PSNR performance of various
interpolation algorithms (in dB)
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(a) (b)  (c)

(d)  (e)   (f)
Fig. 1  Parts of (a) the original image “Peppers” and the enlarged results obtained with (b) bilinear interpolation [1] (c)

cubic convolution [3], (d) parametric cubic convolution [5], (e) conventional fractal enlargement [7] and (e) the
proposed algorithm.

  (a) (b)  (c)

(d)  (e)   (f)
Fig. 2  Parts of (a) the original image “Mandrill” and the enlarged results obtained with (b) bilinear interpolation [1] (c)

cubic convolution [3], (d) parametric cubic convolution [5], (e) conventional fractal enlargement [7] and (e) the
proposed algorithm.
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